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ABSTRACT
Background. The full-length 16S rRNA sequencing can better improve the taxonomic
and phylogenetic resolution compared to the partial 16S rRNA gene sequencing. The
16S-FAS-NGS (16S rRNA full-length amplicon sequencing based on a next-generation
sequencing platform) technology can generate high-quality, full-length 16S rRNA gene
sequences using short-read sequencers, together with assembly procedures. However
there is a lack of a data analysis suite that can help process and analyze the synthetic
long read data.
Results. Herein, we developed software named 16S-FASAS (16S full-length amplicon
sequencing data analysis software) for 16S-FAS-NGS data analysis, which provided
high-fidelity species-level microbiome data. 16S-FASAS consists of data quality control,
de novo assembly, annotation, and visualization modules. We verified the performance
of 16S-FASAS on both mock and fecal samples. In mock communities, we proved that
taxonomy assignment by MegaBLAST had fewer misclassifications and tended to find
more low abundance species than the USEARCH-UNOISE3-based classifier, resulting
in species-level classification of 85.71% (6/7), 85.71% (6/7), 72.72% (8/11), and 70%
(7/10) of the target bacteria.When applied to fecal samples, we found that the 16S-FAS-
NGS datasets generated contigs grouped into 60 and 56 species, from which 71.62%
(43/60) and 76.79% (43/56) were shared with the Pacbio datasets.
Conclusions. 16S-FASAS is a valuable tool that helps researchers process and interpret
the results of full-length 16S rRNA gene sequencing. Depending on the full-length
amplicon sequencing technology, the 16S-FASAS pipeline enables a more accurate
report on the bacterial complexity ofmicrobiome samples. 16S-FASAS is freely available
for use at https://github.com/capitalbio-bioinfo/FASAS.

Subjects Bioinformatics, Microbiology, Molecular Biology
Keywords Metagenome, Full-length 16s rRNA, Taxonomy, Microbiome

INTRODUCTION
16S rRNA gene amplicon sequencing technology is commonly used to determine bacterial
taxonomy. At present, most diversity studies on microbial communities are based on
sequencing 1–3 highly variable regions (V1–V9) of the 16S rRNA gene (Sirichoat et al.,
2020). Partial 16S rRNA gene sequencing is found to be affected by the selection of
hypervariable region and the length of reads, and thus it cannot consistently provide valid
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classification beyond the genus level. Long reads can dramatically widen the genetic field
and improve the resolutionmeasured using amplicon sequencing (Phillip et al., 2020). Full-
length 16S rRNA gene sequences can be obtained using long-read sequencing technologies
(PacBio SMRT sequencing and Oxford Nanopore sequencing) at comparatively high
throughput (Santos et al., 2020; Pootakham et al., 2021). Moreover, the PacBio circular
consensus sequencing (CCS) technology improves the intrinsic error rate and provides
high fidelity species identification (Earl et al., 2018). However, to some extent, the large
amounts of input material and high economic cost impede the widespread application of
third-generation sequencing (Callahan et al., 2021).

Most synthetic long-read sequencing technology protocols are based on the addition
of unique molecular identifiers (UMIs) to the fragmented single long DNA molecules,
so that the originating DNA molecules can be reconstructed by assembly with UMI
barcodes after sequencing (Chen et al., 2020). Synthetic long-read sequencing technologies
are appealing, as they can generate haplotype-resolved genome (Stapleton et al., 2016),
full-length transcript (Liu et al., 2021), and full-length 16S rRNA gene sequencing (Dong
et al., 2021) data with low-cost and highly accurate next-generation sequencing (NGS)
platforms. For instance, Loop Genomics (San Jose, CA, USA) recently has developed a
new commercialized technology called loopSeq that reconstructs full-length 16S rRNA
gene through de novo assembly combined with the unique molecule barcoding technology
(Jeong et al., 2021). Burke and Darling described a method producing high-quality, near
full-length 16S rRNA genes sequenced on a short-read sequencer (Burke & Darling,
2016). 16S-FAS-NGS is a similar, low-cost, and high-accurate approach that prepares the
linked-tag library and the read-tag library separately before sequencing (Karst et al., 2018).
Through the tagging technology, fragmented reads with the same tag are assembled into
a single full-length 16S rRNA gene using a de novo assembly algorithm. Before de novo
assembly, linked-tag reads are identified and unique tags are extracted, and some unique
linked-tag sequences with variants or low abundance are discarded. These challenges are
important obstacles to the promotion of 16S-FAS-NGS technology.

