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Background: Dinoflagellates of family Symbiodiniaceae are important to coral reef ecosystems because
of their contribution to coral health and growth ; however, only a few studies have investigated the
function and distribution of Symbiodiniaceae in Indonesia . Understanding the distribution of different
kinds of Symbiodiniaceae can improve forecasting of future responses of various coral reef systems to
climate change. This study aimed to determine the diversity of Symbiodiniaceae around Lombok using
environmental DNA (eDNA).

Methods: Seawater and sediment samples were collected from 18 locations and filtered to obtain
fractions of 0.4-12 and >12 um. After extraction, molecular barcoding polymerase chain reaction was
conducted to amplify the primary V9-SSU 18S rRNA gene , followed by sequencing (lllumina MiSeq).
BLAST, Naive-fit-Bayes, and maximum likelihood routines were used for classification and phylogenetic
reconstruction. We compared results across sampling sites, sample types (seawater/sediment), and filter
pore sizes (fraction).

Results: Phylogenetic analyses resolved the amplicon sequence variants into 16 subclades comprising
six Symbiodiniaceae genera ( or genera-equivalent clades ) as follows: Symbiodinium, Breviolum,
Cladocopium, Durusdinium, Foraminifera Clade G, and Halluxium. Comparative analyses showed that the
three distinct lineages within Cladocopium, Durusdinium, and Foraminifera Clade G were the most
common . Most of the recovered sequences appeared to be distinctive of different sampling locations,
supporting the possibility that eDNA may resolve regional and local differences among Symbiodiniaceae
genera and species.

Conclusions: eDNA survey s offer a rapid proxy for evaluating Symbiodiniaceae species on coral reefs
and are a potentially useful approach to revealing diversity and relative ecological dominance of certain
Symbiodiniaceae organisms. Moreover, Symbiodiniaceae eDNA analysis shows potential in monitoring
the local and regional stability of coral-algal mutualisms.
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Abstract

Background Dinoflagellates of family Symbiodiniaceae are important to coral reef ecosystems

because of their contribution to coral health and growth; however, only a few studies have

investigated the function and distribution of Symbiodiniaceae in Indonesia. Understanding the

distribution of different kinds of Symbiodiniaceae can improve forecasting of future responses of

various coral reef systems to climate change. This study aimed to determine the diversity of

Symbiodiniaceae around Lombok using environmental DNA (eDNA).

Methods Seawater and sediment samples were collected from 18 locations and filtered to obtain

fractions of 0.4—12 and >12 um. After extraction, molecular barcoding polymerase chain

reaction was conducted to amplify the primary V9-SSU 18S rRNA gene, followed by sequencing

(Illumina MiSeq). BLAST, Naive-fit-Bayes, and maximum likelihood routines were used for

classification and phylogenetic reconstruction. We compared results across sampling sites,

sample types (seawater/sediment), and filter pore sizes (fraction).

Results Phylogenetic analyses resolved the amplicon sequence variants into 16 subclades

comprising six Symbiodiniaceae genera (or genera-equivalent clades) as follows: Symbiodinium,

Breviolum, Cladocopium, Durusdinium, Foraminifera Clade G, and Halluxium. Comparative

analyses showed that the three distinct lineages within Cladocopium, Durusdinium, and

Foraminifera Clade G were the most common. Most of the recovered sequences appeared to be

Peer] reviewing PDF | (2021:09:65951:3:1:NEW 4 Aug 2022)



Peer]

39

40

41

42

43

44

45

46

47

48

49

distinctive of different sampling locations, supporting the possibility that eEDNA may resolve

regional and local differences among Symbiodiniaceae genera and species.

Conclusions eDNA surveys offer a rapid proxy for evaluating Symbiodiniaceae species on coral

reefs and are a potentially useful approach to revealing diversity and relative ecological

dominance of certain Symbiodiniaceae organisms. Moreover, Symbiodiniaceae eDNA analysis

shows potential in monitoring the local and regional stability of coral-algal mutualisms.

