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Seagrass beds are essential habitats in coastal ecosystems, providing valuable ecosystem
services, but are threatened by various climate change and human activities. Seagrass
monitorings by remote sensing have been conducted over past decades using satellite and
aerial images, which have too low resolution to analyze changes in the composition of
different seagrass species in multispecific beds. Recently, UAVs have allowed us to obtain
much higher resolution images, which is promising in observing fine-scale changes in
seagrass species composition. Furthermore, image processing techniques based on deep
learning can be applied to discrimination of seagrass species that were difficult based only
on color variation. In this study, we conducted mapping of a multispecific seagrass bed in
Saroma-ko Lagoon, Hokkaido, Japan, and compared the accuracy of the three
discrimination methods of seagrass bed areas and species composition, i.e., pixel-based
classification, object-based classification, and the application of deep neural network. We
set five taxonomic classes, two seagrass species (Zostera marina and Z. japonica), brown
and green macroalgae, and no vegetation for creating a benthic cover map. High-
resolution images by UAV photography enabled us to produce a map at fine scales (<1 cm
resolution). The application of a deep neural network successfully classified the two
seagrass species. The accuracy of seagrass bed classification was the highest (82%) when
the deep neural network was applied. Our results highlighted that a combination of UAV
mapping and deep learning could help monitor the spatial extent of seagrass beds and
classify their species composition at very fine scales.
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19 Abstract

20 Seagrass beds are essential habitats in coastal ecosystems, providing valuable ecosystem 

21 services, but are threatened by various climate change and human activities. Seagrass 

22 monitorings by remote sensing have been conducted over past decades using satellite and aerial 

23 images, which have too low resolution to analyze changes in the composition of different 

24 seagrass species in multispecific beds. Recently, UAVs have allowed us to obtain much higher 

25 resolution images, which is promising in observing fine-scale changes in seagrass species 

26 composition. Furthermore, image processing techniques based on deep learning can be applied to 

27 discrimination of seagrass species that were difficult based only on color variation. In this study, 

28 we conducted mapping of a multispecific seagrass bed in Saroma-ko Lagoon, Hokkaido, Japan, 

29 and compared the accuracy of the three discrimination methods of seagrass bed areas and species 

30 composition, i.e., pixel-based classification, object-based classification, and the application of 

31 deep neural network. We set five taxonomic classes, two seagrass species (Zostera marina and Z. 

32 japonica), brown and green macroalgae, and no vegetation for creating a benthic cover map. 

33 High-resolution images by UAV photography enabled us to produce a map at fine scales (<1 cm 

34 resolution). The application of a deep neural network successfully classified the two seagrass 

35 species. The accuracy of seagrass bed classification was the highest (82%) when the deep neural 

36 network was applied. Our results highlighted that a combination of UAV mapping and deep 

37 learning could help monitor the spatial extent of seagrass beds and classify their species 

38 composition at very fine scales.

39

40 Introduction

41 Seagrasses are angiosperms that inhabit relatively shallow environments along tropical and 

42 subarctic coasts, and about 60 species are known worldwide (Short et al., 2007). Seagrasses 

43 usually form seagrass beds composed of single or multiple species. While seagrass beds play an 

44 essential role in providing valuable ecosystem services, they have been reported to be declining 

45 in many parts of the world due to natural and human-induced disturbances (Short & Wyllie- 

46 Echeverria, 1996; Waycott et al., 2009, Sudo et al., 2021). Since seagrass distribution and 

47 abundance show significant spatiotemporal variability (Tomasko et al., 2005), long-term 

48 monitoring of spatial information at each location is essential for deep understanding and 

49 appropriate management.

50

51 Monitoring of seagrass beds has been conducted using ground-based field surveys (Short et al., 

52 2006), optical remote sensing with aircraft (Kendrick et al., 2000; Sherwood et al., 2017), 

53 satellites (Xu et al., 2021; Zoffoli et al., 2021), and acoustic remote sensing (Gumusay et al., 

54 2019). Field surveys can provide detailed information on seagrass cover, species composition, 

55 and biomass. However, they are time-consuming and labor-intensive, and the survey area is 

56 limited. In contrast, remote sensing methods can obtain large/wide areal distribution information 

57 with less effort than field surveys. In addition, it is possible to analyze long-term temporal 

58 changes by using aerial photographs (Yamakita, Watanabe & Nakaoka, 2011). While many 
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59 results have also been reported using satellite data for long-term monitoring (Lyons, Phinn & 

