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ABSTRACT

Background. Due to its intrinsically disordered nature, the histone tail is conforma-
tionally heterogenic. Therefore, it provides specific binding sites for different binding
proteins or factors through reversible post-translational modifications (PTMs). For
instance, experimental studies stated that the ING family binds with the histone tail that
has methylation on the lysine in position 4. However, numerous complexes featuring a
methylated fourth lysine residue of the histone tail can be found in the UniProt database.
So the question arose if other factors like the conformation of the histone tail affect the
binding affinity.

Methods. The crystal structure of the PHD finger domain from the proteins ING1,
ING2, ING4, and ING5 are docked to four histone H3 tails with two different
conformations using Haddock 2.4 and ClusPro. The best four models for each
combination are selected and a two-sample t-test is performed to compare the binding
affinities of helical conformations vs. linear conformations using Prodigy. The protein-
protein interactions are examined using LigPlot.

Results. The linear histone conformations in predicted INGs-histone H3 complexes
exhibit statistically significant higher binding affinity than their helical counterparts
(confidence level of 99%). The outputs of predicted models generated by the molecular
docking programs Haddock 2.4 and ClusPro are comparable, and the obtained protein-
protein interaction patterns are consistent with experimentally confirmed binding
patterns.

Conclusion. The results show that the conformation of the histone tail is significantly
affecting the binding affinity of the docking protein. Herewith, this in silico study
demonstrated in detail the binding preference of the ING protein family to histone H3
tail. Further research on the effect of certain PTMs on the final tail conformation and
the interaction between those factors seem to be promising for a better understanding
of epigenetics.

Subjects Bioinformatics, Computational Biology, Molecular Biology

Keywords Epigenetics, Histone Tail, ING Protein, In silico, Binding affinity, Molecular docking,
Intrinsically Disordered Proteins

INTRODUCTION

Chromatin dynamics is a rich modulation scene that is influenced by nucleosome motions
as well as reversible post-translational modifications (PTM) of the histone tails, and it
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governs cellular viability and nuclear operations by affecting the accessibility of DNA on
histone proteins (Armeev et al., 2021; Huertas, Scholer ¢ Cojocaru, 2021).

The tail of the histone, which is an intrinsically disordered protein (IDP) (Uversky,
Gillespie ¢ Fink, 2000; Van der Lee et al., 2014), that extends from the chromatin structure,
can undergo conformational changes (Bortoluzzi et al., 2017; Fuchs et al., 2011; Musselman
¢ Kutateladze, 2021), thus forming a molecular recognition site for binding proteins like
histone readers as well as regulating the mechanisms that specify which reader or binding
factor will be equipped (Musselman ¢ Kutateladze, 2021; Peng et al., 2021).

IDPs like Histone H3 supposedly adopt a clearly defined conformation when they interact
with a target molecule (Hansen et al., 2006). According to Peng et al. (2021), binding factors
and histone tails interact through competitive attachment or tail displacement mechanisms.

However, lysine (K) residues within histone tails are reversibly modified through the
addition of methyl or acetyl groups (Taverna et al., 2006; Li ¢ Li, 2012). These specific
modification patterns commonly converge to form or displace specific binding sites for
other proteins. Supporting this view, experimental studies show that hyperacetylation of
histone tail increases their average o -helical content (Wang et al., 2000) Moreover; in X-ray
and NMR studies methylated histone tail adopts an extended chain structure, actually
serving to fill in a B-sheet (Nielsen et al., 2002; Fischle et al., 2003). This chain structure of
the histone tail provides an optimal binding site.

The histone readers are a group of diverse proteins that recognize and bind specifically
to the N-tail of histones leading to chromatin remodeling or involving in gene expression
or joining as chromatin architectural proteins. One of these histone readers, the Inhibitor
of Growth (ING) protein family is substantially conserved across all eukaryotes implying
that they may contribute to critical biological processes and may also have complementary
functions due to their similarities (Cui et al., 2015). Genuinely, ING proteins, like other
tumor suppressor factors, are involved in essential processes such as apoptosis, DNA repair,
and cellular senescence, thus they’ve aroused interest (Larrieu et al., 2009; Cheung Jr et al.,
2001; Wang, Chin ¢ Li, 2006). Further, emerging studies demonstrate that ING proteins, as
well as the complexes they associate with other proteins, play a pivotal role in transcription
regulation and epigenetic regulation (Ormaza et al., 2019; Unoki et al., 2009).

