A spectacular new species of *Hyloscirtus* (Anura: Hylidae) from the Cordillera de Los Llanganates in the eastern Andes of Ecuador (#69046)

First submission

Guidance from your Editor

Please submit by 10 Feb 2022 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 15 Figure file(s)
- 2 Table file(s)
- 3 Other file(s)

DNA data checks

- Have you checked the authors <u>data deposition statement?</u>
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Vertebrate animal usage checks

- Have you checked the authors ethical approval statement?
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Field study

- Have you checked the authors <u>field study permits</u>?
- Are the field study permits appropriate?

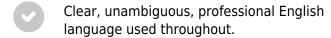
New species checks

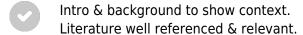
- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

For assistance email peer.review@peerj.com

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:


- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review


When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Figures are relevant, high quality, well labelled & described.

Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

Original primary research within Scope of the journal.

Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.

Rigorous investigation performed to a high technical & ethical standard.

Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.

Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

All underlying data have been provided; they are robust, statistically sound, & controlled.

 \bigcirc

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A spectacular new species of *Hyloscirtus* (Anura: Hylidae) from the Cordillera de Los Llanganates in the eastern Andes of Ecuador

Juan P Reyes-Puig $^{\text{Corresp., 1, 2}}$, Darwin Recalde 3 , Fausto Recalde 4 , Claudia Koch 5 , Juan M. Guayasamin $^{6, 7}$, Diego F. Cisneros-Heredia $^{8, 9}$, Lou Jost $^{2, 10}$, Mario H. Yánez-Muñoz $^{\text{Corresp. 1, 11}}$

Corresponding Authors: Juan P Reyes-Puig, Mario H. Yánez-Muñoz Email address: foer2005@yahoo.com, mario.yanez@biodiversidad.gob.ec

We have discovered a spectacular new frog in the genus *Hyloscirtus*, belonging to the *H. larinopygion* group, characterized adult females mostly black with large red spots on the whole body and on the toe pads, while the juveniles are black heavily mottled on the dorsal surface with mustard-yellow bands and blotches, and yellow toe pads; fleshy calcar tubercle extending from the ankle, and cloacal ornamentation with two parallel canals, with supracloacal fold present and well defined, reaching the vent. The new species is known only from Cerro Mayordomo, in Fundacion EcoMinga´s Machay Reserve at 2900m, in the eastern Andes of Tungurahua province, Ecuador, near the southern edge of Los Llanganates National Park.

¹ Unidad de Investigación, Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador

² Fundación Ecominga Red de Protección de Bosques Amenazados, Baños, Tungurahua, Ecuador

Fundación Ecominga Red de Protección de Bosques Amenazados, Baños, Tungurahua, Ecuador

⁴ Fundación Ecominga - Red de Protección de Bosques Amenazados, Baños, Tungurahua, Ecuador

⁵ Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany, Germany

⁶ Laboratorio de Biología Evolutiva,, Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto BIÓSFERA-USFQ,, Cumbaya, Pichincha, Ecuador

⁷ Department of Biology,, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States

Museo de Zoología y Laboratorio de Zoología Terrestre, Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto iBIOTROP,, Quito, Ecuador

⁹ Unidad de Investigación, Instituto Nacional de Biodiversidad (INABIO), Quito, Pichincha, Ecuador

¹⁰ Unidad de Investigación, Instituto Nacional de Biodiversidad (INABIO)., Quito, Ecuador

¹¹ Fundación Ecominga Red de Protección de Bosque amenazados, Baños, Ecuador

1 A spectacular new species of *Hyloscirtus* (Anura:

Hylidae) from the Cordillera de Los Llanganates in the

eastern Andes of Ecuador

4

- 5 Juan Pablo Reyes-Puig^{1,2,3}, Darwin Recalde², Fausto Recalde², Claudia Koch⁴, Juan M.
- 6 Guayasamin^{5,6}, Diego F. Cisneros-Heredia^{1,7}, Lou Jost^{1,2}, & Mario H. Yánez-Muñoz^{1,2}*

7

- 8 ¹ Instituto Nacional de Biodiversidad, Quito, -Ecuador
- 9 ^{2.} Fundación Ecominga, Baños,-Ecuador
- 10 ³ Fundación Oscar Efrén Reyes Baños, Ecuador
- 11 ⁴ Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.
- ⁵ Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales
- 13 COCIBA, Instituto BIÓSFERA-USFQ, Laboratorio de Biología Evolutiva, Campus Cumbayá,
- 14 Casilla Postal 17-1200-841, Quito 170901, Ecuador.
- ⁶ Department of Biology, University of North Carolina at Chapel Hill, NC 27599, USA.
- ⁷ Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA,
- 17 Instituto iBIOTROP, Museo de Zoología y Laboratorio de Zoología Terrestre, Quito 170901, Ecuador

18

- 19 Corresponding Author:
- 20 Mario H. Yánez-Muñoz¹
- 21 Pasaje Rumipamba 341 y Av. de Los Shyris, Quito-Ecuador.
- 22 Email address: mayamu@hotmail.com

23

Abstract

24 25

- We have discovered a spectacular new frog in the genus *Hyloscirtus*, belonging to the *H*.
- 27 larinopygion group, characterized adult females mostly black with large red spots on the whole
- 28 body and on the toe pads, while the juveniles are black heavily mottled on the dorsal surface with
- 29 mustard-yellow bands and blotches, and yellow toe pads; fleshy calcar tubercle extending from
- 30 the ankle, and cloacal ornamentation with two parallel canals, with supracloacal fold present and
- 31 well defined, reaching the vent. The new species is known only from Cerro Mayordomo, in
- Fundacion EcoMinga's Machay Reserve at 2900m, in the eastern Andes of Tungurahua
- province, Ecuador, near the southern edge of Los Llanganates National Park.

34

- 35 KEY WORDS:
- 36 Hyloscirtus larinopygion group, Llanganates mountains, Upper Rio Pastaza watershed, phylogenetic
- 37 position.

38 39

Introduction

40	
41 42 43 44 45	The upper Rio Pastaza watershed was identified as a center of endemism for amphibians by Lynch and Duellman (1980), and subsequent investigations have tripled the number of species apparently endemic to this region, known as the Sangay–Llanganates Ecological Corridor (Reyes Puig et al., 2010, 2014, 2015, 2019a; Reyes-Puig & Yánez-Muñoz, 2012; Reyes-Puig, 2013; Reyes-Puig et al., 2019b; Franco-Mena et al., 2019).
46 47 48 49 50 51 52 53 54 55 56 57 58 59	The Machay Reserve is a private reserve owned by the Ecuadorian NGO Fundación EcoMinga on Cerro Mayordomo in the upper Rio Pastaza watershed, within the buffer zone of the Los Llanganates National Park. Investigators from Fundación EcoMinga and Instituto Nacional de Biodiversidad (INABIO) have been conducting botanical and herpetological expeditions there for two decades, which have led to the discovery of more than a dozen new species of plants, especially orchids (Jost, 2004) and several new amphibian and reptile species (Reyes Puig et al., 2010, 2014, 2015, 2019a; Reyes-Puig & Yánez-Muñoz, 2012; Reyes-Puig, 2013; Sheehy et al. 2014, Reyes-Puig et al., 2019b). During a botanical expedition in March 2018, one of the participants, Darwin Recalde, fortuitously encountered a striking black and red frog hiding in a leaf axil of a bromeliad at eye level; it was a new Stream Frog belonging to the genus <i>Hyloscirtus</i> Peters 1882, of the <i>H. larinopygion</i> group. During the following year, herpetologists from Fundación EcoMinga and INABIO conducted additional expeditions to the site, and found two juveniles of the same species just a few meters from the spot where the original female had been found.
60	
61 62 63 64 65 66	The genus <i>Hyloscirtus</i> , in the family Hylidae, contains 38 species of arboreal frogs (Frost, 2021; Yánez-Muñoz et al. 2021). The genus is distributed from Costa Rica to the Andes of Venezuela, Colombia, Ecuador, Peru and Bolivia (Faivovich et al. 2005, Coloma et al., 2012; Frost, 2021). The genus is characterized mainly by the synapomorphy of a well-developed lateral membrane on the fingers of the hands and feet. At the time of the last revision, all known species were thought to reproduce alongside rushing streams.
67	
68 69 70 71 72 73 74 75	The <i>Hyloscirtus larinopygion</i> group is composed of 19 species (Frost 2021), of which 13 are reported from Ecuador (Ron et al. 2021). The group consists of two clades which correlate with latitude, with a small area of overlap in central Ecuador (Almendariz et al. 2014, Ron et al. 2018). Adults of this group are characterized by a snout vent length > 60mm and dark overall skin color contrasting with bright patterns, especially on the tips of the digits. Species in this group "could be considered as some of the most colorful and beautiful frogs on earth" according to Coloma et al. (2012). The new species described here is perhaps the most striking of all <i>Hyloscirtus</i> .