60 Roelfsema, 2012; Calleja et al., 2017; Zoffoli et al., 2020; Xu et al., 2021), several limitations 

61 have been pointed out for traditional optical remote sensing. The biggest problem is the 

62 resolution. The most commonly used satellite data, the Landsat series, provides data over a wide 

63 area at a low cost but has a spatial resolution of 30 m which is too low compared to detailed fine-

64 scale information obtained by in-situ field surveys. Phinn et al. (2008) has reported that higher 

65 spatial and spectral resolutions are needed for more accurate detailed mapping. Studies using 

66 commercial high-resolution satellite images such as WorldView2 and RapidEye have reported 

67 high mapping accuracy (Coffer et al., 2020). However, these commercial satellite images are too 

68 expensive for long-term, broad-scale monitoring.

69

70 In recent years, UAVs (Unmanned Aerial Vehicles, or drones) have been increasingly used in 

71 field research due to some advantages compared with conventional remote sensing (Nowak et 

72 al., 2019). High spatial resolution data are available by low altitude UAV flights. Frequent flight 

73 is possible because the no-cloud sky is unnecessary like satellite, and operation cost is low. It is 

74 also possible to adjust the survey time and day, which is impossible with satellites in a fixed 

75 orbit. In seagrass research, UAVs have been used for detailed bed mapping (Duffy et al., 2018; 

76 Nahirnick et al., 2019; Hobley et al., 2021). Nonetheless, most of these studies mapped seagrass 

77 beds consisting of only a single species or conducted mapping without species discrimination. 

78

79 Seagrasses have different morphologies and life histories depending on the species (Duarte, 

80 1991), and when they live nearby, mapping them by species is necessary to obtain more accurate 

81 information such as estimating biomass (Knudby & Nordlund, 2011). It is also known that 

82 different species provide different ecosystem services (Mtwana Nordlund et al., 2016) and 

83 respond differently to changes in the environment (Roca et al., 2016). Thus, developments of 

84 detailed methods that can discriminate different seagrass species are promising for more 

85 effective monitoring of seagrass beds. It is also helpful for monitoring and managing invasive 

86 species (Kumar et al., 2019).

87

88 Few studies performed species discrimination of seagrasses with UAV images. Román et al. 

89 (2021) showed that seagrass bed mapping, including seagrass discrimination, can be performed 

90 with high accuracy using a UAV-mounted ten band multispectral camera and automatic 

91 classification based on machine learning algorithms. Chayhard et al. (2018) showed that visual 

92 interpretation could be applied to classify seagrass species with different morphology, such as 

93 long leaves type (Enhalus acoroides) and short leaves type (Halodule pinifolia and H. uninervis), 

94 even using the RGB images taken by UAVs. The camera installed in the consumer-grade UAV is 

95 an RGB sensor, and the use of a multispectral camera is costly. Therefore, there is a need for 

96 developing methods for seagrass species discrimination using image data with limited spectral 

97 resolution but high spatial resolution.

98
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99 In general, spatial distribution mapping of seagrass beds by optical remote sensing is carried out 

100 using classification algorithms (Diesing et al., 2016). Classification algorithms classify the image 

101 into several classes such as seagrass, bare sand, and macroalgae by computer. Classification 

102 algorithms can be divided into supervised classification and unsupervised classification 

103 depending on whether training data are used or not. In supervised classification, which uses 

104 ground truth data obtained from field surveys as training data, there are two types of 

105 classification: (1) pixel-based classification which classifies each pixel, and (2) object-based 

106 classification which classifies each object by grouping similarly colored neighboring pixels. It 

107 has been reported that object-based classification provides higher accuracy for high spatial 

108 resolution images than pixel-based classification (Gao & Mas, 2008). These classification 

109 methods have been used to analyze optical remote sensing data based only on limited image 

110 information such as the color, object shape, and size. On the other hand, in ultra-high-resolution 

111 UAV images, more features are available, such as the pattern, texture, and location of the objects 

112 in the image. A deep neural network (DNN) can automatically extract these various features 

113 using a convolutional neural network (CNN), the basic network used for DNN image processing 

114 (Traore et al., 2018). The image-to-image translation is one of the applications of DNN. This 

115 model is trained with supervised data for transforming the input image into a corresponding 

116 output image using the extracted features (Isola et al., 2017). It can be used for semantic 

117 segmentation of input images and has also been applied to seagrass bed mapping by remote 

118 sensing (Yamakita et al., 2019).