Subjects Marine Biology, Biodiversity, Ecology, Molecular Biology, Genetics

Keywords Coral Triangle, endosymbiotic dinoflagellate, aquatic plankton, benthic periphyton,

next-generation biomonitoring
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INTRODUCTION

Symbiodiniaceae, also known as zooxanthellae, play vital roles within their coral hosts,

such as providing energy, absorbing residual metabolites, and promoting growth (Davy,

Allemand & Weis, 2012; Purnomo, 2014). These symbionts also contribute to the adaptability

and resilience of corals to environmental change, especially ocean warming (Berkelmans & Van

Oppen, 2006; Baskett, Gaines & Nisbet, 2009; Suggett, Warner & Leggat, 2017; Claar et al.,

2020; Howells et al., 2021). Stress-tolerant Symbiodiniaceae can improve the survival of coral

colonies exposed to thermal stress (Abrego et al., 2008; LaJeunesse et al., 2010; Stat & Gates,

2011; Cunning, Silverstein & Baker, 2015; Bourne, Morrow & Webster, 2016; Hoadley et al.,

2019). Therefore, understanding the potential diversity of Symbiodiniaceae is necessary in

forecasting the future of coral reef ecosystems in different regions under a rapidly changing

climate.

Endosymbiotic dinoflagellates of family Symbiodiniaceae are extremely prevalent in

coral reef ecosystems. Symbiodiniaceae engage in mutualistic relationships with various

invertebrates, including scleractinian corals, octocorals, anemones, jellyfishes, mollusks,

sponges, flatworms, and foraminifera (Pochon et al., 2001; LaJeunesse et al., 2010, 2018;

Laleunesse,-Pochon, Putnam & Gates, 2014). A number of Symbiodiniaceag, live as aquatic

plankton and benthic periphyton, and some are associated with macroalgae and seagrasses

(Venera-Ponton et al., 2010; Takabayashi et al., 2012; Fujise et al., 2021). To date, 11 named
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genera have been classified as members of the Symbiodiniaceae family: Symbiodinium (clade

A), Philozoon (temperate clade A), Breviolum (clade B), Cladocopium (clade C), Durusdinium

(clade D), Miliolidium (foraminifera clade D), Effrenium (clade E), Freudhentalidium (clade

Fr3), Fugacium (clade Fr5), Gerakladium (clade G), and Halluxium (clade H) (LaJeunesse et al.,

2018, 2021; Nitschke et al., 2020; Pochon & Laleunesse, 2021). However, there are 16 distinct

lineages, with Foraminifera Clade G, Clade Fr2, Clade Fr4, Clade I, and Clade J representing the

undescribed genera (LaJeunesse et al., 2018; Yorifuji et al., 2021).

Indonesia is a part of the Coral Triangle (Veron et al., 2009; Gelis et al., 2021), and coral

reef ecosystems are a valuable economic resource for coastal communities across the

archipelago; however, data on the diversity of Indonesian Symbiodiniaceae are still limited (Loh

etal., 2006, Bo et al., 2011, Purnomo 2014, DeBoer et al., 2012). Previous studies about

Symbiodiniaceae from areas in the region such as the South China Sea, Thailand, Singapore,

Palau, the Philippines, and Timor-Leste, only focused on Symbiodiniaceae populations within

their host organisms. Some of the Symbiodiniaceae genera in these reports include

Symbiodinium, Breviolum, Cladocopium, Durusdinium, Gerakladium, and Fugacium (Fabricius

et al., 2004; Loh, Cowlishaw & Wilson, 2006; (Reimer & Tod. - 009); LaJeunesse et al., 2010;

Taguba, Sotto & Geraldino, 2016; Tong et al., 2018; Brian, Davy & Wilkinson, 2019). However,

little is known about Symbiodiniaceae within Indonesian waters, which is the most biodiverse

mairn¢ ¢ zion in the world.
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Symbiodiniaceae cannot be directly identified using conventional microscopy. The need

for collection and isolation from multiple locations increases the difficulty of assessing this

taxonomic group. Advances in the use of environmental DNA (eDNA) and multitaxon

sequencing techniques (metabarcoding) have allowed the study of Symbiodiniaceae communities

through the collection of environmental samples, such as water and sediment (Arif et al., 2014;

Shinzato et al., 2018; Fujise et al., 2021). The advantages of the eDNA-based approach include

ease of use, noninvasive nature, broad spatial scale, and cost effectiveness (Deiner et al., 2017).