Many regions in the protein structure are thought to be essential for the function
of ING proteins. The plant homeodomain (PHD)-like zinc finger domain is the most
conserved region located at the C-terminus of ING proteins and is involved in chromatin
remodeling through interaction with specific nuclear protein partners (Champagne ¢
Kutateladze, 2009; He et al., 2005; Jacquet & Binda, 2021; Bienz, 2006; Ragvin et al., 2004).
On the other hand, the N-terminus differs amongst ING members and determines
their specific functions, along with antagonistic regulatory characteristics (Kataoka et
al., 2003). Therefore, members of the ING gene family have been demonstrated to have
diverse epigenetic functions (Tallen ¢ Riabowol, 2014; Doyon et al., 2006). They function
as histone readers, core components of histone deacetylases (HDACs) 1 and 2, and
chromatin-modifying complexes, including histone acetyltransferase (HAT), monocytic
leukemia zinc finger protein, and the related factor (MOZ/MOREF). Further, INGs influence
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cancer hallmarks through modulating gene methylation patterns, primarily as tumor
suppressors (Tallen ¢ Riabowol, 2014).

The PHD finger is a region that varies from 50 to 80 amino acids and contains a
zinc-binding motif (Aasland, Gibson ¢ Stewart, 1995). The most conserved property is the
binding of H3’s first six N-terminal residues (ARTKQT) to the PHD finger’s two-strand
B-sheet (81 and $2) via the formation of an antiparallel-strand. A two-strand anti-parallel
B-sheet and a C-terminal -helix (not present in all PHDs) are stabilized by two zinc
atoms bound by the Cys4-His-Cys3 motif in a cross-brace architecture in the conserved
PHD fold (Li et al., 2006; Kwan et al., 2003). The C terminal PHD finger domain of INGs
binds strongly and specifically to the N-tail of histone H3 with an increased affinity
for the methylation status of the 4th positioned lysine amino acid (H3K4) (Champagne
& Kutateladze, 2009; Soliman ¢ Riabowol, 2007; Champagne et al., 2008; Ali et al., 2012;
Palacios et al., 2008; Shi et al., 2006; Pefia et al., 2006).

Nevertheless, growing evidence suggests that histone tails modulate the accessibility of
binding DNA, as well as the accessibility of binding components in solvent (Musselman
e~ Kutateladze, 2021; Morrison et al., 2018). In this context, interactions between the ING
PHD finger domain and the histone H3 tail are influenced by individual binding affinity
of proteins and histone tail conformational dynamics. It has been noted that by changing
the electrostatics of the tail with modifications or mutations occurring in the histone
tail, the accessibility of PHD to the histone binding site increases and thus modulates the
binding (Musselman ¢ Kutateladze, 2021; Morrison et al., 2018).

In the RCSB protein database (https:/iwww.rcsb.org/) (Palacios et al., 2008), there are
17,191 complexes only with H3k4me3. H3k4me3-PHD finger complexes contribute 2,168
of these complexes, whereas H3k4me3-ING proteins account for 162 structures. The
ability of the histone H3 N-terminal tail to form a wide variety of complexes with just
one modification has drawn the main attention of researchers to this me3-modification
as a very important indicator for building complexes. However, to the knowledge of the
authors, there are not many studies investigating the conformational structure within
these complexes and no studies at all about the affinity of ING proteins to bind to specific
conformations.

Following this initial information, to better understand if and how histone
H3 conformations affect ING binding affinity, an in-silico investigation including
computational molecular docking was performed in this study. Four different
computationally derived histone conformation models were constructed to investigate
the binding affinity between histone H3 and INGs. Despite minor differences, two of these
four conformations are helical, and the other two are linear conformations containing the
ARTKQTARKST (H3-11) sequence.

Along with increasing computational capabilities, molecular docking studies on protein-
protein interaction mainly constitute predictive models with steric and physicochemical
properties at the protein interface. These calculations use biochemical and biophysical
interactions resulting from NMR titration experiments or mutagenesis data (Vakser, 2014;
Dominguez, Boelens & Bonvin, 2003).
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Various in-silico approaches, like molecular simulations or molecular docking along
with statistical calculations, have been used to broaden the boundaries of experimental
capabilities and make it easier to understand complex structures due to the complexity of
biological materials (Papamokos, 2019).