119

120 This study aimed to use UAV images and image analysis techniques to create a detailed 

121 multispecific seagrass map. The study site was set in a seagrass bed of Saroma-ko Lagoon in 

122 northeastern Japan where several seagrass and seaweed species are mixed. We got RGB images 

123 by consumer-grade UAV and created a benthic map including the following plant taxa; (1) 

124 eelgrass Zostera marina, (2) dwarf eelgrass Z. japonica, (3) green algae (Chaetomorpha crassa, 

125 Cladophora sp.), and (4) a brown algae (Cystoseira hakodatensis). The accuracies of mapping 

126 were compared among three methods, (1) conventional pixel-based supervised classification, (2) 

127 object-based supervised classification, and (3) image-to-image translation based on DNN 

128 method.

129

130 Materials & Methods

131 In this study, we first undertook UAV photography and transect surveys in the field to create 

132 reference data, then conducted image analysis in the laboratory. The overall workflow is shown 

133 in Fig. 1.

134

135 Fieldwork

136 Fieldwork was carried out on July 9, 2019 at Saroma-ko Lagoon in eastern Hokkaido, Japan 

137 (Fig. 2). Saroma-ko Lagoon is a brackish lagoon of about 152 km2 and is connected to the Sea of 

138 Okhotsk by two channels, one about 300 m in width and another 50 m. The maximum depth of 
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139 the lagoon is 19.6 m. Three species of seagrasses (Zostera japonica, Z. marina, and Z. 

140 caespitosa) occur along the intertidal and shallow subtidal zones of the lagoon (Biodiversity 

141 Center of Japan, 2008). The present study was conducted in a seagrass bed at the eastern coast of 

142 the lagoon (Fig. 2).

143

144 The transect survey and UAV photography were conducted during a low tide. In the transect 

145 survey, a transect line was set perpendicular to the shoreline from the shallowest end in the east 

146 to the deepest part of the bed in the west until no seagrass appeared (about 600 m offshore). A 

147 total of 86 quadrats of 0.25 m2 were placed haphazardly along the transect to cover all present 

148 seagrasses and macroalgae along the transect, and species and cover were recorded. Surveys 

149 were conducted by wading, snorkeling, and SCUBA diving.

150

151 UAV photography was conducted from shore using a quadcopter Mavic2 pro (DJI Co. Ltd). The 

152 flight area was set at 580 m offshore and 90 m wide, including a measuring tape used for the 

153 transect. We took the images with the RGB sensor camera equipped with the Mavic2 pro at a 

154 nadir angle. The flight was automated using DroneDeploy (DroneDeploy Co. Ltd.). 

155 DroneDeploy enables automatic flight and photography by specifying the flight area, altitude, 

156 and overlap rate (front and side) between images. To ensure sufficient spatial resolution for 

157 seagrass species identification and to enable orthorectification, we used the setting for 

158 DroneDeploy as follows: altitude 30 m, front overlap 80 % and side overlap 70 %. The camera 

159 settings were set manually before the shooting and were not changed (aperture: f/2.8, shutter 

160 speed: 1/400 s, and ISO: 200).

161

162 Image pre-processing

163 The captured UAV images were orthorectified using the SfM-MVS processing software 

164 Metashape ver. 1.7.1 (Agisoft Co. Ltd.). Through SfM-MVS processing, we can produce an 

165 orthoimage from overlapped images(Verhoeven et al., 2013). Then, the images were cropped for 

166 subsequent analyses.The orthoimage was first converted to a benthic cover map by visual 

167 interpretation. As a result of the transect survey, three species of seagrass (Z. marina, Z. 

168 japonica, Z. caespitosa), green algae (Chaetomorpha crassa, Cladophora sp.), a brown alga 

169 (Cystoseira hakodatensis), and red algae (Ceramiaceae gen spp.) were observed. Three seagrass 

170 species were continuously mixed and the dominant species changed with water depth; Z. 