This study aimed to develop a rapid proxy for estimating the diversity of

Symbiodiniaceae in water and sediment samples from the coral reef ecosystems around Lombok

Island in Indonesia using eDNA. We make comparisons across sampling sites, eEDNA source

(seawater/sediment), and filter pore sizes (fraction). A better understanding of the diversity and

composition of Symbiodiniaceae in Indonesian coral reefs is important for conservation and

management of marine ecosystems.

METHODS

Study sites

This study was conducted in coral reef habitats around Lombok Island, West Nusa Tenggara

Province, Indonesia. This island is the constituent of the marine ecoregion of Nusa Tenggara

(Lesser Sunda), which has a coral reef area of about 272,123 ha (Giyanto et al., 2017). The

Peer] reviewing PDF | (2021:09:65951:3:1:NEW 4 Aug 2022)


xavier
Cross-Out

xavier
Inserted Text
 enhanced


Peer]

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

western part of Lombok Island is directly adjacent to Lombok Strait and its southern part is the

Indian Ocean. The study areas were located 5-100 m from shore, with depths ranging 1-10 m

and a mean tidal range of about 1.8 m. Samples were collected from 5th to 12th July 2018 (:Hle

1.).

eDNA sample collectio

During the survey, eDNA seawater and sediment samples were collected by scuba diving from

six reef stations within each coastal area (West Lombok, East Lombok, and North Lombok).

Two samples (one seawater and one sediment) per station were collected per day from three

stations, in total, 72 samples in Lombok (Fig. 1 and Table 1, 2). The distance between the

sampling stations was at least 1500 m to avoid overlap. At each station, 4 L of seawater was

collected from the water column (~2 m above the reef substrate) as well as a sediment sample

(water + sediment in 1:1 ratio) in sterilized bottles. Before sampling, the bottle was rinsed with a

30% commercial bleach solution, followed by distilled water. The collected eDNA samples were

stored in a cool box aunu vrought to basecamp at Lombok Island as soon as possible (less than 12

hours). Each sample was filtered twice using a peristaltic pump (Fisher Scientific) through 47

mm diameter polycarbonate membrane filters (Sterlitech) with two different pore sizes: 12 pm

first and then 0.4 pum. According to Turner et al. (2014), a combination of > 0.2 um filtration

pore size and water volume enables optimal eDNA capture and maximize detection probability.
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In addition, a large pore size is required to avoid clogging the filters. The sediment samples,

were shaken first and then filtered 1-2 minutes after shaking. Each filter was cut into two, and

each half was placed in a 1.5 mL vial prefilled with DNA Shield as a preservative. At the end of

all eDNA survey activities, all the samples were transported to the Marine Biodiversity and

Biosystematics Laboratory at Bogor Agricultural (IPB) University, Indonesia, via commercial

courier and then stored at —20 °C until DNA extraction.

eDNA seawater sampling in this study was permitted within the framework of the United

States Agency for International Development—Sustainable Higher Education Research

Alliances (USAID-SHERA) program through the Centre for Collaborative Research Animal

Biotechnology and Coral Reef Fisheries of IPB University, award no. AID-497-A-16-00004. The

field research permit was issued by IPB University Rector (Surat Tugas no. 403/IT3/KP/2019).

Permits for this research were issued by the Indonesian Ministry of Research and Technology to

EB (130/E5/E5.4/S1P/2019), CL (461/SIP/FRP/ES/Dit.KI/X11/2017), and AH

(455/SIP/FRP/ES/Dit. KI/X11/2017).