Due to the limitations of molecular simulation techniques (Ikebe, Sakuraba ¢ Kono,
2016), we preferred molecular docking methods. Molecular docking systems provided us
the ability to examine the interactions between various conformations of the histone tail
and the ING protein, making it possible to perform a statistical analysis of the results. The
present paper is to the best of our knowledge one of the first in-silico attempts in this field
and our findings highlight the importance of the conformation of the histone tail. These
results should lead to further research with the goal of better understanding the nature of
those different conformations and their relation with the well-studied PTMs.

MATERIALS & METHODS

Structural design

The crystal structures of the ING proteins utilized in this study, which are summarized
in Table 1, were gathered from the protein database (http:/iwww.rcsb.org/) (Berman et al.,
2000). Additionally, four (two linear, two helical) different three-dimensional structures
of the histone H3 N-Tail (11 amino acid) conformations were modeled using UCSF
Chimera (Pettersen et al., 2004). Figure 1 shows the 3-dimensional structure of these four
conformations.

As there was no crystal structure for the ING2 protein derived from humans in the
database, it was decided to use the structure from a mouse, because there are no sequential
differences in the crystal structures of the PHD Finger domain (213-262 positions) between
ING2 human (UniProtKB-Q9H160) and ING2 mouse (UniProtKB-Q9ESK4) proteins.
Since there are no experimentally verified crystal structures of the ING3 protein, it could
not be included in this study.

Multiple alignment & structure comparison
Sequential information was retrieved from UniprotKB (http:/www.uniprot.org/) and
multiple sequence alignment of the proteins was carried out in Clustal Omega
(https:/fwww.ebi.ac.uk/Tools/msa/clustalo/). JalviewV2 was used for the visualization of
the alignment results (Waterhouse et al., 2009; Tian et al., 2018).

Comparison analyses of the three-dimensional structures and their molecular
visualizations were performed using UCSF Chimera (Pettersen et al., 2004).

Molecular docking analysis

The geometric and topological features of protein architectures are critical for proteins
to execute their interactions. In this context, as a preparation step to improve a more
consistent docking, the active and passive binding regions of ING proteins were detected
with the Computed Atlas of Surface Topography of Proteins (CASTP) online service (Tian
etal., 2018).
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Table 1 Data snapshot of ING proteins utilized in the study. The crystal structures of the ING proteins were gathered from the protein database
(http:/www.rcsb.org)).

Protein/Domain PDB ID Sequence Resolution Model Ref.
name length
ING1 PHD finger (human) 2QIC 62 2.10A X-RAY Diff. Papamokos (2019)
ING2 PHD finger (mouse) 2G6Q 62 2.00 A X-RAY Diff Ikebe, Sakuraba & Kono (2016)
ING4 PHD finger (human) 2VNF 60 1.76 A X-RAY Diff. Pettersen et al. (2004)
INGS5 PHD finger (human) 3C6W 59 1.75A X-RAY Diff. Waterhouse et al. (2009)
A » B
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C D ARG

ALA ARG

GLN LYs

THR

LYs
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Figure 1 Computational generated histone H3 N-tail conformations. Histone tail secondary structure
models in the helical (A, B) and linear (C, D) conformations are illustrated with colored residues along the
rainbow color scale from N terminal (blue) to C terminal (magenta).

Full-size Gal DOI: 10.7717/peerj.14029/fig-1

In-silico prediction of INGs to histone H3-N tail interactions was achieved through
two different online services, ClusPro and Haddock 2.4. Thus, by using two systems that
implement different docking algorithms the results can be cross-checked.
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ClusPro is based on the rigid body docking algorithm PIPER (Kozakov et al., 2006),
created using the Fast Fourier Transform (FFT) correlation approach, which generates and
evaluates countless models of INGs-H3 N-tail complexes. The complex structures were
then sorted using nine A C-alpha radius pairwise root-mean-square deviations (RMSD) as
the distance metric.