Materials and Methods

- 78 **Ethics statement.** Our study was authorized under research permits MAE-DNB-CM-2016-0045
- and N°MAE-DNB-CM-2019-0120, issued by the Ministerio del Ambiente del Ecuador. We
- 80 followed the guidelines for use of live amphibians and reptiles in field research (Beaupre et al.,
- 81 2004), compiled by the American Society of Ichthyologists and Herpetologists, the
- 82 Herpetologists' League, and the Society for the Study of Amphibians and Reptiles.

- **Taxon sampling.** We examined specimens deposited in the herpetological collections of the
- 85 Instituto Nacional de Biodiversidad, Quito (DHMECN) and Instituto de Ciencias Naturales,
- 86 Universidad Nacional de Colombia, Bogotá (ICN) (Appendix 1). All museum acronyms follow
- 87 Sabaj (2016). Our taxonomic description employs several lines of evidence, including external
- 88 morphological characters, genetic divergence, monophyly and geographic data. Similar
- 89 approaches have been useful in recognizing and identifying closely related species of anurans in
- 90 the eastern Andes of Ecuador (Páez-Moscoso et al. 2011, Reyes-Puig et al., 2019a, b).
- 91 The electronic version of this article in Portable Document Format (PDF) will represent a
- 92 published work according to the International Commission on Zoological Nomenclature (ICZN),
- and hence the new names contained in the electronic version are effectively published under that
- 94 Code from the electronic edition alone. This published work and the nomenclatural acts it
- ontains have been registered in ZooBank, the online registration system for the ICZN. The
- 96 ZooBank LSIDs (Life Science Identifiers) can be resolved, and the associated information
- 97 viewed through any standard web browser, by appending the LSID to the prefix
- 98 http://zoobank.org/. The LSID for this publication is: LSID urna:.
- 99 urn:lsid:zoobank.org:pub:4BF8C735-F06C-41AE-B130-EE41130535CC
- 100 LSIDurn:
- 101 urn:lsid:zoobank.org:pub:4BF8C735-F06C-41AE-B130-EE41130535CC

102

- Field work. All of the specimens were found fortuitously during day walks in botanical
- expeditions to the summit of Cerro Mayordomo (-1.370204 S; -78.267943 W; 2,972 m) on 16–
- 105 20 March 2018 and 18–19 October 2018.
- 106 **Laboratory work.** The female and one juvenile were collected during the day in plastic
- 107 containers and then taken alive to the INABIO, where they were photographed in life and
- sampled for DNA. They were subsequently fixed in 10% formalin for twelve hours, and then
- preserved as voucher specimens in 70% alcohol following the recommendations of Heyer et al.
- 110 (1994), and deposited in the herpetological collection of INABIO as holotype (female) and
- 111 paratype (juvenile). A third juvenile was photographed in situ and not collected.

112

- 113 External morphological data. Character descriptions were made according to the specialized
- literature treating the *H. larinopygion* group (Coloma et al., 2012; Almendáriz et al., 2014; Ron
- 115 et al., 2018).

116

- Description of webbing formulae of the hands and feet follow Savage and Heyer (1967), as 117 modified by Myers and Duellman (1982). Morphological measurements were taken with digital 118 calipers (± 0.01 mm) from the specimens preserved in 70% ethanol according to the 119 methodology described in Duellman (1970). The following measurements were taken: snout-120 121 vent length (SVL), head length (HL), head width (HW), upper eyelid width (EW), interorbital distance (IOD), inter-nostril distance (IND), nostril-eye distance (NED), eye diameter (ED), 122 tympanum diameter (TD), hand length (HaL), tibia length (TL), and foot length (FL). Sex was 123 determined by direct examination of gonads. 124 125 We also compared qualitative morphological characters between the new species and its closest 126 relatives. Six characters were evaluated: (1) dorsal coloration; (2) ventral coloration; (3) marks 127 on flanks and hidden surfaces of thighs; (4) iris coloration; (5) prepollex condition; and (6) in 128 life, webbing coloration. Life coloration was obtained from color photographs. 129 130 Osteological data and analysis: The holotype of the new species and a specimen of each of five 131 closely related species were scanned by use of a high-resolution micro-computed tomography 132 (micro-CT) desktop device (Bruker SkyScan 1173, Kontich, Belgium) at the Zoologisches 133 134 Forschungsmuseum Alexander Koenig (ZFMK, Bonn, Germany). To avoid movements during scanning, the specimens were placed in a small plastic container and mounted with styrofoam. 135 The scans were conducted over 180 degrees with rotation steps of 0.3-0.4 degrees, with a source 136 voltage of 35 kV and source current of 150 µA, without the use of a filter, at an image resolution 137 of 39.3-50.0 µm. Scan duration was 30:01-45:37 min with an exposure time of 280 ms and 138 average framing of 5. The CT-datasets were reconstructed using N-Recon software (Bruker 139 MicroCT, Kontich, Belgium) and rendered in three dimensions through the aid of CTVox for 140 Windows 64 bits version 2.6 (Bruker MicroCT, Kontich, Belgium). Osteological terminology 141 follows Trueb (1973), Duellman & Trueb (1994) and Coloma et al. (2002). Cartilage structures 142 were omitted from the osteological descriptions, because micro-CT does not render cartilage. 143 144 Genetic sampling. We generated eight new sequences for the mitochondrial 16S gene (see 145 Figure 1), following the primers and protocols described in Guayasamin et al. (2015). The new 146 sequences were aligned with all sequences available for Hyloscirtus in GenBank 147 (http://www.ncbi.nlm. nih.gov/genbank), originally published by Faivovich et al. (2005), Coloma 148 et al. (2012), Almendáriz et al. (2014), Guayasamin et al. (2015) and Ron et al. (2018). 149 150 Phylogenetic analysis. Sequences were aligned using MAFFT v. 7 (Katoh & Standley, 2013) 151 with the Q-INS-i strategy. Maximum likelihood (ML) trees were estimated using GARLI 2.01 152
- 153 (Genetic Algorithm for Rapid Likelihood Inference; Zwickl, 2006). GARLI uses a genetic
- algorithm that finds the tree topology, branch lengths and model parameters that maximize ln(L)
- simultaneously (Zwickl, 2006). Individual solutions were selected after 10,000 generations with

no significant improvement in likelihood, with the significant topological improvement level set 156 at 0.01. The final solution was selected when the total improvement in likelihood score was 157 lower than 0.05, compared to the last solution obtained. Default values were used for other 158 GARLI settings, as per recommendations of the developer (Zwickl, 2006). Bootstrap support 159 160 was assessed via 1000 pseudoreplicates under the same settings used in tree search. Genetic distances (uncorrected p) between the new species and its closest relatives were calculated using 161 PAUP v.4.0a (Swofford, 2002). 162 **Ecological niche modelling.** We use Maxent (version 3.4.2) to obtain a model of the ecological 163 niche of the northern clade of the H. larynopigion group. Localities for all species of the group 164 were obtained from literature and museum collections. Recommended default values were used 165 for convergence threshold, maximum number of iterations, maximum background points; 25% 166 of localities were randomly set aside as test points; regularization was set to 1. Selected format 167 for representation of probabilities for models was logistic. Parametrization was based on 168 WorldClim (version 2.1, Fick & Hijmans 2017). Statistical analyses of variable contributions for 169 data layers, including jackknife tests and correlation tests, were used to obtained more 170 informative and less correlated variables. Models were evaluated through quantitative and 171 qualitative tests, including threshold-independent test, threshold-dependent test, visual 172 evaluations, and evaluation of variable importance and response curves. A geographical 173 information system was developed based on grids from Maxent with ArcGis Desktop to analyze 174 data and produce relevant maps. 175 176 Results 177 178 **Phylogenetic relationships.** Our phylogenetic analysis (Fig. 1) shows that the new species is 179 sister to a clade consisting of Hyloscirtus criptico Coloma et al. (2012), H. larinopygion 180 (Duellman, 1973), H. lindae (Duellman & Altig, 1978), H. pacha (Duellman & Hillis, 1990), H. 181 pantostictus (Duellman & Berger, 1982), H. princecharlesi Coloma et al. (2012), H. psarolaimus 182 (Duellmn & Hillis, 1990), H. ptvchodactvlus (Duellman & Hillis, 1990), H. staufferroum 183 (Duellman & Coloma, 1993) and . H. tigrinus Mueses-Cisneros & Anganov-Criollo (2008). 184 Genetic distances (mitochondrial 16S percent differences calculated from uncorrected p values 185 between the new species and the most closely related *Hyloscirtus* are given in Table 1; genetic 186 distances between the new species and its closest relative were 2.2-2.9% to H. tigrinus and 2.6-187 2.8% to *H. ptychodactylus*. 188

189190

Systematic accounts

191192

Hyloscirtus sethmacfarlanei sp. nov.