171 japonica (intertidal), Z. marina (shallower subtidal), and Z. caespitosa (deeper subtidal). Zostera 

172 caespitosa was difficult to distinguish from Z. marina without observing the belowground part, 

173 so the area offshore of 300 m from the shoreline where Z. caespitosa occurred was cropped and 

174 excluded from subsequent analysis of orthoimage. This cropping resulted in a total area of 7,884 

175 m2, 291 m along the depth axis and 27 m horizontally to the depth axis. As for macroalgae, red 

176 algae were found only in a limited area and were not distinguishable from other vegetation by the 

177 naked eye, so they were excluded from the classification. Green algae were combined into one 

178 class because it was difficult to distinguish the two species. 

179
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180 These resulted in five taxonomic classes in this study (Z. marina (ZM), Z. japonica (ZJ), green 

181 algae (GA), brown algae (BA), and no vegetation (NV)). The interpreter who conducted a field 

182 survey could distinguish these five classes on orthoimage and hand-traced the boundaries of each 

183 class on an image editing software, Paint. NET ver.4.2.16 (dotPDN LLC.). This study used the 

184 maps created by visual interpretation as ground-truth images for training and accuracy 

185 verification data. To examine the credibility of the visual interpretation, we compared the 

186 ground-truth images with the data obtained from the transect survey. For the comparison, the 

187 location of each quadrat was first identified on the orthoimage based on the measurement tape 

188 used for the transect installation, and the dominant vegetation classes (ZM, ZJ, GA, BA) were 

189 examined. Next, the area corresponding to the quadrat area was cropped from the ground-truth 

190 image. The dominant taxonomic classes were examined in the same way and compared with the 

191 results of the transect survey. In all cases, however, if the coverage of the dominant class was 

192 less than 10%, the no vegetation class (ND) was considered the dominant class.

193

194 Mapping method comparison

195 Mapping by visual interpretation is highly accurate but requires extensive labor. This study 

196 compared three mapping methods (pixel-, object-based classification and image-to-image 

197 translation based on DNN) to find a more efficient and reproducible method. All methods are 

198 supervised methods, which means that by training the computer using some of the data as 

199 training data, mapping can be done automatically for the rest of the data. In this study, we trained 

200 each method using the ground-truth image by visual interpretation. About half of the orthoimage 

201 (54%) was used as a training area and the rest (46%) as a validation area from which accuracy 

202 assessment was conducted for each method.

203

204 a). Conventional mapping (Pixel-based and object-based classification)

205 Pixel-based and object-based classification is a standard mapping method for remote sensing 

206 images (Dat Pham et al., 2019). It is a supervised classification in which data in some areas are 

207 used as training data to classify data in other areas. In this study, the training data for empirical 

208 mapping and classification were created on ArcGIS pro ver. 2.8.1 (Esri Co. Ltd.). Pixel-based 

209 classification classifies each pixel, while object-based classification classifies each object. An 

210 object is a collection of similarly colored neighboring pixels created by the segmentation of the 

211 input image. For segmentation, three parameters were adjusted until the object became an 

212 appropriate size (Spectral detail: 20, Spatial detail: 5, Minimum segment size: 500).

213

214 In this study, the algorithm used for classification was the support vector machine (SVM), which 

215 was used in seagrass mapping and reported to be sufficiently accurate (Pottier et al., 2021). SVM 

216 is not sensitive to training data size and does not assume the probability distribution of the data 

217 (Mountrakis, Im & Ogole, 2011). The training data were polygons created from a ground-truth 

218 image by uniformly selecting a representative area of each specific class. The area (number) of 

219 training data for each class (ZM, ZJ, GA, BA, and NV) was 140 m2 (9), 23.7 m2 (11), 8.01 m2 

220 (7), and 1.24 m2 (9), respectively.
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221

222 b). Image translation based on deep learning (pix2pix)

223 Pix2pix is an image-to-image translation model based on conditional generative adversarial 

224 networks (cGANs) (Isola et al., 2017). cGANs are the application of CNN and have two 

225 networks: generator and discriminator. The generator transforms the input image, and the 

226 discriminator classifies translated image as fake or real by comparing it with the ground-truth 

227 image. The generator and discriminator compete with each other, and the generator comes to 

228 transform the image into a more realistic one. This model can also be used for remote sensing 

229 mapping by translating images to classified images and showed higher accuracy than other deep 

230 learning models (Isola et al., 2017). Pix2pix has been applied to various examples, including 

231 seagrass mapping for black-and-white aerial photography (Yamakita et al., 2019).