The server returns 10 different complexes as result, which were ranked according to the
cluster size and lowest energy (Desta et al., 2020; Vajda et al., 2017).

Haddock 2.4 is an information-driven flexible docking approach for modeling. Haddock
2.4 implements the topology of the molecules to be docked automatically. For the
production of ambiguous interatomic restraints (AIRs) in Haddock 2.4, the CASTP
service was utilized to define the active and passive residues. This information is used by
Haddock 2.4 to compile topology files. The docking methodology is then broken down
into three stages: rigid body energy minimization, semi-flexible refinement in torsion
angle space, and explicit solvent refinement. Constructions are rated and ranked after
each of these phases, and the finest structures are retained for the following round. The
Haddock 2.4 score is a weighted combination of van der Waals, electrostatic, desolvation,
and restraint violation energies and as well as buried surface area (Honorato et al., 2021;
Van Zundert et al., 2016; De Vries, Van Dijk ¢ Bonvin, 2010).

The binding affinity for the histone H3-ING complexes was then calculated through the
PROtein binDIng enerGY prediction (PRODIGY) web-server (Vangone ¢» Bonvin, 2017;
Xue et al., 2016). PRODIGY is an online application that predicts the binding affinity and
dissociation constant of biological complexes using an atomic contacts-based prediction
method.

For each of the 16 ING-histone combinations, the best four models both from ClusPro
and Haddock 2.4 were chosen for further analysis. This resulted in 32 values for binding
affinities and dissociation constants per histone protein, or 64 values per conformation
type (helical or linear). With these values, a two-sample -test was a feasible method to
check the statistical significance of the differences.

Finally, LIGPLOT plus was used to produce schematic diagrams to easily examine
protein-protein interactions in docking complexes. LIGPLOT plus is a software for
drawing schematic linear representations of protein chains in terms of their structural
domains (Wallace, Laskowski & Thornton, 1995).

RESULTS

Structural differences of the PHD finger
The PHD finger domains are known to be protected regions. Literature shows that proteins
like MORF or DPF3 are building complexes with histone H3 proteins’ helical tails (Klein et
al., 2017; Local et al., 2018). Therefore, the PHD finger domains of these two proteins and
the four ING proteins investigated in this study are compared with a multiple sequence
alignment performed in Clustal Omega. The similarities and differences visualized with
JalviewV2 (Taverna et al., 2006; Li ¢ Li, 2012) can be seen in Fig. 2.

The small differences in the sequence of the PHD domain of the four investigated
ING proteins results in structural differences as well, which are larger. Figure 3 shows
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Figure 2 Multiple sequence alignment of PHD finger domains. Multiple sequence alignment of PHD
fingers of ING1 (PDB: 2QIC), ING2 (PDB: 2G6Q), ING4 (PDB: 2VNF), ING5 (PDB: 3C6W) PHD finger
of MORF (PDB: 5U2]) and PHD finger of DPF3 (PDB: 5SZB). Similar residues are shown as purple color
gradients when the percent identity of the INGs PHD region is compared to the MOZ and DPF PHD sec-
tions, which are known to bind to the histone tail in a helical conformation.

Full-size & DOI: 10.7717/peerj.14029/fig-2

the superposed structures of the PHD domains. Table 2 gives the similarity percentage

of the combinations, with a very high similarity between ING1-ING2 as well as between

ING4-INGS.

Additionally, the MOZ and DPF3 PHD fingers, which have been experimentally verified
to bind with histone in a helical conformation, differ significantly from the ING PHD

fingers in terms of both sequence patterns and sequence lengths. These differences suggest

that PHD fingers could be able to account for the different affinities of histone proteins in

respective conformations.