DNA extraction, amplification, and sequencing

The filtered eDNA samples were extracted and amplified at the Marine Biodiversity and

Systematic Laboratory of IPB University and sequenced at the University of Rhode Island (URI)

Genomics and Sequencing Center, United States of America. DNA was extracted from the filters
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using ZymoBiomics Miniprep Kit (Zymo Research, Irvine, CA, USA) following the

manufacturer’s instructions. V9 hypervariable regions of tho-cukaryotic small sub unit (SSU)

18S ribosomal RNA (rRNA) genes were amplified using a polymerase chain reaction (PCR)

platform and prepared for 2x250 bp paired-end [llumina MiSeq sequencing (Illumina, San

Diego, CA, United States). Amplification was conducted using V9 primer set 1389F: 5'-TTG

TAC ACA CCG CCC-3" and 1510R: 5-CCT TCY GCA GGT TCA CCT AC-3' (Amaral-Zettler

et al., 2009; Stoeck et al., 2010), Illumina adapters, linker sequences, index, and pad (Kozich et

al., 2013). The PCR profile used was as follows: 3 min at 94 °C, followed by 35 cycles of 94 °C

for 45 s, 48 °C for 30 s, and 72 °C for 30 s, and a final extension at 72 °C for 5 min. Each 49 puL

of PCR reaction comprised 25 pL of MyTM HS red mix (Bioline Ltd., London, UK), 1 uL of

(10 uM) forward primer, 1 uL of (10 uM) reverse primer, and 1 pL. of DNA template. The final

volume was adjusted to 49 pL using ddH2O. 1x reaction was 0.2 pM. The PCR product was

checked via the electrophoresis final master mix concentration in 1% reaction was 0.8%, and the

final primer concentration in of 5 puL of aliquots on 1% agarose gel in 0.5X TBE buffer. Library

preparation and sequencing were performed at URI. A second PCR was performed to add the

dual indices and Illumina sequencing adapters from the TruSeq PCR-Free LT kit to the target

amplicons, using Kapa HotStart HiFi 2x ReadyMix DNA polymerase (Kapa Biosystems Ltd.,

London UK). The PCR profile used was as follows: initial denaturation at 95 °C for 3 min,

followed by 9 cycles of 95 °C for 30 s and 55 °C for 30 s, and final extension at 72 °C for 5 min.
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The presence and length (bp) of the PCR product or amplicon were tested by electrophoresis.

Successful amplicons were then purified using paramagnetic Kapa pure beads (bead-to-sample

volumetric ratio in 1.6:1). A Qubit fluorometer with Qubit dsDNA HS Assay reagent

(Invitrogen, California, US) was used to quantify all libraries. The prepared samples were

combined in equal concentrations and then pooled with a 20% denatured and diluted PhiX

[llumina control library. The final pooled library was sequenced on an Illumina MiSeq with the

MiSeq v2 500-cycle kit (Illumina, San Diego, CA, United States). After quality checking, only

41 out of 72 samples were found to be of sufficiently high quality for sequencing (Table 2). The

low quality of some libraries may be due to eDNA degradation during sample transport and

extraction.

Data processing and bioinformatic analyses

The obtained forward and reverse raw sequence data were converted to demultiplexed fastq files

(see additional information on data availability). The sequence read quality was checked using

FastQC v.0.11.8 (https://www.bioinformatics.babraham.ac.uk) at each analysis step. Cutadapt

v.1.18 (Martin, 2011) was used to trim the reverse and forward primer sequences and remove

short reads with lengths < 100 bp and low quality reads with a Phred Q score of < 20.

Qiime2.2019.10 pipeline (Caporaso et al., 2010; Bolyen et al., 2019) was employed for further

data processing. DADA2 v.2018.11.0 (Callahan et al., 2016) (via q2-dada2) was applied for
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denoising, joining denoised paired-end reads, filtering out chimeric sequences and singletons,

and dereplicating sequences to produce amplicon sequence variants (ASVs). Owing to the high

quality of the sequences obtained after Cutadapt procedure, trimming and truncating were not

performed during DADA?2 processing.

ASYV identification

Symbiodiniaceae species were identified from the eDNA sequences by classifying all ASVs

(Supplemental File S1) using the q2-feature-classifier (Bokulich et al., 2018) classify-sklearn Fit-

Naive Bayes taxonomy classifier against the 18S NR SILVA (release 123 Qiime compatible)

97% and 99% OTU reference sequences (https://www.arb-silva.de/download/archive/giime/).

Stoeck et al. (2010) showed the differential increase in, diversity detected when, the V9 dataset is

clustered at 97%, 98%, 99%, and 100% sequence similarity for the minimum expected error rate.