193 194

LSID urna: 195 urn:lsid:zoobank.org:pub:4BF8C735-F06C-41AE-B130-EE41130535CC 196 197 LSIDurn: urn:lsid:zoobank.org:pub:4BF8C735-F06C-41AE-B130-EE41130535CC 198 199 200 Proposed standard Spanish name: Rana de torrente de Seth MacFarlane Proposed standard English name: Seth MacFarlane's torrent frog 201 202 Holotype (Fig. 2, 3, 4, 5, 6). DHMECN 14416 adult female, collected in the Machay Reserve of 203 Fundacion EcoMinga, Cerro Mayordomo (-1.370204 S; -78.267943 W; 2,972 m), Tungurahua 204 province, Republic of Ecuador, on 17 March 2018, by Darwin Recalde, Fausto Recalde, Santiago 205 Recalde and Jordy Salazar. 206 207 Paratype (Fig. 4, 5, 6). DHMECN 14549, juvenile, collected in the same locality and location 208 209 the holotype on 19 October 2018, by Fausto Recalde, Santiago Recalde, Jesús Recalde and Jordy Salazar. 210 211 **Generic placement.** We assign the new species to the genus *Hyloscirtus* Peters, 1882, defined 212 213 according to Faivovich et al. (2008) and Rojas-Runjaic et al. (2015), and as a member of the 214 Hyloscirtus larinopygion group (sensu Duellman & Hillis, 1990; Faivovich et al., 2005) according to its phylogenetic position and phenotypic characteristics such as wide dermal fringes 215 216 on fingers and toes, hands and legs with large terminal discs and a reduced membrane, adults 217 characterized by a snout vent length > 60mm and dark overall skin color contrasting with bright patterns, especially on the tips of the digits. 218 219 **Diagnosis**. Hyloscirtus sethmacfarlanei sp. nov. is characterized by the following combination of 220 characters: SVL of 72mm in the female and 46.5mm in the juvenile Discs of digits narrow; 221 222 fleshy calcar present; supracloacal fold present extending and reaching to the vent; cloacal ornamentation with two parallel grooves; a unique color pattern, with black ground color 223 covered with large bright orange-red spots on both the dorsal and ventral surfaces, and red tips 224 on all digits in the female, and black ground color heavily stippled and mottled mustard yellow, 225 226 especially on the upper body and head, with flanks black covered with broad yellow-orange bars in juveniles; cloacal ornamentation composed of a well defined supracloacal fold reaching to 227 the vent; skin strongly areolate and granular surrounding vent; and thick well-defined paracloacal 228

229230

folds.

- Comparison with similar species (Figs. 7, 8) The black and orange-red pattern of the female of the new species is most similar to the patterns of *Hyloscirtus pantostictus* (Duellman & Berger,
- 233 1982) from extreme northeastern Ecuador and H. princecharlesi Coloma et al. (2012) from the
- Pacific slopes of the Andes of northwestern Ecuador. The new species differs from these in

having both the dorsal and ventral surfaces spotted with orange-red (versus ventral surface 235 without red spots in H. pantostictus and H. princecharlesi, Fig. 7) and a well-defined 236 237 supracloacal fold reaching next to the vent (reduced supracloacal fold without contacting the side of the vent in *H. pantostictus*; defined and reaching the border of the vent on *H. princecharlesi*). 238 239 The female of the new species also differs from these two species in having orange-red discs on 240 the tips of all digits (versus yellow discs in *H. pantostictus* and grayish discs in *H.* princecharlesi). The new species' orange-red discs are shared with Hyloscirtus lindae (Duellman 241 242 & Altig, 1978) from the eastern Andes, but *H. lindae* does not have red spots on its dorsal surface and a thick supra cloacal fold close to the side of the vent (Fig. 8). The juvenile of the 243 new species has a pattern similar to that of *Hyloscirtus princecharlesi* and *H. larinopygion* 244 (Duellman, 1973) from northwestern slopes of the Andes. It differs from both species in having 245 the dorsum mottled and stippled mustard-vellow and black (versus dorsum densely spotted 246 orange-red in *H. princecharlesi*, and yellowish-brown with distinctive cream bars with black 247 interspaces in H. larinopygion). The supracloacal fold is faintly defined in H. larinopygion and is 248 distant to the side of the vent (well-defined reaching next to the vent in the new species). 249 Hyloscirtus sarampiona (Ruiz-Carranza & Lynch, 1982) from western slopes of the Colombian 250 Andes has dorsal surfaces orange spotted with pale olive, but differs from the new species by 251 having hidden areas of the limbs, flanks, palmar, plantar surfaces and discs black. 252 Description of holotype (Figs. 2, 3). Adult female, 72.0mm SVL. Body slender, head rounded 253 in dorsal view, longer than wide (head length 113.4% of head width); width of upper eyelid 254 72.6% of the interorbital distance; texture of the dorsal surface of the head rough, including the 255 eyelids; snout truncate in dorsal and lateral views; eye- nostril distance slightly less than the 256 diameter of the eye; canthus rostralis short and slightly rounded, loreal region slightly concave; 257 internarial region flat and slightly depressed; top of head slightly concave; nostrils oval and 258 slightly protuberant, directed laterally; eyes large and protuberant, 24.6% of head length; 259 interorbital region concave; eye diameter 1.76 times larger than the diameter of the tympanic 260 ring; supratympanic fold well-defined, directed obliquely from the posterior border of the eye, 261 covering the dorsal edge of the tympanum, extending back to the upper shoulder; tympanum and 262 tympanic ring evident and round, 56.6% of eye diameter, separated from the eye by a distance 263 1.62 times greater than the diameter of the tympanum. 264 265 Body large, anterior and posterior extremities slim. Forearms robust compared to the arms; 266 axillar membrane present; ulnar tubercles absent; relative length of fingers I < II < IV < III; 267

axillar membrane present; ulnar tubercles absent; relative length of fingers I < II < IV < III;
fingers with large oval disks, slightly wider than finger; subarticular tubercles simple and
enlarged, round and prominent; multiple round and oval supernumerary tubercles present; thenar
tubercle large and flat, oval and elongated, palmar tubercle asymmetric with a slightly heartshaped outline; prepollex absent; glandular nuptial pad covering the outer margin of Finger I;
fingers long and slightly wide with interdigital webbing basally and with fleshy lateral fringes
on all fingers.

- 274 Hind limbs long and slender, tibia length 46.3% of SVL; foot length 46.4% of SVL; heel
- tubercles large and round in outline; inner tarsal fold absent; large rounded to slightly oval
- subarticular tubercles in all fingers, supernumerary foot tubercles rounded, low; toes long,
- 277 narrower than the hand, discs not expanded; relative lengths of toes I < II < III > V < IV; inner
- 278 metatarsal tubercle large, oval; outer metatarsal tubercle absent; toes with interdigital membrane,
- 279 toe membrane formula: I 2-3II1- 2 ½ III 2-3 IV 2- ½ V (Fig. 3).

- Body skin finely areolate, especially on flanks; inguinal glands absent; ventral skin densely
- 282 granular, less so towards throat. Supracloacal flap transversal, well-defined, with supracloacal
- fold present, reaching the level of the vent, with two paracloacal folds; skin around the cloaca
- strong areolate and granular surrounding it. (Table 2, Fig. 7).
- 285 Choana large and oval, notably separated from each other and perpendicular to the floor of the
- 286 mouth; dentigerous processes of vomers transverse, with vomerine teeth numbering 9-10;
- tongue wide and rugose, slightly rounded, partially attached to the floor of the mouth.

288

- Coloration of holotype in preservative (\sim 70% ethanol) (Fig. 2). All dorsal surfaces of the
- 290 head, body, and extremities are black with round, oval, or irregular yellowish-white spots 3-4mm
- in diameter dispersed over the whole body; in the extremities the spots can be slightly elongated;
- the tips of the digits are marked with white spots. Ventral surfaces and throat gravish black with
- scattered irregular white elongated spots 5-10mm long, with palms of hands and feet grayish.
- 294
- 295 Coloration of holotype in life (Figs. 4, 5, 6, 7, 9): Entire dorsal and ventral surfaces of the body
- black with large bright orange-red round to oval spots scattered over the whole body, including
- 297 the tips of the digits; spots more elongated on the extremities and flanks. Iris light gray with fine
- 298 dark reticulations, while the nictitating membrane, revealed in defense and at rest, is well-
- 299 developed, black in color, with irregular orange-red reticulations.

300

- Measurements of the holotype (in mm). SVL=72.0; HL=22.9; HW=20.2; EW=6.0; IOD
- 302 =8.3; IND=5.2; NED= 5.4; ED=5.7; TD=3.2; HL=25.2; TL=33.3; FEL= 26.1; FL= 33.38.

