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Background. The full-length 16S rRNA sequencing instead of partial 16SrRNA genesequencing can
improve the taxonomic and phylogenetic resolution. 16S-FAS-NGS (16S rRNA full-length amplicon
sequencing based on a next-generation sequencing platform) technology can generate high-quality, full-
length 16S rRNA gene sequences using short-read sequencers, together with assembly procedures.
However there is a lack of a data analysis suite that can help process and analyze the synthetic long read
data.

Results. Herein, we developed a software named 16S-FASAS (16S full-length amplicon sequencing data
analysis software) for 16S-FAS-NGS data analysis, which provided high-fidelity species-level microbiome
data.16S-FASAS consists of data quality control, de novo assembly, annotation, and visualization
modules. We verified the performance of 16S-FASAS on both mock and fecal samples. In mock
communities, we proved that taxonomy assignment by MegaBLAST had fewer misclassifications and
tendedto find more low abundance species than USEARCH-UNOISE3-based classifier, resulting in species-
level classification of 85.71% (6/7), 85.71% (6/7), 72.72% (8/11), and 70% (7/10) of the target bacteria.
When applied to fecal samples, we found that the 16S-FAS-NGS datasets generated contigs grouped into
60 and 56 species, from which 71.62 % (43/60) and 76.79 % (43/56) were shared with the Pacbio
datasets, respectively.

Conclusions. 16S-FASAS is a valuable tool that helps researchers process and interpret the results of
full-length 16S rRNA gene sequencing. Depending on the full-length amplicon sequencing technology, the
16S-FASAS pipeline enables a more accurate report on the bacterial complexity of microbiome samples.
16S-FASAS is freely available for use at https://github.com/capitalbio-bioinfo/FASAS.
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1 16S-FASAS: An integrated pipeline for synthetic full-

2 length 16S rRNA gene sequencing data analysis
3

4 Abstract

5 Background. The full-length 16S rRNA sequencing instead of partial 16S rRNA 

6 gene sequencing can improve the taxonomic and phylogenetic resolution. 16S-FAS-NGS (16S 

7 rRNA full-length amplicon sequencing based on a next-generation sequencing platform) 

8 technology can generate high-quality, full-length 16S rRNA gene sequences using short-read 

9 sequencers, together with assembly procedures. However there is a lack of a data analysis suite 

10 that can help process and analyze the synthetic long read data.

11 Results. Herein, we developed a software named 16S-FASAS (16S full-length amplicon 

12 sequencing data analysis software) for 16S-FAS-NGS data analysis, which provided high-

13 fidelity species-level microbiome data.16S-FASAS consists of data quality control, de novo 

14 assembly, annotation, and visualization modules. We verified the performance of 16S-FASAS on 

15 both mock and fecal samples. In mock communities, we proved that taxonomy assignment by 

16 MegaBLAST had fewer misclassifications and tended to find more low abundance species than 

17 USEARCH-UNOISE3-based classifier, resulting in species-level classification of 85.71% (6/7), 

18 85.71% (6/7), 72.72% (8/11), and 70% (7/10) of the target bacteria. When applied to fecal 

19 samples, we found that the 16S-FAS-NGS datasets generated contigs grouped into 60 and 56 

20 species, from which 71.62 % (43/60) and 76.79 % (43/56) were shared with the Pacbio datasets, 

21 respectively.

22 Conclusions. 16S-FASAS is a valuable tool that helps researchers process and interpret the 

23 results of full-length 16S rRNA gene sequencing. Depending on the full-length amplicon 

24 sequencing technology, the 16S-FASAS pipeline enables a more accurate report on the bacterial 

25 complexity of microbiome samples. 16S-FASAS is freely available for use at 

26 https://github.com/capitalbio-bioinfo/FASAS.