Putative Symbiodiniaceae ASVs were then filtered from the obtained eukaryote taxonomy table

(Supplemental File S2) (Table 3) and then assessed using the NCBI BLAST routine by selecting

the best hit at >95% identity in the nr/nt database of NCBI (https://www.ncbi.nlm.nih.gov/,

accessed on 1/19/2020, version 2.11.0). The BLAST results (Supplemental File S3) were

evaluated, and reference sequences (accessions) were selected for further analyses. Additional

SSU 18S Symbiodiniaceae reference sequences (accessions) representing several families in the

order Suessiales, family Symbiodiniaceae were obtained from the NCBI database and the V9-
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SSU 18S sequence reference database of TARA Ocean Expedition (Decelle et al., 2018) and Loh

et al. (2006). The final compiled reference sequence database (Supplemental File S4) contained

82 sequences. These reference sequences and the putative Symbiodiniaceae ASVs from the

samples were then aligned with MAFFT v.7 (Katoh & Standley, 2013) (via q2-alignment),

followed by masking (Rajan, 2012). A phylogenetic tree representing the evolutionary

relationships of Symbiodiniaceae members was constructed using the maximum likelihood

approach in the IQ-TREE v.1.6.12 (Nguyen et al., 2015) (via q2-phylogeny) with 1000

bootstraps. These parameters were adopted to calculate the phylogenetic branch support scores

from Shimodaira and Hasegawa approximate likelihood ratio test (SH-alrt) with local bootstraps

(Ibt), Bayesian (abayes), and ultrafast bootstraps (ufboot). Detailed explanations for these scores

are provided in the IQ-TREE documentation (Minh et al., 2021). The best-fit substitution model

TIM3 + F + R3 was chosen according to the Bayesian Information Criterion by ModelFinder

applied in IQ-TREE (Kalyaanamoorthy et al., 2017). The Symbiodiniaceae taxonomic

nomenclature was adopted from LaJeunesse et al. (2018). The term subclade was used instead of

species because the 18S short eDNA sequence cannot be resolved to species-level for

Symbiodiniaceae.

Statistical analyses
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The relative abundance data for the putative Symbiodiniaceae taxa (Supplemental File S5) were

from DADAZ2 results and used as input for Venn diagram and statistical analyses. Venn diagram

analyses were performed using the online application in

http://bioinformatics.psb.ugent.be/webtools/Venn/ to compare the Symbiodiniaceae individuals

across different locations (coastal area), eDNA source (seawater and sediment samples), and

fractions (filter pore size). We determined the most commonly distributed subclades and

distinctive subclades to each location/station. Statistical analyses were used to compare

Symbiodiniaceae abundance, diversity, and features observed across different sites, sample

types, and fractions. All these statistical analyses were carried out on Qiime2.2019.10 pipeline

(Caporaso et al., 2010; Bolyen et al., 2019). Alpha diversity (observed features and Shannon’s

entropy) and beta diversity (Bray—Curtis dissimilarity) were estimated using q2-diversity after

the samples were rarefied (subsampled without replacement) to 28 sequences per sample. The

comparison of all samples were grouped by location, eDNA source, and fraction to examine

differences in abundance and alpha diversity employing the Kruskal-Wallis test (Kruskal &

Wallis, 1952 and beta diversity applying the Permanova test (Anderson, 2001) using 9999

permutations.

RESULTS
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Obtained sequences, ASVs, and eukaryote classification

From the 72 samples across 18 stations, DNA was successfully extracted from 41 samples at 16

stations, yielding a total of 3,168,655 raw sequences and about 30,205-240,604 sequences per

sample (Table 2 and Fig. S1). DADA?2 yielded a total of 20,486 ASVs (Supplementary File S1).

The mean length of the obtained sequences was 127.81 £ 22.03 bp. The ASV classification

demonstrated the potential diversity of eukaryotes in the reef waters of Lombok Island.

According to the total ASVs classified to taxon level 4 from the SILVA database, the dominant

taxon was unclassified eukaryotes (43.35%), followed by Metazoa (9.47%), Ochrophyta

(7.83%), Dinoflagellates (4.5%), and Discicristata (4.4%) (Fig. 2).