232

233 The translation process in pix2pix requires the size of the input image to be 256 x 256 pixels. 

234 Therefore, the training and validation data were sliced to an appropriate size beforehand. After 

235 slicing the orthoimages, number of training and validation data were 980 and 840. In general, 

236 DNNs are trained more robustly with increasing training data. Therefore, we added flipped 

237 copies of the training data to increase the data for training in this study. We added horizontal, 

238 vertical, and simultaneous horizontal and vertical flipped copies of the training data. After all, 

239 the number of training data was 3920.

240

241 GANs-based networks often suffer from a problem called mode collapse (Goodfellow, 2016). 

242 This occurs when the training data contain a lot of similar ground-truth images. In such cases, the 

243 translated image by the network would also result in similar images. In the study area, the 

244 percentage of the ZM area is high, and a lot of ground-truth data of the training data are 

245 dominated by ZM only, which can cause the mode collapse. We divided the training data ZM 

246 into three subclasses to solve this problem. We reduced colors in the orthoimage of the ZM area 

247 to three by posterization and assigned a subclass to each of them. This prevented homogenization 

248 of the ground truth image (Fig. 3).

249

250 Accuracy assessment

251 Accuracy assessment was performed by comparing the mapping results of each method in the 

252 validation area with the ground truth data. Five thousand random points were extracted in the 

253 validation area, and a confusion matrix was created for each resulting map. The confusion matrix 

254 was used to calculate the overall accuracy (OA) and Kappa coefficient (K) for all classes and the 

255 user accuracy (UA) and producer accuracy (PA) for individual classes. OA represents the ratio of 

256 the pixel classified correctly. K is a statistic value that expresses the degree of agreement 

257 between data, taking into account coincidence (Cohen, 1960). K = 0 means that the degree of 

258 agreement is equal to that obtained by chance, and positive values indicate a degree of agreement 

259 greater than chance, with the maximum value of 1. In general, the relationship between K and 

260 strength of agreement is < 0.00: poor, 0.00-0.20: slight, 0.21-0.40: fair, 0.41-0.60: moderate, and 

261 0.61-0.80: substantial (Landis & Koch, 1977). UA is the ratio of each class assigned by the 
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262 correctly classified mapping, and PA is the ratio of each class assigned by ground truth that is 

263 correctly classified.

264

265 Results
266 Image pre-processing

267 The flight time of the UAV photography was 22 minutes, and 406 out of 534 taken images were 

268 used to orthorectification. The remaining 128 images were taken in deep water where the 

269 seagrass was submerged entirely, and they could not be used for the synthesis because there were 

270 few matching points.

271

272 The spatial resolution of the created orthoimage was 8.13 mm/pix (Fig. 4 A). After cropping 

273 orthoimage for analysis, the number of quadrats for the transect survey included in image was 

274 42. Among them, those dominated by Z. marina, Z. japonica, green algae, brown algae, red alga 

275 and no vegetation were 18, 11, 4, 1, 3, and 5, respectively. In the ground-truth image, a part of Z. 

276 japonica (4/11) and green algae (1/4) were misclassified as adjacent Z. marina or no vegetation. 

277 Similarly, the red algae that did not appear in the ground-truth images were classified as Z. 

278 marina or no vegetation (Table 1). Overall accuracy and Kappa of visual interpretation data (Fig.  

279 4 B) validated by the field data were 0.786 and 0.687, respectively.

280

281 Mapping and accuracy assessment

282 The results of mapping generally agreed among the three different methods although some 

283 misidentifications were observed (Fig. 5). For example, small gaps (no vegetation) in deeper 

284 parts were not identified by the pixel-based and object-based methods. In contrast, GA in the 

285 shallower parts were overestimated by the pixel-based method. 

286

287 Accuracy assessment showed that the values of OA and K were highest for DNN, followed by 

288 the object-based, and the pixel-based methods (Table 2). K value for DNN exceeded 0.6, 

289 indicating substantial agreement, whereas that for the pixel-based methods was less than 0.2, 

290 showing poor fit. Pixel-based method showed lowest accuracy because speckles are observed 

291 overall in the result map (Fig. 5 A).