27

28 Introduction

29 16S rRNA gene amplicon sequencing technology is commonly used to determine bacterial 

30 taxonomy. At present, most diversity studies on microbial communities are based on sequencing 

31 1�3 highly variable regions (V1 to V9) of the 16S rRNA gene (Sirichoat et al., 2020). Partial 

32 16S rRNA gene sequencing is found to be affected by the selection of hypervariable region and 

33 the length of reads, and thus it cannot consistently provide valid classification beyond the genus 

34 level. Long reads can dramatically widen the genetic field and improve the resolution measured 

35 using amplicon sequencing (Phillip et al., 2020). Full-length 16S rRNA gene sequences can be 

36 obtained using long-read sequencing technologies (PacBio SMRT sequencing and Oxford 

37 Nanopore sequencing) at comparatively high throughput (Santos et al., 2020; Pootakham et al., 

38 2021). Moreover, the PacBio circular consensus sequencing (CCS) technology improves the 

39 intrinsic error rate and provides high fidelity species identification (Earl et al., 2018). However, 
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40 to some extent, the large amounts of input material and high economic cost impede the 

41 widespread application of third-generation sequencing (Callahan et al., 2021). 

42 Most synthetic long-read sequencing technology protocols are based on the addition of unique 

43 molecular identifiers (UMIs) to the fragmented single long DNA molecules, so that the 

44 originating DNA molecules can be reconstructed by assembly with UMI barcodes after 

45 sequencing (Chen et al., 2020). Synthetic long-read sequencing technologies are appealing, as 

46 they can generate haplotype-resolved genome (Stapleton et al., 2016), full-length transcript (Liu 

47 et al., 2021), and full-length 16S rRNA gene sequencing (Dong et al., 2021) data with low-cost 

48 and highly accurate next-generation sequencing (NGS) platforms. For instance, 

49 Loop Genomics (San Jose, CA, USA) recently has developed a new commercialized technology 

50 called loopSeq that reconstructs full-length 16S rRNA gene through de novo assembly combined 

51 with the unique molecule barcoding technology (Jeong et al., 2021). Burke and Darling 

52 described a method producing high-quality, near full-length 16S rRNA genes sequenced on a 

53 short-read sequencer (Burke & Darling, 2016). 16S-FAS-NGS is a similar, low-cost, and high-

54 accurate approach that prepares the linked-tag library and the read-tag library separately before 

55 sequencing (Karst et al., 2018). Through the tagging technology, fragmented reads with the same 

56 tag are assembled into a single full-length 16S rRNA gene using a de novo assembly algorithm. 

57 Before de novo assembly, linked-tag reads are identified and unique tags are extracted, and some 

58 unique linked-tag sequences with variants or low abundance are discarded. These challenges are 

59 important obstacles to the promotion of 16S-FAS-NGS technology.

60 The 16S-FAS-NGS is an attractive technology, however, there is a lack of a data analysis suite 

61 that can facilitate the assembly, annotation, and visualization of relevant data to help process and 

62 analyze the synthetic long read data. Here, we introduce a new tool, called 16S-FASAS, that 

63 enables the assembly of the 16S rRNA gene by short reads and subsequent taxonomic 

64 composition analysis. The software provides easy-to-use integrated tools for processing 16S-

65 FAS-NGS data.

66

67 Materials & Methods

68 Installation

69 16S-FASAS is a full-length 16S amplicon sequencing data analysis software that contains 

70 modules such as data quality control, sequence demultiplexing, parallel assembly, and taxonomy 

71 annotation. Most modules are written in Perl, and an integrated in-shell pipeline is offered, which 

72 combines all modules and reads a variety of parameters in the configuration file. 16S-FASAS is 

73 hosted on GitHub (https://github.com/capitalbio-bioinfo/FASAS) and can be easily installed 

74 locally after downloading the software from the repository. 16S-FASAS does not require 

75 administrator privileges to install or run. 16S-FASAS utilizes conda, which provides automatic 

76 dependency resolution to install additional software programs and Perl module dependencies. 

77 Installation of 16S-FASAS requires the user to simply start with a script named 

78 �dep/create_conda_env.sh,� which is created in an isolated conda environment. The output 
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79 information provides details about installation and reports any errors that occurred. More 

80 detailed guidance for implementing 16S-FASAS is available in the README file.

81 Input

82 The input data to the 16S-FASAS pipeline consist of raw Illumina sequencing reads from two 

83 libraries: a linked-tag library and a read-tag library (Fig. S1). The linked-tag library contains 

84 reads with UMIs and flanking primer binding sites, which are used to bin all 16S rRNA gene 

85 fragment tag-reads originating from the same parent molecule. The read-tag library contains 

86 fragmenting reads with UMIs, which are used to re-create the parent full-length 16S rRNA gene 

87 molecules with a de novo assembly algorithm. A configuration file is required for the 16S-

88 FASAS pipeline. The configuration file also records the running parameters and serves as 

89 documentation for future reference. Each line in the configuration file represents one parameter 

90 for the pipeline.