Linear conformations are preferred while docking
To answer the research question, of whether the structural conformation of the histone H3

tail affects the binding affinity of ING proteins, in-silico protein-protein interactions were

calculated. For each combination, the four best models with the lowest energy and lowest
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Figure 3 The superposed PHD finger domains of ING1 (Magenta), ING2 (Light blue) ING4 (yellow),
INGS (blue).
Full-size Gl DOI: 10.7717/peerj.14029/fig-3

Table 2 Structural comparison of PHD finger domains of ING proteins. Comparison of structural sim-
ilarity.
ING2 ING4 ING5
ING1 88.24% 74.51% 76.47%

ING2 73.08% 78.43%
ING4 e 90.2%

Z-Score were selected. For all models, the binding affinity and the dissociation constant

were calculated with Prodigy. The results can be seen in Fig. 4.
One can see that the linear conformations always have lower energies than the helical

conformations, while the smallest difference is for the ING2 protein. As a point of reference,
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Figure 4 PRODGY binding affinity analyses. Binding affinity analysis of ING proteins on different hi-
stone H3 tail conformations. Helical conformations (conformation 1 and 2) Linear conformations (con-
formation 3 and 4) X-ray experimental structures have been utilized as reference value (green line) dock-

ing results depicted from Haddock in blue and ClusPro in magenta. All docking outcomes were statisti-

cally calculated with reference values. Significantly lower binding energies are seen in INGs-Histone (lin-
ear) complexes compared to INGs-Histone (helical) complexes.
Full-size & DOI: 10.7717/peerj.14029/fig-4
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the same values were calculated with Prodigy for the original crystallographic PDB data.
These reference lines are shown in green in Fig. 4. For ING1 the reference value represents
a clean cut between linear and helical conformations, whereas for ING4 and INGS5 it is
more of a median of the linear conformations. Only ING2 has a very high reference value
directly overlapping with helical conformations.

The two-valued T-Test was performed for each ING protein by dividing the calculated
binding affinity for helical and linear conformations. Using a 99% confidence interval the
p-value was always less than 0.0001.

All calculations are confirming the difference between the two histone H3 tail models’
affinity to bind with ING proteins with a clear preference for linear conformations over
helical ones.

Similar binding patterns in different conformations

For a better understanding of the results, the actual connections between the amino acids of
the four ING proteins and the histone H3 tail were investigated using Ligplot. The result is
illustrated in Fig. 5. These calculated connections are in accordance with the experimentally
verified connections in the crystallographic data.

To examine the binding analysis between INGs and histone H3 predicted models in
more detail, the binding analysis with Ligplot was performed with two models of ING1
with the best binding affinity. For the linear histone H3 tail, the G value was —11.4 kcal
mol-1 and the Kd (M) value was 4.00E—09 at 25.0 °C. For the helical histone H3 tail, the
values were —9.8 kcal mol-1 and 6.10E—08 at 25.0 °C respectively. The interactions are
schematically illustrated for the linear conformation in Fig. 6 and the helical conformation
in Fig. 7.

It is known that ING PHD recognizes the histone tail through K4 and forms a complex
with the participation of R2. Similar to the results of experimental studies, our calculated
models show that in both linear and helical conformations, ING PHD-histone H3 complex
is also mainly based on these two amino acids.

Figure 6 shows that the linear histone tail provides an optimal surface for the binding
of the rigid ING PHD, and seven amino acids (A1, R2, T3, K4, T6, R8, K9) in the 11
amino acid histone tail provide hydrogen bonding and hydrophobic interactions. On the
other hand, these interactions are limited to four amino acids in the histone tail in helical
model. This explains the importance of the histone tail conformation for selecting binding
proteins.

DISCUSSION

One of the most important structures that can be held responsible for gene transcription
in chromatin dynamics is the histone tail, which protrudes from the nucleosome and can
change conformation through its reversible modification by many chemical groups (Armeev
et al., 2021). These chemical groups act as epigenetic patterns, enabling the binding partner
to bind to the histone tail specifically.

Previous experimental studies have suggested that the PHD finger of ING proteins can
recognize the histone H3 tail with varying affinities depending on the methylation status
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Figure 5 Merged illustration of INGs—Histone H3 complexes. Merged illustration of INGs H3K4me3
complex from x-ray crystal structures. Bindings and interactions between the histone tail’s at the centre
and the ING PHD regions surrounding the histone tails (same residues in different INGs are grouped in
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Full-size Gl DOI: 10.7717/peer;j.14029/fig-5

of the K4 (Champagne ¢ Kutateladze, 2009; Soliman & Riabowol, 2007; Pefia et al., 2006)
as well as unmodified or various modifications like acetylation and phosphorylation (Li ¢»
Li, 20125 Musselman ¢ Kutateladze, 2011; Papamokos et al., 2021). The binding site of the
PHD finger grips the K4 of the histone H3 tail while the R2 is coordinated in a neighboring
pocket. A small residue is needed at position 3 of the histone tail to form the narrow
channel that connects these two sites (Kwan et al., 2003; Kim et al., 2016). Further, the
molecular simulation revealed that the formation of an ING—histone H3 complex is
driven by a combination of hydrogen bonding as well as hydrophobic contacts and surface
interactions (Kim et al., 2016). Nevertheless, these studies did not reflect on the selectivity
of the conformational change in the histone tail whereas they emphasized the modifications
in the histone tail.