303

- 304 Variation (Figs 4, 5, 9). The juvenile paratype DHMECN 14549 differs from the female
- 305 holotype as follows. In life the dorsal surface of this juvenile was blackish, heavily stippled with
- mustard yellow especially near the head; nictitating membrane dotted with mustard yellow on a
- 307 gray ground. Extremities banded orange on a grayish black ground; flanks black with orange
- reticulations. Throat marbled with irregular yellowish patches with orange tones, on a grayish
- 309 black ground. Belly and ventral surfaces of the extremities grayish black with irregular sparse
- 310 diffuse whitish-vellow patches; palms of hands and feet black with diffuse light orange spots. In
- addition to the juvenile paratype, an uncollected juvenile was photographed on December 2019

- 312 (Figure 7, within a few meters of the collection locality of the holotype and paratype. This
- 313 individual had a mainly yellow dorsal coloration, with diffuse blackish spots scattered on the
- flanks and hidden surfaces of the arms and between the fingers, whose tips are yellow. The belly
- 315 is light cream with diffuse blackish spots.

- 317 **Measurements of the Paratype (in mm).** SVL= 46.54; HL= 16.08; HW= 15.63; EW= 4.6;
- 318 IOD= 5.17; IND= 3.68; NED= 3.5; ED= 4.15; TD= 1.98; HL=16.68; TL= 24.32; FEL= 20.8;
- 319 FL= 22.71.

320

321 Osteology:

- 322 Skull. (Figs. 10, 11). The skull is generally consistent with those of the other species of the H.
- 323 larinopygion group (Coloma et al.2012). In the new species, main differences are observed in
- 324 the texture and shape of the sphenoid, and in frontoparietals, that are comparatively more rugose
- 325 than other species of the group; additionally the frontoparietal fontanelle is more elongate and
- 326 thinner. Other relevant differences can be observed in the shape of vomers that are paired,
- denticulate, and not in contact medially; the prechoanal rami are triangular and prominent;
- 328 postchoanal rami are spine-like in form, with anterior border horizontal and posterior border
- obliquely oriented. The premaxillary alary process is posterodorsally projected forming an acute
- angle with the pars facialis; the alary process of the premaxilla has a round profile anteriorly and
- it is longer than the pars dentalis, relative to other species of the *H. larinopygion* group.
- There are no relevant differences in forelimb bones of the new species relative to other species of
- the group, although the prepolex appears wider, with acute termination (Fig. 12)
- Posteromedial processes of the hyobranchium (Fig. 13). The posteromedial processes of the
- 335 hypotranchium are paired ossified structures, longer than broad, with an anterior portion with
- 336 "head-like shape" and a posterior elongate part. In the new species these paired structures
- possess a triangular shaped anterior portion, and a shorter posterior portion compared with other
- 338 species in the *Hyloscirtus larinopygion* group, which have an external round border and internal
- spine-like border. In *H. lindae, H. psarolaimus* and *H. pacha*, the anterior portions have rounded
- external and internal borders. In *H. tapichalaca* it is broad and "shell-like" in its anterior border.

341 **Tadpole:** Not known.

- **Distribution** (Fig. 14). *Hyloscirtus sethmacfarlanei* sp. nov. is known only from the type locality
- 343 in Fundación EcoMinga's Machay Reserve, Cerro Mayordomo, 2,972 m of altitude, in the
- eastern cordillera of the central Ecuadorian Andes, in the northern side of the upper Rio Pastaza
- near the southern border of Llanganates National Park.

346

- Natural history. The type locality consists of dwarf open mossy forest, covered with bryophytes
- and epiphytes, and saturated with humidity. All three known individuals of this species were

349 350	found on a narrow mountain ridge, in bromeliads of the genus <i>Guzmania</i> , growing within 60-90cm above the ground (Fig. 15).
351	
352 353 354 355 356 357	The windward (east-facing) forest elevation band of 2900-3000m is continuous from the type locality on Cerro Mayordomo to the Cerro Hermoso massif in the center of Los Llanganates National Park,17km to the north of the type locality. The new species probably occupies at least this range. During Holocene glacial maxima this forest community would probably have moved down the mountains by 1000m (Dodson 2003), potentially connecting this population to other nearby mountains such as the Cordillera Abitagua.
358	
359 360 361 362 363 364 365 366	The striking coloration of the adult female of the new species is aposematic. The live frog transferred toxins to the frog discoverer's uninjured skin by passive contact after briefly handling the frog. He noticed an unpleasant tingling sensation down his arm, that was not restricted to the area where he had come into contact with the frog. The only uncollected subadult was found or the same square meter as the holotype and paratype. It slept during the day, and when disturbed it adopted a defensive ball-like position, as observed in other species of the <i>larinopygion</i> group (Kizirian et al., 2003; Bejarano-Muñoz et al., 2015).
367 368 369	Sympatric anuran species recorded near the habitat of <i>Hyloscirtus sethmacfalanei</i> sp. nov. are two undescribed <i>Pristimantis</i> species and one species of the <i>Pristimantis buckleyi complex</i> .
370 371 372 373	Conservation Status. Since only one location is known for this species, and since the area is so poorly studied and inaccessible, we suggest the IUCN category Data Deficient (DD) for this species.
374 375 376 377	Etymology. The specific epithet <i>sethmacfarlanei</i> is a patronym in honor of Seth MacFarlane, American writer, director, producer, actor, artist, musician and conservationist, whose passion for science, biodiversity and the natural world is beyond compare.
378	Discussion
379 380 381 382 383 384	Phylogenetically the closest species to <i>H. sethmacfarlanei</i> are <i>H. tigrinus</i> (genetic distance 2.2-2.9%) from the northeastern Andes of Ecuador and adjacent Colombia, and <i>H. ptychodactylus</i> (genetic distance 2.6-2.8%) from the west-central Andes of Ecuador. Morphologically these two species are extremely different from <i>H. sethmacfarlanei</i> sp. nov.; the dorsal surface of <i>H. tigrinus</i> is black with strong whitish marbling/banding (not spots), and the dorsal surface of <i>H. ptychodactylus</i> is black with large dull poorly-defined reddish-brown blotches (again, no spots).
385 386	Neither of these species has been found close to the type locality of <i>H. sethmacfarlanei</i> sp. nov. These genetic distances between <i>H. sethmacfarlanei</i> sp.nov. and its closest relatives are

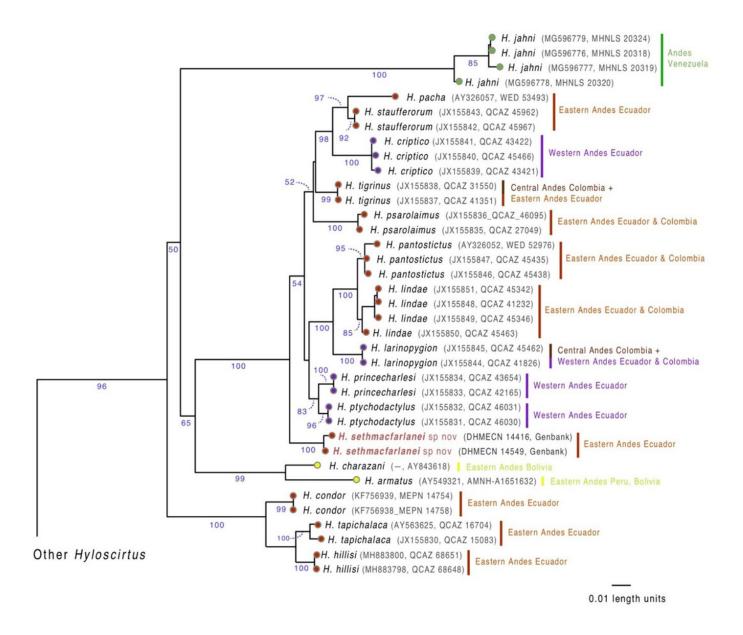
considerably greater than the genetic distances between some other clearly-defined species in the 387 H. larinopygion group, such as the distance between H. ptychodactlyus and H. princecharlesi 388 (1.3%).389 390 The divergence times between some of the species in the H. larinopygion group were estimated 391 by Coloma et al (2012). While H. sethmacfarlanei sp.nov. was not known at the time of that 392 study, our Table 1 allows us to identify other species pairs which were analyzed by Coloma et al 393 (2012) and whose genetic distances are similar to the genetic distances between H. 394 sethmacfarlanei sp. nov. and its closest relatives. An example is the pair H tigrinus and H. 395 ptychodactylus with a genetic distance of 2.6%, which is similar to the genetic distances 396 between the new species and its closest relatives (2.2-2.9%). Coloma et al (2012) estimated the 397 divergence time between H tigrinus and H. ptychodactylus at about 9-19Mya. Therefore the 398 399 divergence time between H. sethmacfarlanei sp nov. and either of its closest relatives, H. tigrinus and *H. ptychodactylus*, should also be on the order of at least several million years. This shows 400 that Hyloscirtus sethmacfarlanei is a very old species, not a product of Quaternary isolating 401 mechanisms. This age predates the final rapid rise of the northern Andes to their current height. 402 This could explain the relatively close relationship between eastern Andean H. sethmacfarlanei 403 sp.nov. and western Andean H. ptychodactylus. The most recent common ancestor of both 404 species may have comprised a continuous population on both slopes when the Andes were not so 405 high. Later uplift of the Andes may then have led to the split of the population. 406 407 The two specimens of *H. sethmacfarlanei* sp. nov. collected show a moderate genetic distance of 408 0.4%, although they come from exactly the same location. With only two specimens, our 409 410 conclusions from this are necessarily very limited, but this suggests a moderate genetic diversity within the population, implying that the actual population is not small. This degree of divergence 411 within a population is about average for members of the *H. larinopygion* group (0.2–0.9%; 412 Coloma et al 2012). 413 The Hyloscirtus larinopygion group is characterized by overlapping morphological and 414 morphometric characters. In many cases, the preserved and living coloration patterns continue to 415 be the first source to discriminate externally the limits of species in this group (Duellman & 416 Hillis, 1990; Duellman & Coloma, 1993; Coloma et al. 2012; Rivera-Correa & Faivovich, 2013; 417 Rivera-Correa et al., 2016; Ron et al., 2018). Our study shows the need to continue incorporating 418 and exploring new evidence (e.g. CTscan osteology, DNA and supracloacal folds) to help delimit 419 cryptic and conspicuous lineages of the group, whose adaptive radiation in the Ecuadorian Andes 420 is apparently still underestimated. Finally the Maxent model shows that the type locality of H. 421 422 sethmacfarlanei is within the predicted niche for the northern clade of the H. larynopygion group. Many areas across the Andes of Colombia and Ecuador show high probabilty of 423 occupation according to the model, but no species records, e.g., Cordillera Oriental of Colombia, 424