292

293 Accuracy by species, shown by the values of UA and PA, also varied greatly (Table 2). ZM, 

294 which accounted for the most significant percentage of the study area, showed the highest 

295 accuracy for every method. However, PA of the pixel-based classification of ZM (0.421) was 

296 much lower than UA (0.781), indicating overestimation. ZJ showed low accuracy in the pixel-

297 based and object-based classifications (0.020-0.403), but higher in DNN (> 0.5). ZJ mainly 

298 misclassified to ZM and NV in the pixel-based and object-based classification, and these 

299 methods could hardly discriminate seagrass species. DNN similarly misclassified ZJ to ZM and 

300 NV, but a relatively small extent. GA showed lowest accuracy for almost all the methods. The 

301 UA was highest for the object-based classification (0.733) for BA, while the PA was higher for 

PeerJ reviewing PDF | (2022:02:71175:0:1:NEW 25 Feb 2022)

Manuscript to be reviewed

diogoborgesprovete
Texto digitado
the

diogoborgesprovete
Lápis

diogoborgesprovete
Riscado



302 the pixel-based classification (0.625). NV showed higher UA than PA for all methods, indicating 

303 underestimation mainly due to misclassification to ZM.

304

305 Discussion

306 This study shows that the mapping method based on the combined use of UAV photography and 

307 DNN-based image-to-image translation is more accurate than the conventional methods, 

308 especially on species-by-species identification of seagrass and seaweed species in a multispecific 

309 seagrass bed. 

310

311 Previous studies have attempted to discriminate species of seagrass and macroalgae using 

312 satellite and aerial images (e.g., Phinn et al., (2008), Kovacs et al., (2018)). Although 

313 comparisons should be made with caution due to the difference in sites and methods, the 

314 accuracy in our study (OA: 0.818) outperforms those by other studies (OA: 0.23 and 0.28 for 

315 Phinn et al., (2008), and 0.64~0.69 for Kovacs et al., (2018)). The grain size of our seagrass bed 

316 map (8.13 mm/pix) was much higher than these previous studies (2.4 and 4 m/pix for Phinn et 

317 al., (2008), and 2~30 m/pix for Kovacs et al., (2018)), indicating that the spatial resolution was a 

318 key factor for successful classification of different plants in multispecific seagrass meadows. In 

319 this study, however, spatial extent was small (7,884 m2), covering only 0.035 % of the seagrass 

320 beds in Saroma-ko Lagoon (22.5 km2 in 2015, Hokkaido Aquaculture Promotion Cooperation 

321 2015). Linear extrapolation indicates that it would take us more than 1,000 hours (i.e. > 40 days) 

322 to cover the whole seagrass bed by this method, which is not practical considering the labor and 

323 seasonal changes in the seagrass bed.

324

325 To increase the accuracy of seagrass bed mapping, previous studies have used hyperspectral 

326 sensors aboard on satellites and aircraft for species discrimination. This is because seagrasses 

327 and seaweed species can be discriminated with different spectral reflectance as well as terrestrial 

328 plants (Fyfe, 2003). Although light-weight hyperspectral sensors that can be mounted on UAVs 

329 have been developed, they have not been widely used yet because they require complex pre- and 

330 post-flight operations for analysis (Adão et al., 2017). Furthermore, it may be difficult even with 

331 hyperspectral sensors to discriminate closely related congeneric species of seagrass which have 

332 similar characteristics of leaf color. Due to this limitation, it is more effective to develop a new 

333 discrimination method using information other than color in the visible band with UAV mounted 

334 RGB sensors, which are already used in the field of seagrass research. In this study, mapping 

335 based on the conventional classification methods using RGB showed very low overall accuracy, 

336 and especially for discriminating ZJ which were misclassified to ZM and NV. On the other hand, 

337 the mapping based on DNN showed higher accuracy than the conventional methods. This 

338 highlights the advantage of the DNN method, in which the computer can extract and use much 

339 more information than just color information from the UAV images (Albawi, Mohammed & Al-

340 Zawi, 2017). Therefore, image data with limited spectral information can be analyzed in a more 

341 sophisticated way by applying DNN. 
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342

343 In contrast to discrimination of different Zostera species, results of green algae (GA) 

344 classification were in low accuracy in all the methods. When comparing GA visually in the 

345 orthoimage of the training and validation areas, the giant patch of green algae in the validation 

346 area has a bright green color that is not seen in the training area (Fig. 6). This is due to the 

347 difference in the species composition of the GA, which is mainly Cladophora sp. in this brighter 

348 clump, and mainly darker Chaetomorpha crassa in the rest. Since these green algae were mixed 

349 in the patch, it was not easy to separate them into different classes by visual interpretation. The 

350 training data did not sufficiently cover the variability of GA, which may be the reason for the 

351 low accuracy. This indicates that even when we use DNNs, there is a limit to their versatility, 

352 and performance varies by different seagrass and seaweed species. Higher generalizability will 

353 be possible by increasing the variety of training data that sufficiently cover the variability in the 

354 study area.