Symbiodiniaceae detection and classification

Table 3 summarizes the results of Symbiodiniaceae classification performed using a Eukaryote

classifier (Supplemental File S2) and BLAST (Supplemental File S3) and phylogenetic analyses.

The probabilistic classifier detected and classified the Symbiodiniaceae taxa at the family level.

Twenty-two ASVs (named OTU.sym1 to OTU.sym22) were found to be putative

Symbiodiniaceae with confidence levels ranging 0.743—-0.999 (Table 3). BLAST results

indicated that some ASVs were neither Symbiodiniaceae nor classified at the genus level. A

partial phylogenetic reconstruction of the families in order Suessiales was conducted using the
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reference sequences obtained from the searched databases (Supplemental File S4) and the

putative Symbiodiniaceae ASV sequences from the study (Fig. 3A). Only 16 out of the 22 ASVs

were identified as members of the monophyletic group of the Symbiodiniaceae family clade on

the basis of the score of 100/100/1/99 for SH-alrt/Ibt/abayes/ufboot. Three of the six remaining

ASVs were categorized in the clades representing genera in Family Suessiaceae, two ASVs were

in the Yihiella clade (OTU.sym11 and OTU.sym13), and one was in the Ansanella clade

(OTU.sym20). The remaining three ASVs were designated to the Suessiaceae family but were

not classified at the genus level (OTU.sym3, OTU.sym9, and OTU.sym14).

The Symbiodiniaceae family branch (Fig. 3B) comprised six clades, each representing

one genus with strong-to-moderate support (see the scores in Table 3 and Fig. 3). This

phylogenetic topology is concordant with the Symbiodiniaceae phylogeny reconstructed by

Decelle et al. (2018). One ASV was allocated to each of clades Symbiodinium (A.sym21),

Breviolum (B.sym18), Foraminifera Clade G (G2.sym4), and Halluxium (H.sym12). Eight ASVs

were designated to Cladocopium (C.syml, C.sym5, C.sym7, C.sym8, C.sym10, C.sym15,

C.syml6, and C.sym17), and four ASVs allocated to Durusdinium (v 1.sym2, D1.sym6,

Dl1.syml9, and D1.sym22).

Symbiodiniaceae distribution and diversity
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Venn diagrams show the overlap of the 16 ASVs belonging to Symbiodiniaceae according to

location (Fig. 4A) and sample type (media and fractions) (Fig. 4B) (see also Supplemental file

S6). The presence/absence table shows the Symbiodiniaceae proportion per subclade by site—

sample type—filter pore size combination (Table 4 and Supplemental file S7). This table

illustrates the common and unique subclades of Symbiodiniaceae. The unique subclades were the

sequences distinctive of sampling location, medium, and fraction. Three subclades were most

common (C.syml, D1.sym2, and G2.sym4), and the remaining subclades were unique (Table 4).

The unique subclades (< 11.11% of subclade presence in all samples) showed site- or sample

type-specificity. C.sym1 was the most common (77,78%) and was detected at more sites—media—

fractions than D1.sym2 (44.44%) and G2.sym4 (33.33%). In term of medium, the sediment

samples yielded more Symbiodiniaceae subclades than seawater (12 vs. 7 subclades), with nine

unique ASVs found in the sediment medium.

On the basis of Symbiodiniaceae relative abundance, genus Cladocopium was the most

dominant (Fig. 5). In general, the Symbiodiniaceae communities of Lombok were characterized

with low alpha diversity and high beta diversity (Fig. 6). However, comparison of

Symbiodiniaceae abundances, observed features, and diversity does not show significant

difference between locations, media, and fractions (see Supplemental file S8).