425 426 427 428	southern Cordillera Occidental of Colombia, and the extreme northern and central Cordillera Oriental of Ecuador. Interestingly, two undescribed species recently collected and deposited at Ecuadorian museums come from these areas. This model suggest that the species richness of the group is still underestimated (Fig. 14-15)
429	
430	
431	
432	Conclusions
433 434 435 436 437 438 439 440	It is remarkable that despite intensive research work in the upper Rio Pastaza watershed, we still continue discovering new amphibian species. We present different lines of evidence to define a new species of <i>Hyloscirtus</i> and assess its phylogenetic position inside the <i>Hyloscirtus larinopygion</i> species group. Our study also highlights the importance of the Llanganates – Sangay Ecological Corridor, outside of Ecuador's national park system, as a center of endemism and diversity. Additionally distribution model for <i>Hyloscirtus larinipygion</i> species group reflects many potential areas of occurrence along northern andes.
442	Acknowledgement
443 444 445 446 447 448 449	Special thanks to the World Land Trust for its "Forests in the Sky" initiative, which allowed Fundación EcoMinga to protect this unique habitat. Thanks to Fundación Ecominga and its staff: Santiago Recalde, Jesus Recalde, Jordy Salazar, Piedad Paredes. We thank Yaneth Muñoz and Juan C. Sánchez of the ICN, for the facilities provided for the examination of the type material in their charge. Thanks to the Ministerio del Ambiente for investigation and mobilization permits, and to Diego Inclan, Francisco Prieto, and Mauricio Herrera of Ecuador's Instituto Nacional de Biodiversidad.
450	
451	Funding Statement
452 453 454 455	We thank the Inédita Program of the Ecuadorian Science Agency SENESCYT (Respuestas a la Crisis de Biodiversidad: La Descripción de Especies como Herramienta de Conservación; INEDITA PIC-20-INE-USFQ-001) which funded the molecular component of this study. LJ acknowledges grants from John Moore to the Population Biology Foundation.
456 457 458	References

459 460 461 462	Almendáriz A, Brito J, Batallas D, Ron SR. 2014. Una nueva especie de rana arbórea del género <i>Hyloscirtus</i> (Amphibia: Anura: Hylidae) de la Cordillera del Cóndor. <i>Papeis Avulsos de Zoologia</i> 54: 33–49. https://doi.org/10.1590/0031-1049.2014.54.04
462 463 464 465 466	Beaupre SJ, Jacobson ER, Lillywhite HB, Zamudio K. 2004. Guidelines for use of live amphibians and reptiles infield and laboratory research. Lawrence: American Society of Ichthyologists and Herpetologists, 43.
467 468 469 470 471	Bejarano-Muñoz P, Perez Lara MB, Brito Molina J. 2015. Ranas Terrestres Endémicas y otros Anuros Emblemáticos de la vía Papallacta–El Reventador. Serie de Publicaciones Museo Ecuatoriano de Ciencias Naturales del Instituto Nacional de Biodiversidad (INB-MECN). Guías Rápidas de Campo Nro. 3. Quito–Ecuador.
472 473 474 475 476 477	Coloma LA, Carvajal-Endara S, Dueñas JF, Paredes-Recalde A, Morales-Mite M, Almeida-Reinoso D, Tapia EE, Hutter CR, Toral E, Guayasamin JM. 2012. Molecular phylogenetics of stream treefrogs of the <i>Hyloscirtus larinopygion</i> group (Anura: Hylidae), and description of two new species from Ecuador. <i>Zootaxa</i> 3364:1-78. DOI: 10.11646/zootaxa.3364.1.1
477 478 479	Dodson CH. 2003. Why are there so many orchid species?. Lankesteriana 7:99-103.
480 481 482	Duellman WE. 1973. Descriptions of new hylid frogs from Colombia and Ecuador. <i>Herpetologica</i> 29:219-227
483 484 485	Duellman WE, Altig R. 1978. New species of tree frogs (family Hylidae) from the Andes of Colombia and Ecuador. <i>Herpetologica</i> 34:177-185.
486 487 488	Duellman WE, Berger TJ. 1982. A new species of Andean tree frog (Hylidae). <i>Herpetologica</i> 38:456-460.
489 490 491 492	Duellman WE, Hillis DM. 1990. Systematics of frogs of the <i>Hyla larinopygion</i> group. Occasional Papers of the Museum of Natural History of the University of Kansas 134: 1–23.
493 494 495 496	Duellman WE, Coloma LA. 1993. <i>Hyla staufferorum</i> , a new species of treefrog in the Hyla larinopygion group from the cloud forest of Ecuador. <i>Occasional Papers of the Museum of Natural History, University of Kansas</i> 161: 1–11.
497 498	Duellman W, Trueb L. 1994. Biology of Amphibians. New York: McGraw-Hill Book Co. 670 pp
499 500 501 502 503	Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC. 2005. Systematic review of th frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. <i>Bulletin of the American Museum of Natural History</i> 294: 6–228. https://doi.org/10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2
503 504 505 506 507	Franco-Mena D, Reyes-Puig JP, Yánez-Muñoz MH. 2019. Pristimantis tinguichaca Brito, Ojala-Barbour, Batallas & Almendariz, 2016 (Anura, Strabomantidae): range extension and notes on variation in color pattern. Check List. 15 (5): 857–86. DOI: 10.15560/15.5.857