The 16S-FAS-NGS is an attractive technology; however, there is a lack of a data analysis
suite that can facilitate the assembly, annotation, and visualization of relevant data to help
process and analyze the synthetic long read data. Here, we introduce a new tool, called
16S-FASAS, that enables the assembly of the 16S rRNA gene by short reads and subsequent
taxonomic composition analysis. The software provides easy-to-use integrated tools for
processing 16S-FAS-NGS data.

MATERIALS & METHODS
Installation
16S-FASAS is a full-length 16S amplicon sequencing data analysis software that contains
modules such as data quality control, sequence demultiplexing, parallel assembly, and
taxonomy annotation. Most modules are written in Perl, and an integrated in-shell pipeline
is offered,which combines allmodules and reads a variety of parameters in the configuration
file. 16S-FASAS is hosted onGitHub (https://github.com/capitalbio-bioinfo/FASAS) and can
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be easily installed locally after downloading the software from the repository. 16S-FASAS
does not require administrator privileges to install or run. 16S-FASAS utilizes conda,
which provides automatic dependency resolution to install additional software programs
and Perl module dependencies. Installation of 16S-FASAS requires the user to simply start
with a script named ‘‘dep/create_conda_env.sh’’, which is created in an isolated conda
environment. The output information provides details about installation and reports any
errors that occurred. More detailed guidance for implementing 16S-FASAS is available in
the README file.

Input
The input data to the 16S-FASAS pipeline consist of raw Illumina sequencing reads from
two libraries: a linked-tag library and a read-tag library (Fig. S1). The linked-tag library
contains reads with UMIs and flanking primer binding sites, which are used to bin all 16S
rRNA gene fragment tag-reads originating from the same parent molecule. The read-tag
library contains fragmenting reads with UMIs, which are used to re-create the parent
full-length 16S rRNA gene molecules with a de novo assembly algorithm. A configuration
file is required for the 16S-FASAS pipeline. The configuration file also records the running
parameters and serves as documentation for future reference. Each line in the configuration
file represents one parameter for the pipeline.

Architecture
16S-FASAS comprises a set of steps that invoke specific procedures (Fig. 1). Some steps
are executed efficiently by taking advantage of parallel computing. 16S-FASAS wraps the
execution of these scripts with error-handling code. If the execution of 16S-FASAS is
interrupted, the logged error or warning messages help to determine the underlying cause.
By default, 16S-FASAS performs the following operations on raw reads in the listed order:
1. Quality control of linked-tag reads. The linked-tag reads consist of adaptor sequences

and unique tags. The Hamming distance between the flanking adapters of reads and
the true adapter sequences is calculated. Reads are corrected to improve the rate of
qualified reads if the hamming distance is less than 3. All reads are qualified with
Trimmomatic v0.36, and the two linked-tag sequences are concatenated with XORRO.

2. Extracting unique tags and associated read bins. The unique tags are extracted by
identifying the conserved flanking adapters, and the related reads are counted. The
unique tag pairs are recorded and sorted by abundance. The tag pairs are used to recruit
read-tag reads, thus helping obtain the read bins for each tag pair in the sample. Each
bin consists of tag reads originating from the same parent molecule.

3. Quality control of read-tag reads and de novo assembly. Before assembly is performed,
all read-tag reads are quality-trimmed and adaptor-trimmed using the Cutadapt
software. Then, de novo assembly is implemented on each extracted read bin. The
sequencing depths at different regions of a single full-length 16S rRNA gene can
be extremely uneven. Two different lightweight algorithms are used by 16S-FASAS
for assembling reads with uneven sequencing depths: CAP3 is an Overlap-Layout-
Consensus (OLC) assembler, and IDBA-UD is a de Bruijn graph (DBG) assembler.
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Due to the relatively high resource consumption, assemblers such as spades andmegahit
are not recommended. Contigs are removed if they are outside the thresholds of the
full length of the 16S rRNA gene (those >1.2 kb are retained). All bins are assembled
in parallel, and the number of threads is set through the parameters (assemble thread)
of the software. The method is chosen through the Assemble Program parameter in the
configuration file. All the assembled contigs from each read-tag bin are concatenated
into one file and then chimera-filtered using USEARCH 11.