355

356 It has been reported in previous studies that the salt-pepper phenomenon, defined as individual 

357 pixels classified differently from their neighbors (Yu et al., 2006). reduces the classification 

358 accuracy of pixel-based classification for high-resolution images (Feng, Liu & Gong, 2015). The 

359 salt-pepper phenomenon is caused by the internal variability within a classification class that 

360 appears as noise in the classification results. In this study, the salt-pepper phenomenon was also 

361 observed, and it is one of the factors causing the low accuracy of pixel-based classification (Fig. 

362 5). On the other hand, the results of object-based classification showed that segmentation 

363 suppressed the salt-pepper phenomenon (Fig. 5), making it a more suitable method for high-

364 resolution images. Result of DNN also showed no sand-pepper phenomenon.

365

366 In this study, we used a ground-truth image produced by visual interpretation for training data to 

367 secure the amount of training data. The machine learning algorithm used in this study, SVM, is 

368 known to be more sensitive to the quality of training data than its size (Mountrakis et al., 2011). 

369 Therefore, the training data is prepared to represent each class in the training area, and we do not 

370 need the entire ground-truth image. On the other hand, the importance of the size of training data 

371 is confirmed for DNN by the fact that data argumentation is common to improve algorithm in 

372 previous studies (Mikolajczyk & Grochowski, 2018). Therefore, the DNN method is inferior in 

373 terms of the time and effort required to prepare the training data. In this study, it took only a few 

374 hours to prepare the training data for pixel-based and object-based classification, but it took 

375 several days for the DNN method. In addition, the ground-truth images created by visual 

376 interpretation contained some errors when validated by the ground-truth data (Table 2). 

377 Currently, there are examples of underwater photo datasets available for seagrass detection (Reus 

378 et al., 2018), but there are no available datasets with labeled aerial seagrass images. Therefore, 

379 researchers applying DNNs will need to start by creating a dataset by themselves. However, it is 

380 still worth considering the application of DNN because it is expected to achieve highly accurate 
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381 mapping. Acquiring and creating ground-truth data with quality and quantity is a future 

382 challenge.

383

384 Conclusions

385 This study reports the result of a case study which apply UAVs and deep learning technique at 

386 multispecific seagrass bed. Image-to-image translation based on deep neural network could 

387 discriminate seagrass species and macroalgae, and show higher accuracy than conventional 

388 classification methods. UAVs enable easier acquisition of high spatial and temporal resolution 

389 data that was previously difficult to obtain by other remote sensing devices. DNN is especially 

390 useful when we can obtain high-resolution images by UAVs with conventional cameras with 

391 limited spectral range. Some challenges remain, such as limitation in covering wide areas for the 

392 mapping, and in labors for preparing ground truth data. Nevertheless, UAV detailed mapping at 

393 coastal area enables scientists further biological research of submerged vegetation based on 

394 spatial information.

395
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Figure 1
Methodology workflow of this study

Parallelograms, rectangles and arrows represent input/output data, data processes and data
flows, respectively
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Figure 2
Study site

(A) Study site is located at Saroma-ko Lagoon in eastern Hokkaido, Japan. (B) Black point
indicates the location of this study, black triangles show the channels connecting Saroma-ko
Lagoon to the Sea of Okhotsk. (C) Seagrass bed extent along the eastern shore of Saroma-
ko. The UAV flight area and cropped area are shown as a red rectangle, transect line is
shown as a white solid line.

PeerJ reviewing PDF | (2022:02:71175:0:1:NEW 25 Feb 2022)

Manuscript to be reviewed



Figure 3
Example of training data which contain only Zostera marina (ZM)

Pixels of ground-truth area assigned to ZM (left) is re-assigned to three subclasses (right;
ZM1, ZM2 and ZM3) by posterization.
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Figure 4
Comparisons of the orthomosaic image (A) and the ground-truth image (B)

The ground-truth image was produced by visual interpretation. A white solid line is a
boundary between training area (upper) and validation area (lower) for the different mapping
methods. ZM: Zostera marina, ZJ: Zostera japonica, GA: Green Algae, BA: Brown Alga, NV: No
Vegetation.
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Figure 5
Result of mapping by the three different methods