508 509 510 511	Frost, DR. 2021. Amphibian Species of the World: an Online Reference. Version 6.1 (Access: 16 August 2021). Available at: https://amphibiansoftheworld.amnh.org/index.php. American Museum of Natural History, New York, USA. doi.org/10.5531/db.vz.0001
512 513 514 515 516	Guayasamin JM, Rivera-Correa M, Arteaga A, Culebras J, Bustamante L, Pyron RA, Peñafiel N,Morochze C, Hutter CR. 2015.Molecular phylogeny of stream treefrogs (Hylidae: <i>Hyloscirtus bogotensis</i> Group), with a new species from the Andes of Ecuador. <i>Neotropical Biodiversity</i> 1(1):2–21DOI 10.1080/23766808.2015.1074407.
518 519 520 521	Heyer R, Donnelly M, McDiarmid R, Hayek L, Foster M (Eds). 1994. Measuring and Monitoring Biological Diversity Standards Methods for amphibians. <i>Smithsonian Institution press</i> . Washington and London.
522 523 524 525	Jost L. 2004. Conservation of Biological and Cultural Diversity in the Andes and the Amazon Basin - Ethnobotany, Resource Use and Zoology. <i>Lyonia</i> 7(1):41-47. Download at : hytp://www.lyonia.org/downloadPDF.php?pdfID=2.323.1
526 527 528	Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. <i>Mol Biol Evol</i> 30 (4):772–780.
529 530 531 532	Kizirian, D., Coloma, L. A. y Paredes-Recalde, A. 2003. A new treefrog (Hylidae: <i>Hyla</i>) from southern Ecuador and a description of its antipredator behavior. <i>Herpetologica</i> 59:339-349.
533 534 535 536	Mueses-Cisneros JJ, Anganoy-Criollo MA (2008) Una nueva especie del grupo Hyloscirtus larinopygion (Amphibia: Anura: Hylidae) del Suroccidente de Colombia. <i>Papeis Avulsos de Zoologia</i> 48: 129–138. https://doi.org/10.1590/S0031-10492008001500001
537 538 539 540	Myers CW, Duellman WE. 1982.A new species of Hyla from Cerro Colorado, and other tree frog records and geographical notes from western Panama. <i>American Museum Novittates</i> 2752:1–32
541 542 543 544 545	Páez-Moscoso DJ, Guayasamin JM, Yánez-Muñoz M. 2011. A new species of Andean toad (Bufonidae, <i>Osornophryne</i>) discovered using molecular and morphological data, with a taxonomic key for the genus. <i>ZooKeys</i> 108: 73–97. DOI: 10.3897/zookeys.108.1129
546 547 548 549	Reyes-Puig JP, Yánez-Muñoz MH. 2012. Una nueva especie de <i>Pristimantis</i> (Anura: Craugastoridae) del corredor Ecológico Llanganates-Sangay. Andes de Ecuador: Papeis Avulsos de Zoologia. 52(6): 81–91. Downloaded at: https://revistas.usfq.edu.ec/index.php/avances/article/view/133
551 552 553 554 555	Reyes-Puig M, Reyes-Puig JP, Yánez-Muñoz MH. 2013. Ranas terrestres del género Pristimantis (Anura: Craugastoridae) de la Reserva Ecológica Río Zúñag, Tungurahua, Ecuador: Lista anotada y descripción de una especie nueva. Avances en Ciencias e Ingenierías. 5(2): Sección B5–13. Downloaded at: https://revistas.usfq.edu.ec/index.php/avances/article/view/133
557 558	Reyes-Puig JP, Yánez-Muñoz MH, Cisneros-Heredia DF, Ramírez-Jaramillo S. 2010. Una nueva especie de rana <i>Pristimantis</i> (Terrarana: Strabomantidae) de kis bosques

559 560 561	nublados de la cuenca alta del río Pastaza, Ecuador. Avances en Ciencias e Ingenierías. 2(3): Sección B78–82. Downloaded at: https://revistas.usfq.edu.ec/index.php/avances/article/view/133
662 663 664 665 666	Reyes-Puig JP, Reyes-Puig C, Perez-Lara MB, Yánez-Muñoz MH. 2015. Dos nuevas especies de ranas Pristimantis (Craugastoridae) de la cordillera de los Sacha Llanganatis, vertiente oriental de los Andes de Ecuador. <i>ACI Avances en Ciencias e Ingenierías</i> 7(2): Seccion B61–74. Downloaded at https://revistas.usfq.edu.ec/index.php/avances/article/view/258
668 669 570	Reyes-Puig JP, Reyes-Puig CP, Ramírez-Jaramillo S, Pérez-Lara MB, Yánez-Muñoz MH. 2014
571 572 573 574	Tres nuevas especies de ranas terrestres Pristimantis (Anura: Craugastoridae) de la cuenca alta del río Pastaza. <i>ACI Avances en Ciencias e Ingenierías</i> 6(2): Sección B51–62 3. Downloaded at: https://revistas.usfq.edu.ec/index.php/avances/article/view/133
575 576 577 578 579 580	Reyes-Puig JP, Reyes-Puig C, Ron S, Ortega J, Guayasamin J, Goodrum M, Recalde F, Vieira J, Koch C, Yánez-Muñoz M.H. 2019a. A new species of terrestrial frog of the genus Noblella Barbour, 1930 (Amphibia: Strabomantidae) from the Llanganates-Sangay Ecological Corridor, Tungurahua, Ecuador. <i>PeerJ</i> 7: e7405. Downloaded at: https://peerj.com/articles/7405/
581 582 583 584	Reyes-Puig C, Reyes-Puig JP, Velarde-Garcéz DA, Dávalos N, Mancero E, Navarrete MJ, Yánez-Muñoz MH, Cisneros-Heredia DF, Ron SR. 2019b. A new species of terrestrial frog <i>Pristimantis</i> (Strabomantidae) from the upper basin of the Pastaza River, Ecuador. <i>ZooKeys</i> 832: 113–133. https://doi.org/10.3897/zookeys.832.30874
586 587 588 589	Rivera-Correa M, García-Burneo K, Grant T. 2013. new red-eyed of stream treefrog of <i>Hyloscirtus</i> (Anura: Hylidae) from Peru, with comments on the taxonomy of the genus. <i>Zootaxa</i> 4061 (1): 029–040. http://doi.org/10.11646/zootaxa.4061.1.3
590 591 592 593	Rivera-Correa M, Faivovich J. 2013. A new species of <i>Hyloscirtus</i> (Anura: Hylidae) from Colombia, with a rediagnosis of <i>Hyloscirtus larinopygion</i> (Duellman, 1973). <i>Herpetologica</i> 69(3), 2013, 298–313. DOI: 10.1655/HERPETOLOGICA-D-12-00059
594 595 596 597 598	Rojas-Runjaic JM, Infante-Rivero EE, Salerno PE, Meza-Joya FL. 2018. A new species of <i>Hyloscirtus</i> (Anura, Hylidae) from the Colombian and Venezuelan slopes of Sierra de Perijá, and the phylogenetic position of <i>Hyloscirtus jahni</i> (Rivero, 1961). <i>Zootaxa</i> 4382: 121–146. https://doi.org/10.11646/zootaxa.4382.1.4
500 501 502 503	Ron SR, Caminer M, Varela-Jaramillo A, Almeida-Reinoso D. 2018. A new treefrog from Cordillera del Cóndor with comments on the biogeographic affinity between Cordillera del Cóndor and the Guianan Tepuis (Anura, Hylidae, <i>Hyloscirtus</i>). <i>ZooKeys</i> 809: 97-124
504 505 506 507	Ron SR, Merino-Viteri A, Ortiz DA. 2021. Anfibios del Ecuador. Version 2021.0. <i>Museo de Zoología, Pontificia Universidad Católica del Ecuador.</i> < https://bioweb.bio/faunaweb/amphibiaweb>, fecha de acceso 3 de enero, 2021.
508 509	Ruiz-Carranza PM, Lynch JD. 1982. Dos nuevas especies de <i>Hyla</i> (Amphibia: Anura) de Colombia, con aportes al conocimiento de Hyla bogotensis. <i>Caldasia</i> 13: 647–671



510	
511 512 513 514	Sabaj MH. 2016. Standard symbolic codes for institutional resource collections in herpetology andichthyology: an online reference. American Society of Ichthyologists and Herpetologist. Available athttp://www.asih.org/.
514 515 516 517	Savage JM, Heyer WR. 1967. Variation and distribution in the tree-frog genus <i>Phyllomedusa</i> incosta rica, central american studies neotropics. <i>Fauna Environmental</i> 2:111–131.
517 518 519 520 521	Sheehy C, Yánez-Muñoz MH, Valencia JH, Smith EN. 2014. A New Species of Siphlophis (Serpentes: Dipsadidae: Xenodontinae) from the Eastern Andean Slopes of Ecuador. South American Journal of Herpetology 9(1):30–45. DOI: 10.2994/SAJH-D-12-00031.1
522 523 524 525 526	Ruiz C. PM, Lynch JD. Dos nuevas especies de Hyla (Amphibia: Anura) de Colombia, con aportes al conocimiento de Hyla Bogotensis. Caldasia [Internet]. 1 de julio de 1982 [citado 9 de octubre de 2021];13(64):647- 671. available in: https://revistas.unal.edu.co/index.php/cal/article/view/34848
527 528 529	Swofford DL. 2012. PAUP: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
530 531 532 533	Trueb L. 1973. Bones, frogs, and evolution. Pp. 65–132 in J. L. Vial (ed.), Evolutionary biology of the anurans: Contemporary research on major problems. Columbia, MO: Univ. Missouri Press.
534 535 536 537 538	Yánez-Muñoz MH, Reyes-Puig JP, Batallas-Revelo D, Broaddus C, Urgilés-Merchán M, Cisneros-Heredia DF, Guayasamin JM. 2021. A new Andean treefrog (Amphibia: <i>Hyloscirtus bogotensis</i> group) from Ecuador: an example of community involvement for conservation. PeerJ 9:e11914 https://doi.org/10.7717/peerj.11914
539 540 541	Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic analyses of large biological sequence data- sets under the maximum likelihood criterion [dissertation]. Austin: The University of Texas at Austin; 2006.