4. Taxonomy assignment of contigs. This module produces abundance tables of contigs
that are annotated with their taxonomy using the MegaBLAST tool. The cut-off
threshold used to assign taxonomy from MegaBLAST is as follows: (1) alignment
length/contig length ≥ 90%, (2) E-value < 1e−20, and (3) identity ≥ 97%, which
was performed according to previously published methods (Bolyen et al., 2019). We
integrated several frequently used databases for annotation such as SILVA, RDP, and
EZbiocloud. The database to be used can be specified in the configuration file. Users can
also build their database based on the NCBI Taxonomy database or other microbiome
data.

Validation
For validation, the DNA from various microbial species were pooled together to form four
mock samples (Table S1). Mock 1 was designed as an in-house mock community that
contains a mixture of equal proportions of seven different bacterial species. The Mock
2 community contained gradient proportions of seven organisms. Mock 3 was a more
complex in-house mock community that included 11 different organisms. Mock 4 was
designed as another in-house mock community, with 10 different species. Mock samples
were processed using 16S-FASAS, and species annotationwas based on theNCBITaxonomy
database. After quality control and de novo assembly, the contigs were analyzed with two
classification methods, MegaBLAST-based classifier and USEARCH-UNOISE3-based
classifier, to compare the accuracy of different taxonomic approaches: (1) Abundance
tables of contigs were produced using taxonomy assignment module in 16S-FASAS
(09.megablast_annotation.pl). (2) Unique contigs were used as input into UNOISE3
algorithm to generate zOTUs (zero-radius Operational Taxonomic Units) in USEARCH
(v11.0.667), and then taxonomic classification was performed using the USEARCH sintax
command with the NCBI taxonomy database.

Six apparently healthy volunteers from 2017 to 2018 were recruited in this study.
From those individuals, fecal samples were collected and used to test the efficiency of
16S-FASAS. Sample collection protocols were performed with the previously published
methods (Ma et al., 2018). To compare different full-length approaches, we sent two
samples (Fecal 1, Fecal 2) to Novogene (Beijing, China) using PacBio RS II platform for
sequence. Full-length 16S rRNAPCRprimers were designed as described in a previous study
(Karst et al., 2018). Library construction was performed by the Novogene with the Pacific
Biosciences Template Prep Kit 2.0. The PacBio dataset was analyzed using the divisive
amplicon denoising algorithm 2 (DADA2). Low abundance species (<0.1%) detected were
considered as contaminating species, which were excluded from subsequent analysis. All
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Figure 1 Standard steps in the 16S-FASAS pipeline.
Full-size DOI: 10.7717/peerj.14043/fig-1

of the visualizations were obtained by using the ggplot2 R package. Raw and assembled
sequencing data are available at the NCBI SRA server (https://www.ncbi.nlm.nih.gov/sra/)
under project number PRJNA776715.

RESULTS AND DISCUSSION
Performance on mock samples
Full-length 16S gene assembly
To estimate the assembly performance of 16S-FASAS, we applied it on four simulated
microbial communities with known composition (Mock 1, 2, 3, and 4). Unique tag pairs
were extracted from link-tag reads and used for downstream analysis by identifying the
known common sequences. Read-tag reads were trimmed, filtered, and binned according
to the unique tag pairs. Various indicators of quality control are presented in Table S2.
The coverage of the 16S rRNA gene had obvious effects on de novo assembly of full-length
16S rRNA gene sequences. Importantly, 16S-FASAS displayed the distribution of read-tag
reads and coverage of the 16S rRNA gene (Fig. 2A). 16S-FASAS filtered contigs by length
(>1,200 bp) for downstream analysis. Length distribution of assembled contigs from the
mock community is shown in Fig. 2B and Table S3. Some contigs with occasional gaps
(N) or less than the expected length were caused by low coverage of reads. The chimera
rates of mock samples were 0.12%–0.16% (Table S4). More than 99% of contigs could be
identified to species level by MegaBLAST, and the average number of mismatch base pairs
was consistent with a previous study (Fig. 2C) (Karst et al., 2018).