The histone proteins display a significant conformational heterogeneity and do not have
an equilibrium geometry. However, the structure of the conformation is never random
and the IDPs have some preferential conformations (Dunker et al., 2013).

NMR and all-atom MD simulation studies indicate that the unmodified N-tail of
histone is intrinsically disordered. Studies suggest that the helical conformation of the
histone tail can be regulated by PTMs, mostly by the acetylation of the lysines, while
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circular dichroism studies showed that the histone tail adopts a helical conformation 50%
of the time (Ghoneim, Fuchs ¢ Musselman, 2021).

Bortoluzzi et al. (2017) identified three possible conformations in which the histone
tail builds a complex with a PHD finger; helical, bent and fully extended. Moreover, they
explained that BAZ2a H3 assumes a helical fold when in complex with PHD fingers that
harbor a short helical turn or loop just before the first 8-strand (Van der Lee et al., 2014).
Further studies identified the PHD fingers MORF, MOZ, and DPF forming complexes with
the «-helical conformation of Histone H3 (Klein et al., 2017; Local et al., 2018; Dreveny et
al., 2014).

In the light of these experimental data, we tested the consistency of our in-silico
methodology by performing the same calculations with MOZ PHD—histone H3 complexes
(PDB: 4LK9) (64). The in-silico calculations showed a statistically significant higher affinity
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for binding with helical histone tail models. These outcomes which are in line with all cited
experimental results indicate the reliability of our constructed methodology.
Importantly, studies imply that the PHD finger of INGs does not undergo any
conformational changes during binding (Taverna et al., 2006; Li et al., 2006; Kwan et
al., 2003). This was taken into account both with Haddock 2.4 and with ClusPro while
performing the dockings. Coherent with experimental data, our predictive models also
show binding to the K4 and R2 residues, regardless of the conformation of the histone tail.
The binding analysis with ligplot displays that the S219, G221, M223 G225, C226, D227,
E234, G249, and P247 amino acids of the ING1 PHD finger build hydrogen bonds with
histone H3jjpear Al, R2, T3, K4, T6, R8 and K9. The best scored model of the ING1-H3j;pear
complex showed very similar bonds in number and shape as the experimentally verified
X-ray crystallographies.
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However, the calculated model of the ING PHD and histone H3},ejica] complex relied on
hydrogen bonds and hydrophobic interactions of the R2, K4, R8, and T11 amino acids of
the histone tail. Due to the helical form of the histone tail, the residues which are located
on the outer side of the helix were not reachable by the PHD finger of the ING proteins.

When we look at the binding affinity and dissociation constants in both complexes, one
can see that the ING-H3|j,eor complexes always have lower energies than the ING-H3plical
complexes. As a point of reference, the same values were calculated with Prodigy for the
original crystallographic PDB data. The reference value represents a clean cut between
linear and helical conformations for ING1 and is most coherent with the calculated values
for linear conformations.

These results suggest that the rigid structure of the ING PHD finger does not prefer to
bind to the histone H3yej;ca1 conformation. This led to the conclusion that besides PTM
like H3K4me3, the conformation of the histone H3 tail has also an important influence on
the selectivity of ING proteins.

CONCLUSIONS

The main question motivating this research was the effect of the histone tail conformation
on the binding affinity of proteins. The ING family was chosen as an important protein.
Existing experimentally verified data and most of the literature concentrated on different
PTM:s while disregarding the conformation of the histone tail.

The performed in-silico calculations showed, that there is indeed a statistically significant
difference between the binding affinity depending on the conformational shape of the
histone tail.

Further research is needed to better understand the mechanisms and also the possible
relation between PTMs and the final conformation of the histone tail.
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