Evolutionary relationships of species in the *Hyloscirtus larinopygion* group, based on the mitochondrial gene 16S under ML criterion.

Clade support (bootstrap %) are in blue. The new species is in red.

Dorsal, lateral, and ventral views of the holotype DHMECN 14416 of *Hyloscirtus* sethmacfarlanei.

Photographs: MYM

Details of the hand and foot of the holotype of *Hyloscirtus sethmacfarlanei*, DHMECN 14416

Photographs: MYM

Dorsal coloration of *Hyloscirtus sethmacfarlanei*

Top: Female holotype (DHMECN 14416), Bottom: male (paratype DHMECN 14549).

Photographs: MYM.

Ventral coloration of Hyloscirtus sethmacfarlanei

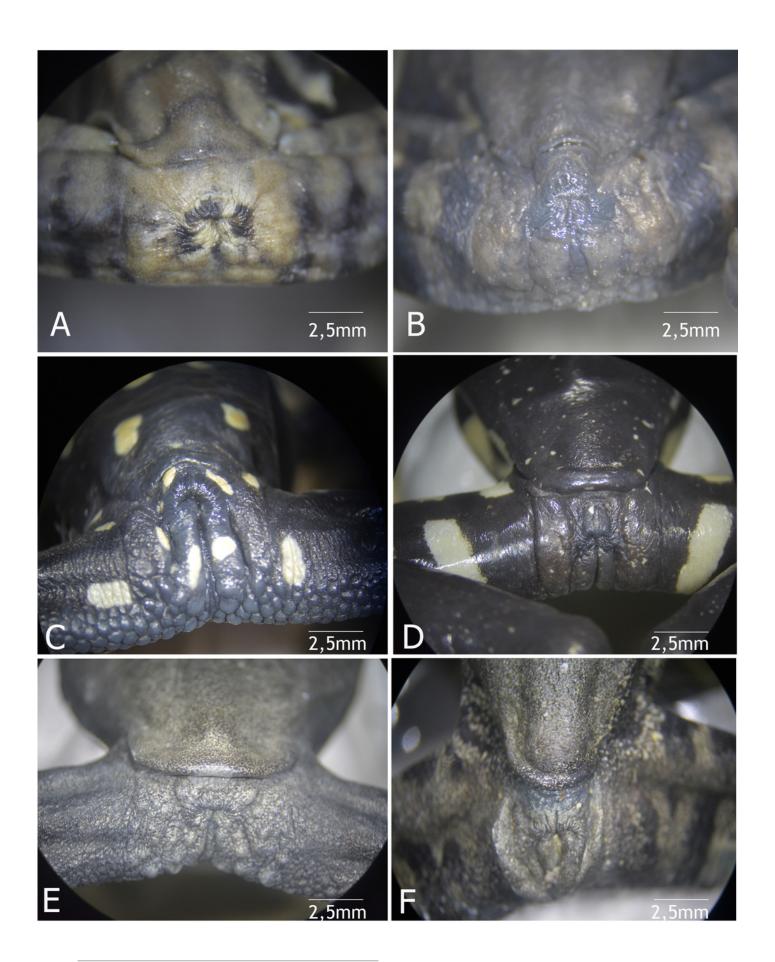
Left: Female holotype (DHMECN 14416), Right: male paratype (DHMECN 14549).

Photographs: MYM

Lateral detail of head in life of the type series of Hyloscirtus sethmacfarlanei

Top: Female holotype (DHMECN 14416), Bottom: male paratype (DHMECN 14549), note colouration in nictitating membrane . Photographs: MYM

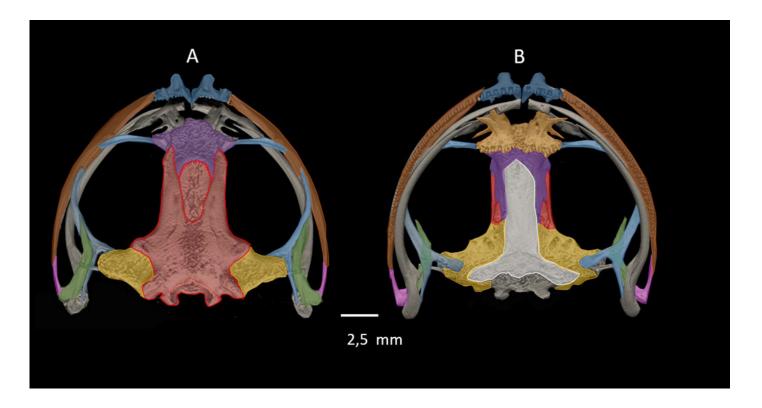
Life Comparison of *Hyloscirtus sethmacfarlanei* with six species of *Hyloscirtus* from the *H. larinopygion* group from the Andes of Ecuador


(A) *H. sethmacfarlanei*, female holotype, DHMECN 14416; (B) *H. sethmacfarlanei*, male paratype, DHMECN 14549, (C) *H. princecharlsi* photographic record QCAZ; (D). *H. larinopygion* photographic record QCAZ; (E) *H. lindae* DHMECN; (F) *H. pantostictus* photographic record QCAZ; (G) *H. psarolaimus* DHMECN; (H) *H. pacha* DHMECN. Photographs JPRP, MYM, Santiago Ron QCAZ, Jorge Brito

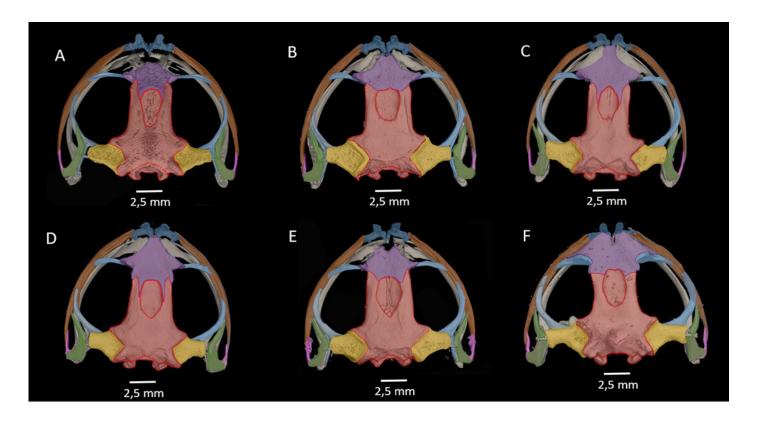
Vent condition in six species of Hyloscirtus of the H. larynopygion group

A) Hyloscirtus larynopigyin (DHMECN 3799); B) *H. psarolaimus* (DHMECN 6493); C) *H. sethmacfalanei sp nov* (DH MECN 14416) D); D) *H. pacha* (DHMECN 12111); E) *H. lindae* (DHMECN 12483); F) *H. tapichalaca* (DHMECN 9686). Photographs MYM

Live specimens of *Hyloscirtus sethmacfarlanei* in situ

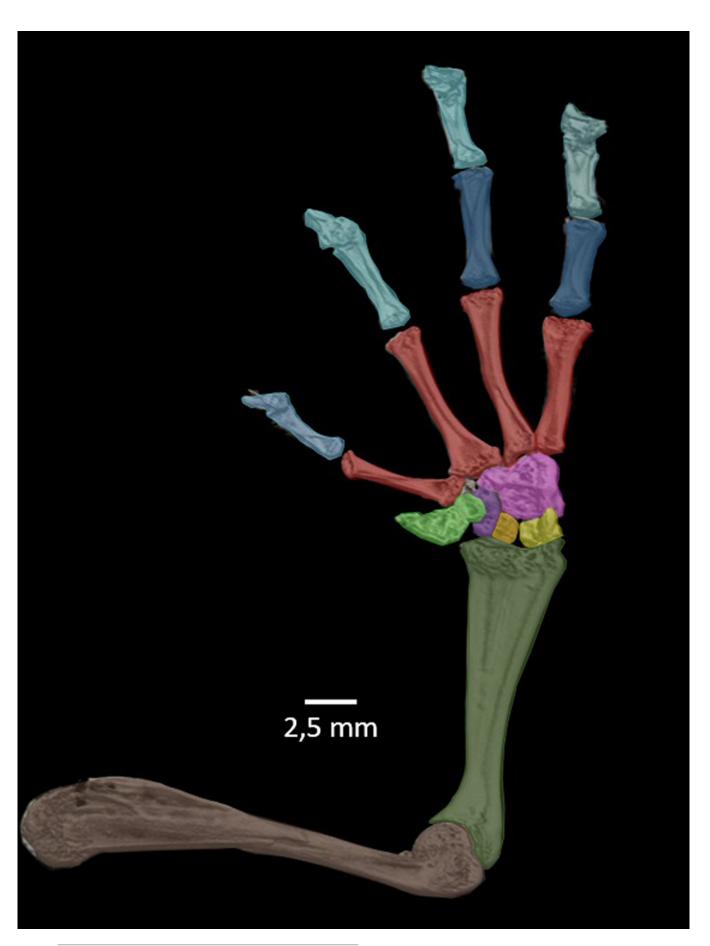

(A) Female DHMECN 14416, holotype; (B) Juvenile paratype (DHMECN 14549). (C) juvenile not collected on its natural habitat. (D) Juvenile adopting defensive behavior.