91 Architecture

92 16S-FASAS comprises a set of steps that invoke specific procedures (Fig. 1). Some steps are 

93 executed efficiently by taking advantage of parallel computing. 16S-FASAS wraps the execution 

94 of these scripts with error-handling code. If the execution of 16S-FASAS is interrupted, the 

95 logged error or warning messages help to determine the underlying cause. By default, 16S-

96 FASAS performs the following operations on raw reads in the listed order:

97 1. Quality control of linked-tag reads. The linked-tag reads consist of adaptor sequences and 

98 unique tags. The Hamming distance between the flanking adapters of reads and the true adapter 

99 sequences is calculated. Reads are corrected to improve the rate of qualified reads if the 

100 hamming distance is less than 3. All reads are qualified with Trimmomatic v0.36, and the two 

101 linked-tag sequences are concatenated with XORRO.

102 2. Extracting unique tags and associated read bins. The unique tags are extracted by 

103 identifying the conserved flanking adapters, and the related reads are counted. The unique tag 

104 pairs are recorded and sorted by abundance. The tag pairs are used to recruit read-tag reads, thus 

105 helping obtain the read bins for each tag pair in the sample. Each bin consists of tag reads 

106 originating from the same parent molecule.

107 3. Quality control of read-tag reads and de novo assembly. Before assembly is performed, 

108 all read-tag reads are quality-trimmed and adaptor-trimmed using the Cutadapt software. Then, 

109 de novo assembly is implemented on each extracted read bin. The sequencing depths at different 

110 regions of a single full-length 16S rRNA gene can be extremely uneven. Two different 

111 lightweight algorithms are used by 16S-FASAS for assembling reads with uneven sequencing 

112 depths: CAP3 is an Overlap-Layout-Consensus (OLC) assembler, and IDBA-UD is a de Bruijn 

113 graph (DBG) assembler. Due to the relatively high resource consumption, assemblers such as 

114 spades and megahit are not recommended. Contigs are removed if they are outside the thresholds 

115 of the full length of the 16S rRNA gene (those > 1.2 kb are retained). All bins are assembled in 

116 parallel, and the number of threads is set through the parameters (assemble thread) of the 

117 software. The method is chosen through the Assemble Program parameter in the configuration 
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118 file. All the assembled contigs from each read-tag bin are concatenated into one file and then 

119 chimera-filtered using USEARCH 11.

120 4. Taxonomy assignment of contigs. This module produces abundance tables of contigs that 

121 are annotated with their taxonomy using the MegaBLAST tool. The cut-off threshold used to 

122 assign taxonomy from MegaBLAST is as follows: (1) alignment length/contig length ≥ 90%, (2) 

123 E-value < 1e-20, and (3) identity ≥ 97%, which is performed according to previously published 

124 methods (Bolyen et al., 2019). We have integrated several frequently used databases for 

125 annotation such as SILVA, RDP, and EZbiocloud. The database to be used can be specified in 

126 the configuration file. Users can also build their database based on the NCBI Taxonomy database 

127 or other microbiome data.

128 Validation

129 For validation, the DNA from various microbial species were pooled together to form four mock 

130 samples (Table S1). Mock 1 was designed as an in-house mock community that contains a 

131 mixture of equal proportions of seven different bacterial species. The Mock 2 community 

132 contained gradient proportions of seven organisms. Mock 3 was a more complex in-house mock 

133 community that included 11 different organisms. Mock 4 was designed as another in-house mock 

134 community, with 10 different species. Mock samples were processed using 16S-FASAS, and 

135 species annotation was based on the NCBI Taxonomy database. After quality control and de 

136 novo assembly, the contigs were analyzed with two classification methods, MegaBLAST-based 

137 classifier and USEARCH-UNOISE3-based classifier, to compare the accuracy of different 

138 taxonomic approaches: (1) Abundance tables of contigs were produced using taxonomy 