Comparison of classification methods
To further assess the accuracy of species abundance identification, we compared the relative
abundance tables generated using MegaBLAST-based classifier and USEARCH-UNOISE3-
based classifier (Fig. 2D, Tables S5 and S6). MegaBLAST-based classifier correctly classified
six taxa (85.71%, 6/7) into the species level both in Mock 1 and Mock 2, with one species-
level discrepancy: classification of Escherichia coli as Escherichia fergusonii and Shigella
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spp. Shigella spp. is phylogenetically Escherichia spp. and is classified as separate species
for medical reasons (Earl et al., 2018). USEARCH-UNOISE3-based classifier correctly
identified 85.71% (6/7) and 42.86% (3/7) bacteria at the species level in Mock 1 and
Mock 2. In more complex Mock 3, MegaBLAST performed better as well, allowing 72.72%
(8/11) of the species to be identified down to the prospective species level. However, the
USEARCH-UNOISE3-based classifier performed worse, and only 45.45% (5/11) of the
species could be correctly identified. In another more complex Mock 4, we found that
70% (7/10) of target bacteria were correctly identified at the species level when using
MegaBLAST-based classifier. In contrast, the USEARCH-UNOISE3-based classifier could
classify 60% (6/10) of the target bacteria at the prospective species level. Compared with
sintax, MegaBLAST had fewer misclassifications and tended to find more low abundance
species, but at the expense of possible false positives. USEARCH showed some trade-offs
of accuracy for speed optimization. These results are similar to previous studies (Liber
et al., 2021). The possible reasons for the differences observed between MegaBLAST and
USEARCH are as follows: (1) USEARCH UNOISE3 is designed for correcting sequencing
errors of reads (Edgar, 2016a), which may do not work as well on the assembled contigs.
(2) USEARCH sintax is a k-mer based method, which rely on a proxy measurement of
the sequence similarity and frequency between the query and reference sequences (Edgar,
2016b) and, therefore, have lower accuracy than sequence alignment in theory (Gao et al.,
2017).

For most species, we detected the roughly expected mock taxonomic composition
and abundance. However, there were biases observed in the taxonomic profile of mock
samples:Klebsiella pneumonia,Haemophilus influenza, and Proteus vulgariswere detected at
lower abundances than expected, while an increase in the content of Enterococcus faecium,
Streptococcus mutans, and Pseudomonas aeruginosa was observed (Fig. 2D). Two factors
might affect the precision of the observed taxonomic abundances: (a) different evolutionary
rates of the 16S rRNA gene with multiple copies, and (b) errors induced by experimental
conditions, such as DNA extraction, primer esign, and PCR bias. Previous research has
provided methods to minimize these effects by tuning the experimental parameters (Burke
& Darling, 2016).

Performance on fecal samples
Full-length 16S gene assembly and classification
We performed the same analysis on six fecal samples to verify the applicability of 16S-
FASAS. Quality indicators of the fecal samples are summarized in Table S7. Figure 3A
shows that the entire variable region of the 16S rRNA gene has high coverage for assembly
analysis. Contig assembly statistics of fecal samples are shown in Table S8 and Fig. 3B,
and all of their N50 were greater than 1400 bp. Mismatch count distribution for 16S gene
sequences from the fecal samples is shown in Fig. 3C. The chimera rates of fecal samples
were 0.30%–0.77% (Table S9). We compared the performance of two different taxonomy
assignment methods. The results are similar to the performance on mock samples. Most of
the species defined byMegaBLAST-based classifier were included in the classification results
using the USEARCH-UNOISE3-based classifier. HoweverMegaBLAST-based classifier had
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higher proportion of assigned contigs than USEARCH-UNOISE3-based classifier at the
species level (Tables S10 and S11).