Maps were produced from the validation area of orthoimage by pixel-based (A), object-based
(B) and DNN (C) methods. The ground-truth data is shown in (D). Salt-and-pepper
phenomena (speckles noise) was found by the pixel-based classification. ZM: Zostera marina,
ZJ: Zostera japonica, GA: Green Algae, BA: Brown Alga, NV: No Vegetation.
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Figure 6
Comparison of GA (green algae) which was not mapped correctly at the validation area

UAV orthoimage (A), pixel-based classification (B), object-based classification (C), DNN (D)
and the ground-truth (E). In the DNN map, the most GA was misclassified as NV. ZM: Zostera

marina, ZJ: Zostera japonica, GA: Green Algae, BA: Brown Alga, NV: No Vegetation.
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Table 1(on next page)

Confusion matrix evaluating accuracy of visual interpretation based on field data

UA: User Accuracy, PA: Producer Accuracy, OA: Overall Accuracy, K: Kappa coefficient. ZM:
Zostera marina, ZJ: Zostera japonica, GA: Green Algae, BA: Brown Alga, NV: No Vegetation.
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1 Table 1: 

2 Confusion matrix evaluating accuracy of visual interpretation based on field data. 

3 UA: User Accuracy, PA: Producer Accuracy, OA: Overall Accuracy, K: Kappa coefficient. ZM: 

4 Zostera marina, ZJ: Zostera japonica, GA: Green Algae, BA: Brown Alga, NV: No Vegetation.

5 Field data

ZM ZJ GA BA RA SD total
UA

ZM 18 2 1 0 2 1 24 0.750

ZJ 0 7 0 0 0 0 7 1.000

GA 0 0 3 0 0 0 3 1.000

BA 0 0 0 1 0 0 1 1.000

RA 0 0 0 0 0 0 0 NA

SD 0 2 0 0 1 4 7 0.571

Visual interpretation

total 18 11 4 1 3 5 42

PA 1.000 0.636 0.750 1.000 0.000 0.800

OA 0.786

K 0.687
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Table 2(on next page)

Confusion matrices evaluating accuracy of different mapping methods (A: pixel-based,
B: object-based, C: DNN) based on the ground-truth data.

UA: User Accuracy, PA: Producer Accuracy, OA: Overall Accuracy, K: Kappa coefficient. ZM:
Zostera marina, ZJ: Zostera japonica, GA: Green Algae, BA: Brown Alga, NV: No Vegetation
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1 Table 2. Confusion matrices evaluating accuracy of different mapping methods (A: pixel-

2 based, B: object-based, C: DNN) based on the ground-truth data. UA: User Accuracy, PA: 

3 Producer Accuracy, OA: Overall Accuracy, K: Kappa coefficient. ZM: Zostera marina, ZJ: 

4 Zostera japonica, GA: Green Algae, BA: Brown Alga, NV: No Vegetation.

5

6

7 A

8

9

10

11

12

13

14

15

16

17 B

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Ground-truth

ZM ZJ GA BA NV Total
UA

ZM 1364 83 43 3 253 1746 0.781

ZJ 912 178 43 5 280 1418 0.126

GA 550 79 36 2 32 699 0.052

BA 33 2 1 20 39 95 0.211

Map

NV 380 100 23 2 537 1042 0.515

Total 3239 442 146 32 1141 5000

PA 0.421 0.403 0.247 0.625 0.471

OA 0.427

K 0.178

Ground-truth

ZM ZJ GA BA NV Total
UA

ZM 3137 387 124 14 691 4353 0.721

ZJ 16 9 3 1 23 52 0.173

GA 37 5 12 0 2 56 0.214

BA 3 0 0 11 1 15 0.733

NV 46 41 7 6 424 524 0.809

Map

Total 3239 442 146 32 1141 5000

PA 0.969 0.020 0.082 0.344 0.372

OA 0.719

K 0.315
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33 C

34 Ground-truth

ZM ZJ GA BA NV Total
UA

ZM 3160 145 45 9 312 3671 0.861

ZJ 11 225 6 0 149 391 0.575

GA 4 6 17 0 6 33 0.515

BA 6 0 10 16 3 35 0.457

NV 58 66 68 7 671 870 0.771

Map

Total 3239 442 146 32 1141 5000

PA 0.976 0.509 0.116 0.500 0.588

OA 0.818

K 0.618
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