139 assignment module in 16S-FASAS (09.megablast_annotation.pl). (2) Unique contigs were used 

140 as input into UNOISE3 algorithm to generate zOTUs (zero-radius Operational Taxonomic Units) 

141 in USEARCH (v11.0.667), and then taxonomic classification was performed using the 

142 USEARCH sintax command with the NCBI taxonomy database.

143 Six apparently healthy volunteers from 2017 to 2018 were recruited in this study. From those 

144 individuals, fecal samples were collected and used to test the efficiency of 16S-FASAS. Sample 

145 collection protocols were performed with the previously published methods (Ma et al., 2018). To 

146 compare different full-length approaches, we sent two samples (Fecal 1, Fecal 2) to Novogene 

147 (Beijing, China) using PacBio RS II platform for sequence. Full-length 16S rRNA PCR primers 

148 were designed as described in a previous study (Karst et al., 2018). Library construction was 

149 performed by the Novogene Company with the Pacific Biosciences Template Prep Kit 2.0. The 

150 PacBio dataset was analyzed using the divisive amplicon denoising algorithm 2 (DADA2). Low 

151 abundance species (< 0.1%) detected were considered as contaminating species, which were 

152 excluded from subsequent analysis. All of the visualizations were obtained by using the ggplot2 

153 R package. Raw and assembled sequencing data are available at the NCBI SRA server 

154 (https://www.ncbi.nlm.nih.gov/sra/) under project number PRJNA776715.

155

156 Results and Discussion

157 Performance on mock samples
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158 Full-length 16S gene assembly. To estimate the assembly performance of 16S-FASAS, we 

159 applied it on four simulated microbial communities with known composition (Mock 1, 2, 3, and 

160 4). Unique tag pairs were extracted from link-tag reads and used for downstream analysis by 

161 identifying the known common sequences. Read-tag reads were trimmed, filtered, and binned 

162 according to the unique tag pairs. Various indicators of quality control are presented in Table S2. 

163 The coverage of the 16S rRNA gene had obvious effects on de novo assembly of full-length 16S 

164 rRNA gene sequences. Importantly, 16S-FASAS displayed the distribution of read-tag reads and 

165 coverage of the 16S rRNA gene (Fig. 2A). 16S-FASAS filtered contigs by length (> 1200 bp) for 

166 downstream analysis. Length distribution of assembled contigs from the mock community is 

167 shown in Fig. 2B and Table S3. Some contigs with occasional gaps (N) or less than the expected 

168 length were caused by low coverage of reads. The chimera rates of mock samples were 0.12%�

169 0.16% (Table S4). More than 99% of contigs could be identified to species level by 

170 MegaBLAST, and the average number of mismatch base pairs was consistent with a previous 

171 study (Fig. 2C) (Karst et al., 2018).

172 Comparison of classification methods. To further assess the accuracy of species abundance 

173 identification, we compared the relative abundance tables generated using MegaBLAST-based 

174 classifier and USEARCH-UNOISE3-based classifier (Fig. 2D, Table S5 and Table S6). 

175 MegaBlast-based classifier correctly classified six taxa (85.71%, 6/7) into the species level both 

176 in Mock 1 and Mock 2, with one species-level discrepancy: classification of Escherichia coli as 

177 Escherichia fergusonii and Shigella spp. Shigella spp. is phylogenetically Escherichia spp., and 

178 is classified as separate species for medical reasons (Earl et al., 2018). USEARCH-UNOISE3-

179 based classifier correctly identified 85.71% (6/7) and 42.86% (3/7) bacteria at the species level in 

180 Mock 1 and Mock 2. In more complex Mock 3, MegaBlast performed better as well, allowing 

181 72.72% (8/11) of the species to be identified down to the prospective species level. However, the 

182 USEARCH-UNOISE3-based classifier performed worse, and only 45.45% (5/11) of the species 

183 could be correctly identified. In another more complex Mock 4, we found that 70% (7/10) of 

184 target bacteria were correctly identified at the species level when using MegaBLAST-based 

185 classifier. In contrast, the USEARCH-UNOISE3-based classifier could classify 60% (6/10) of 

186 the target bacteria at the prospective species level. Compared with sintax, MegaBlast had fewer 