Comparison of 16S-FAS-NGS vs. PacBio 16S gene sequencing
To determine whether differences in full-length approaches affected the taxonomic
classification, we compared the performance of 16S-FAS-NGS and PacBio sequencing
for evaluating microbial community structure on two fecal samples. The 16S-FAS-NGS
dataset-generated contigs grouped into 60 and 56 species, of which 28.33% (17/60) and
23.21% (13/56) were unique species. The PacBio sequencing data generated zOTUs
grouped into 53 and 58 species, from which 81.13% (43/53) and 74.13% (43/58) were
shared with the 16S-FAS-NGS datasets, respectively (Fig. 3D). The relative abundances
of the top 30 species are shown in Fig. 3E using the two different sequencing methods.
The relative abundance of Megamonas rupellensis, Bacteroides plebeius, and Bacteroides
coprocola was high in both the sequencing methods. However, Faecalibacterium prausnitzii
was one of the predominant species in 16S-FAS-NGS datasets but was found at low relative
abundances in the PacBio sequencing datasets. To some extent, the microbial community
profiles represented by 16S-FAS-NGS and PacBio were different. Moreover, we also found
some common features in fecal samples using the two sequencing methods. Megamonas
rupellensis, Bacteroides plebeius, and Bacteroides coprocola were the dominant species in
both sequencing methods. Previous studies have reported that the community profiles
using synthetic long-read sequencing technologies (LoopSeq) and PacBio CCS from the
same fecal samples were comparable (Yu et al., 2022). Compared to PacBio 16S sequencing,
16S-FAS-NGS offered high fidelity species identification but reduced sequencing prices,
which was an attractive technology with species-level resolution.

Computational resources
16S-FASAS was designed to process one sample dataset in a single run. In the part of quality
control, assembly, and taxonomy assignment process, 16S-FASAS was implemented using
Perl threading module enabled with multi-threading to decrease data processing time. To
evaluate the computational resource needs of 16S-FASAS for quality control, assembly,
and identification, 16S-FASAS was carried out on six fecal samples. A 16S-FASAS pipeline
was run on a Linux workstation (CentOS release 6.5) equipped with Intel(R) Xeon(R)
CPU E5-2650 v3 @ 2.30 GHz processors (10 physical cores, 40 threads in total) and 128 GB
RAM. We recorded the CPU and memory utilization during analysis to assess the time and
resource utilization of 16S-FASAS. The memory (Fig. 3F) and CPU (Fig. 3G) utilization
showed two peaks at linked-tag sequence correction and taxonomy annotation, which
indicate that quality control and species annotation are two computationally intensive steps.

CONCLUSIONS
Obtaining high-quality, full-length 16S rRNA gene sequences based on short reads with
molecular tags is a cost-effective technology. Several previous studies have suggested
long-read amplicon sequencing of the 16S rRNA gene based on de novo assembly of short
IlluminaMiseq reads (Karst et al., 2018). However, no mature and easy-to-use software has
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Figure 3 Analysis results of 16S-FASAS on fecal samples. (A) Sequencing coverage of fecal samples. The X-axis represents the variant region of
the 16S gene. The y-axis represents the number of read 1 (red) and read 2 (blue). (B) The length distribution of fecal samples’ contigs. (C) Mis-
match distribution from fecal communities. The numbers indicate the percent of all assembled contigs. (D) Venn diagram shows the numbers of
unique and shared species between 16S-FASAS and PacBio data sets. (E) Relative abundance analysis of top 30 species in two sequencing meth-
ods. Bubble color denote an individual genus, and sizes indicate the relative abundance of an individual species. (F) Memory utilization of the 16S-
FASAS on fecal samples. (G) CPU usage of the 16S-FASAS on fecal samples.
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been available for subsequent analyses. Here, we presented an open-source bioinformatics
pipeline called 16S-FASAS that demultiplexes Illumina sequencing data that contain the
link and read tags for de novo assembly of the full-length 16S rRNA gene. 16S-FASAS is
easy to install, configure, and run. It performs de novo assembly of the full-length 16S
rRNA gene with a low error rate through multi-step quality control correction. It generates
a species-level relative abundance table through MegaBLAST. 16S-FASAS provides a
variety of analysis results and achieves a high degree of automation based on a flexible
configuration file. Our results showed that, compared to the PacBio-based method,
16S-FAS-NGS and subsequent 16S-FASAS analyses have similar taxonomic resolution and
good price advantage. The good properties and scalability of 16S-FASAS will promote the
large-scale application of 16S-FAS-NGS. The application of 16S-FASAS in marker gene
sequencing could help refine taxonomic assignments of microbial species and improve the
precision of reference databases in future studies.
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