Photographs: LJ, Fausto Recalde, JPRP.


Osteological details of the cranium of the adult female holotype (DHMECN 14416) Hyloscirtus sethmacfarlanei

Individual skull diagnostic bones in colors: blue: premaxilla alary process; brown:maxillae; purple :sphenethmoid; orange: vomer; white: parasphenoid; light blue anterior :neopalatine; light blue posterior :pterigoides; reddish anterior: frontoparietals; posterior double red dotted lines: conjunction with exooccipital; anterior red dotted outline outline: frontoparietal fontanelle; yellow :prootic; green:squamosal; pink: quadratojugal.

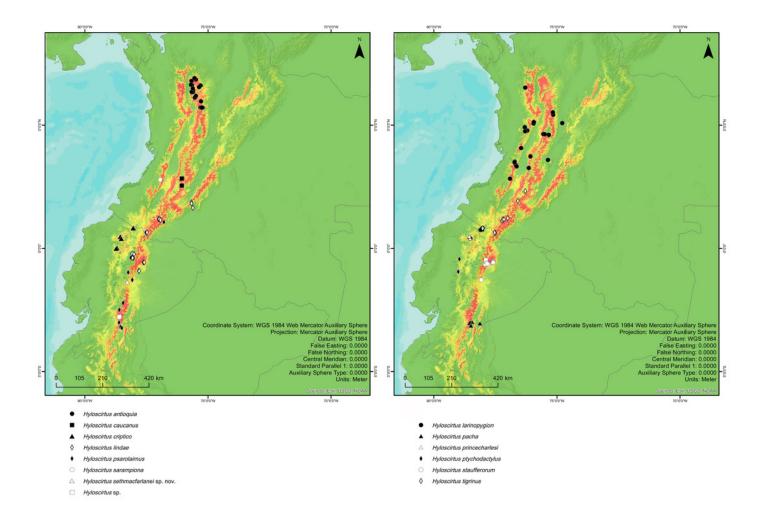
CT scan of the forelimb bones of the holotype of *Hyloscirtus sethmacfarlanei sp. nov.* DHMECN 14416


From the top to the bottom: Light blue: distal clawed phalanges; dark blue: medial phalanges; red: proximal phalanges; Light green: prepolex; Purple:distal carpal II; Pink: fused distal Carpal 3+4+5; Orange: Radial; Yellow: Ulnar; Dark green: Radioulna; brown; humerus.

CT scan of the forelimb bones of the holotype of *Hyloscirtus sethmacfarlanei sp. nov.* DHMECN 14416

From the top to the bottom: Light blue: distal clawed phalanges; dark blue: medial phalanges; red: proximal phalanges; Light green: prepolex; Purple:distal carpal II; Pink: fused distal Carpal 3+4+5; Orange: Radial; Yellow: Ulnar; Dark green: Radioulna; brown; humerus.

Comparison of the CT scans of the posteromedials of the hyobranchium in different species of the *H. larinopygion* group.


A) Hyloscirtus sethmacfarlanei holotype (DHMECN 14416); B) H. larinopygion, (DHMECN 3799); C) H. lindae (DHMECN 12483); D) H. psarolaimus (DHMECN 6493); E) H. pacha (DHMECN 12111); F) H. tapichalaca (DHMECN 9686).

Maps of northwestern South America showing the ecological niche modeling for all species of the northern clade of Hyloscirtus larinopygion species group

(yellow to red shadows). Both maps show the same ecological niche model but species were divided into two maps to allow locality points for known all species of Hyloscirtus larinopygion species group to be included. Type locality of H. sethmacfarlanei sp. nov. indicated by a white triangle in left map.

Habitat and Hyloscirtus sethmacfarlanei at the collection site

(A) humid cloud forest at type locality. (B) Holotype female(DHMECN 14416). (C) Paratype juvenile (DHMECN 14549) . (C) uncollected juvenile. Photographs: Fausto Recalde, JPRP

Table 1(on next page)

Genetic distances (mitochondrial 16S) between *Hyloscirtus sethmacfarlanei sp. nov.* and its most closely related congeners.

Values are presented as percent distances calculated from uncorrected p values.

1

	H. condor	H. hillisi	H. pacha	H.	H. lindae	H. pantostictus	H. tapichalaca	H. ptychodactylus	H. princecharlesi	H. psarolaimus (n = 2)	H. tigrinus (n = 2)	H. staufferorum (n = 2)	H. sethmacfarlanei sp nov (n = 2)
				larinopygion	(n = 4)	(n = 3)		(n = 2)	(n = 2)				
	(n = 2)	(n = 5)	(n = 1)	(n = 2)			(n = 2)						
H. condor	0.0												
H. hillisi	3.8-4.1	0.0-0.1											
H. pacha	10.2–10.5	11.3–11.4	0.0										
H. larinopygion	9.6–9.8	10.2–10.4	4.6	0.0									
H. lindae	10.1–10.8	11.0-11.7	4.6–5.3	2.6-3.1	0.0-0.5								
H. pantostictus	10.4–10.8	11.1–11.5	4.7–4.8	2.7–2.8	6.0–14.0	0.0-0.1							
H. tapichalaca	3.7–4.0	2.7–3.1	11.0–11.1	10.1–10.4	10.9–11.4	11.1–11.4	0.6						
H. ptychodactylus	9.5–9.6	10.2–10.5	3.8	2.9–3.0	2.9–3.6	3.1–3.2	10.1–10.2	0.0					
H. princecharlesi	9.7–9.9	10.8–11.0	4.3	3.2	3.3–3.6	3.4–3.6	10.6–10.7	1.3	0.0				
H. psarolaimus	10.8–11.1	11.3–11.7	4.2–4.5	4.8-5.0	4.5–5.4	4.8-5.2	11.2–11.4	3.6–3.8	3.8-4.1	0.3			
H. tigrinus	9.8–10.1	10.5–10.9	3.1–3.2	3.9–4.0	3.9–4.6	4.0-4.2	10.5–10.8	2.6	2.8-2.9	3.0-3.3	0.0		
H. staufferorum	9.6–10.1	10.6–11.1	1.8	4.2–4.4	4.0–4.7	4.1–4.3	10.6–10.8	2.8-2.9	3.3–3.4	3.4–3.7	2.7–2.8	0.0	
H. sethmacfarlan ei sp nov	9.3–9.5	9.2–9.6	3.7–3.9	2.9–3.5	3.7–4.6	3.5–3.7	9.4–9.9	2.6–2.8	3.1–3.3	3.1–3.3	2.2–2.9	3.5–4.0	0.4

2

3

Table 2(on next page)

Cloacal ornamentation and presence of calcar on the heel in Ecuadorian species of the *H. larynopigyon* group.

Museum Number	Species	Supracloacal fold	Vent- supracloacal fold relation	Paracloacal fold	Vent texture	Calcar on the heel
DHMECN 14416	H. sethmacfarlanei	well-defined	reaching the vent	thick, well defined	strong, areolate and granular	present
DHMECN 12483	H. lindae	thick, we developed, tongue- like shape	reaching the border of the weakly vent defined		densely tuberculate	absent
DHMECN 12113	H. pacha	thick	separated from the vent Thick, well-defined		smooth	present
DHMECN 3799	H. larinopgygion	well-defined	separated from the vent	absent	smooth	present
DHMECN 6493	H.psarolaimus	weakly defined	separated from the vent	absent	little tubercles	absent
DHMECN MYM, 4590	H. criptico	well-defined	separated from the vent	weakly defined	strongly granular	absent
KU 217695	H.staufferorum	weakly defined	separated from the vent	absent	smooth	absent
KU190000	H. pantostictus	well-defined	reaching the border of the vent	absent	densely tuberculate	absent
QCAZ 44893	H.princecharlesi	defined		Present, thick	smooth	absent
DHMECN 9686	H. tigrinus	thick	separated from the vent	present	smooth with granular tubercles	present

KU 209780	H. ptychodactylus	well-defined	reaching the border of the vent	present	smooth	present
QCAZ 65235	H. tapichalaca	well-defined	reaching the border of the vent	present, thick	smooth	absent
QCAZ 68646	H.condor	thick	reaching the border of the vent	absent	smooth	present
QCAZA40331	H. hillisi	well-defined	separated from the vent	Present, thin	areolate	absent