187 misclassifications and tended to find more low abundance species, but at the expense of possible 

188 false positives. USEARCH showed some trade-offs of accuracy for speed optimization. These 

189 results are similar to previous studies (Liber et al., 2021). The possible reasons for the 

190 differences observed between MegaBLAST and USEARCH are as follows: (1) USEARCH 

191 UNOISE3 is designed for correcting sequencing errors of reads (Edgar, 2016a), which may do 

192 not work as well on the assembled contigs. (2) Usearch sintax is a k-mer based method, which 

193 rely on a proxy measurement of the sequence similarity and frequency between the query and 

194 reference sequences (Edgar, 2016b) and, therefore, have lower accuracy than sequence alignment 

195 in theory (Gao et al., 2017). 

196 For most species, we detected the  roughly expected mock taxonomic composition and 

197 abundance. However, there were biases observed in the taxonomic profile of mock samples: 
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198 Klebsiella pneumonia, Haemophilus influenza, and Proteus vulgaris were detected at lower 

199 abundances than expected, while an increase in the content of Enterococcus faecium, 

200 Streptococcus mutans, and Pseudomonas aeruginosa was observed (Fig. 2D). Two factors might 

201 affect the precision of the observed taxonomic abundances: (a) different evolutionary rates of the 

202 16S rRNA gene with multiple copies, and (b) errors induced by experimental conditions, such as 

203 DNA extraction, primer esign, and PCR bias. Previous research has provided methods to 

204 minimize these effects by tuning the experimental parameters (Burke & Darling, 2016).

205

206 Performance on fecal samples

207 Full-length 16S gene assembly and classification. We performed the same analysis on six fecal 

208 samples to verify the applicability of 16S-FASAS. Quality indicators of the fecal samples are 

209 summarized in Table S7. Fig. 3A shows that the entire variable region of the 16S rRNA gene has 

210 high coverage for assembly analysis. Contig assembly statistics of fecal samples are shown in 

211 Table S8 and Fig. 3B, and all of their N50 were greater than 1400 bp. Mismatch count 

212 distribution for 16S gene sequences from the fecal samples is shown in Fig. 3C. The chimera 

213 rates of fecal samples were 0.30%�0.77% (Table S9). We compared the performance of two 

214 different taxonomy assignment methods. The results are similar to the performance on mock 

215 samples. Most of the species defined by MegaBLAST-based classifier were included in the 

216 classification results using the USEARCH-UNOISE3-based classifier. However MegaBLAST-

217 based classifier had higher proportion of assigned contigs than USEARCH-UNOISE3-based 

218 classifier at the species level (Table S10 and Table S11).

219 Comparison of 16S-FAS-NGS vs. PacBio 16S gene sequencing. To determine whether 

220 differences in full-length approaches affected the taxonomic classification, we compared the 

221 performance of 16S-FAS-NGS and PacBio sequencing for evaluating microbial community 

222 structure on two fecal samples. The 16S-FAS-NGS dataset-generated contigs grouped into 60 

223 and 56 species, of which 28.33 % (17/60) and 23.21 % (13/56) were unique species. The PacBio 

224 sequencing data generated zOTUs grouped into 53 and 58 species, from which 81.13% (43/53) 

225 and 74.13% (43/58) were shared with the 16S-FAS-NGS datasets, respectively (Fig. 3D). The 

226 relative abundances of the top 30 species are shown in Fig. 3E using the two different 

227 sequencing methods. The relative abundance of Megamonas rupellensis, Bacteroides plebeius, 

228 and Bacteroides coprocola was high in both the sequencing methods. However, 

229 Faecalibacterium prausnitzii was one of the predominant species in 16S-FAS-NGS datasets but 

230 was found at low relative abundances in the PacBio sequencing datasets. To some extent, the 

231 microbial community profiles represented by 16S-FAS-NGS and PacBio were different. 

232 Moreover, we also found some common features in fecal samples using the two sequencing 

233 methods. Megamonas rupellensis, Bacteroides plebeius, and Bacteroides coprocola were the 

234 dominant species in both sequencing methods. Previous studies have reported that the 

235 community profiles using synthetic long-read sequencing technologies (LoopSeq) and PacBio 

236 CCS from the same fecal samples were comparable (Yu et al., 2022). Compared to PacBio 16S 

PeerJ reviewing PDF | (2021:12:69419:3:0:NEW 12 Jul 2022)

Manuscript to be reviewed



237 sequencing, 16S-FAS-NGS offered high fidelity species identification but reduced sequencing 

238 prices, which was an attractive technology with species-level resolution.

239 Computational resources. 16S-FASAS was designed to process one sample dataset in a single 

240 run. In the part of quality control, assembly, and taxonomy assignment process, 16S-FASAS was 

241 implemented using Perl threading module enabled with multi-threading to decrease data 

242 processing time. To evaluate the computational resource needs of 16S-FASAS for quality 

243 control, assembly, and identification, 16S-FASAS was carried out on six fecal samples. A 16S-

244 FASAS pipeline was run on a Linux workstation (CentOS release 6.5) equipped with Intel(R) 

245 Xeon(R) CPU E5-2650 v3 @ 2.30GHz processors (10 physical cores, 40 threads in total) and 

246 128 GB RAM. We recorded the CPU and memory utilization during analysis to assess the time 

247 and resource utilization of 16S-FASAS. The memory (Fig. 3F) and CPU (Fig. 3G) utilization 

248 showed two peaks at linked-tag sequence correction and taxonomy annotation, which indicate 

249 that quality control and species annotation are two computationally intensive steps. 

250

251 Conclusions

252 Obtaining high-quality, full-length 16S rRNA gene sequences based on short reads with 

253 molecular tags is a cost-effective technology. Several previous studies have suggested long-read 

254 amplicon sequencing of the 16S rRNA gene based on de novo assembly of short Illumina Miseq 

255 reads (Karst et al., 2018). However, no mature and easy-to-use software has been available for 

256 subsequent analyses. Here, we presented an open-source bioinformatics pipeline called 16S-

257 FASAS that demultiplexes Illumina sequencing data that contain the link and read tags for de 

258 novo assembly of the full-length 16S rRNA gene. 16S-FASAS is easy to install, configure, and 

259 run. It performs de novo assembly of the full-length 16S rRNA gene with a low error rate 

260 through multi-step quality control correction. It generates a species-level relative abundance 

261 table through MegaBLAST. 16S-FASAS provides a variety of analysis results and achieves a 

262 high degree of automation based on a flexible configuration file. Our results showed that, 

263 compared to the PacBio-based method, 16S-FAS-NGS and subsequent 16S-FASAS analysis 

264 have similar taxonomic resolution and good price advantage. The good properties and scalability 

265 of 16S-FASAS will promote the large-scale application of 16S-FAS-NGS. The application of 

266 16S-FASAS in marker gene sequencing could help refine taxonomic assignments of microbial 

267 species and improve the precision of reference databases in future studies.

268
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Figure 1
Figure 1. Standard steps in the 16S-FASAS pipeline.
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Figure 2
Figure 2. Analysis results of 16S-FASAS on mock samples.

(A) Sequencing coverage quality of mock samples. The X-axis represents the variant region
of the 16S rRNA gene, the y-axis represents quenching number of read 1 (red) and read 2
(blue). (B) The length distribution of mock samples’ contigs. (C) Mismatch distribution from
the mock communities. The numbers indicate percent of all assembled contigs. (D)
Comparison of the influence of the classification methods on taxonomic assignment in mock
communities. The bar chart represents the relative abundance of species in percentages.
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Figure 3
Figure 3. Analysis results of 16S-FASAS on fecal samples.

(A) Sequencing coverage quality of fecal samples. The X-axis represents the variant region of
the 16S gene, the y-axis represents quenching number of read 1 (red) and read 2 (blue). (B)
The length distribution of fecal samples’ contigs. (C) Mismatch distribution from fecal
communities. The numbers indicate percent of all assembled contigs. (D) Venn diagram
shows the numbers of unique and shared species between 16S-FASAS and PacBio data sets.
(E) Relative abundance analysis of top 30 species in two sequencing methods. Bubble color
denote an individual genus, and sizes indicate the relative abundance of an individual
species. (F) Memory utilization of the 16S-FASAS on fecal samples. (G) CPU usage of the 16S-
FASAS on fecal samples.
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