DISCUSSION
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The results illustrate the potential of eDNA to detect Symbiodiniaceae. The eDNA of

Symbiodiniaceae can be obtained from different sources including free-living Symbiodiniaceae

(Hirose et al., 2008; Littman, van Oppen & Willis, 2008) and Symbiodiniaceae living in

symbioses with various host organisms (Freudenthal, 1962; Loh et al.,2006; Barneah et al., 2007;

LaJeunesse et al., 2010, 2018; Pochon & Gates, 2010; DeBoer et al., 2012; Pochon, Putnam &

Gates, 2014; Ramsby et al., 2017). Additionally, these eDNA sources could come from within

and outside the sample site (Goldberg et al. 2016). Symbiodiniaceae DNA could be obtained

from prey organism feces and through the shedding of host cells in the water and sediment (Rees

et al., 2014; Grupstra et al., 2021).

The SSU 18S rRNA gene primer set has long been used in the biomolecular studies of

Symbiodiniaceae (Rowan & Powers, 1991; Loh, Cowlishaw & Wilson, 2006). Hypervariable

regions V4 and V9 isolated and then amplified by the SSU 18S rRNA gene universal primer,

were successful in detecting and identifying Symbiodiniaceae from water samples (Stoeck et al.,

2010). This study used the same V9-SSU 18S rRNA gene primer set for oceanic planktonic

Symbiodiniaceae by the Ocean TARA Expedition. The substitutions in the hypervariable

terminal loop region amplified by this primer, allowed us to distinguish Symbiodiniaceae genera

and subclades (Decelle et al., 2018). Other primers such as ITS, LSU 288, and chloroplast

primers can be used to provide high taxonomic resolution for Symbiodiniaceae (Venera-Ponton
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et al., 2010; Takabayashi et al., 2012; Arif i ' 1., 2014). Nevertheless, this study succeeded in

detecting and identifying Symbiodiniaceae at the genus level.

The use of universal eukaryote primers with eDNA samples can reveal information on

the rich diversity of marine life and compensate for the high cost of next-generation sequencing

(Smart et al., 2016; Balint et al., 2018). Universal primers allow us to broadly look at the system

and complete more than a single study using the same data (Madduppa et al., 2021). The lack of

field blanks (non-reef sampling areas) and filter blanks (distilled water or sterile seawater

samples), might influence our study results. Lack of control/blanks can lead to contamination of

the eDNA source, or false-positive data. However, the comparitive analyses across the given

samples allowed the evaluation of the possibility of exogenous and local eDNA sources.

Moreover, the presence of contaminant DNAs was likely suppressed by rinsing the instruments

(e.g., bottle samples and filtering tools) with bleach to make them as sterile as possible.

To the authors’ knowledge, this work is the first study of Symbiodiniaceae using eDNA in

Indonesia and Southeast Asia. Symbiodiniaceae in the Southeast Asia region have been identified

from scleractinian stony corals, sea slugs, giant clams, and other bivalves, sea anemones, sponges,

zoantharians, antipatharian black corals, and Heliopora blue corals. At least seven

Symbiodiniaceae genera have been discovered in Southeast Asia (Table 5). Various primers, such

as nuclear primers, mitochondrial organelle primers, and chloroplast primers, and a range of

molecular techniques such as single stranded conformational polymorphism, restriction fragment
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length polymorphism, and denaturing gradient gel electrophoresis, have been used in the

identification and characterization of the genetic diversity of Symbiodiniaceae in the region but

did not detect as many genera as the present study did (see Table 5). No report was found about

the genus Effrenium and Clade I in Southeast Asia. However, clade E (AF238261.1) in our

phylogeny (Fig. 3) was assigned to clade D1 by Kimes et al. (2013). E. voratum is \he only species

from Effrenium that was previously described and is only found in temperate waters (Jeong et al.,

2014). LaJeunesse et al. (2012) predicted that the Southeast Asia region might have a higher

diversity of Symbiodiniaceae species than other regions in the world. Previous and current findings

supports this prediction (Loh et al., 2006; Bo et al., 2011; DeBoer et al., 2012; Purnomo 2014).

Therefore, other under-sampled coral reef areas in Indonesia should be further explored.

The detected Symbiodiniaceae in the study sites are probably coral endosymbionts. Some

species of Symbiodinium, Breviolum, Cladocopium, and Durusdinium are the main coral

endosymbiont genera, and species of Fugacium and Gerakladium are rare endosymbionts in

corals (LaJeunesse et al., 2010; Rouzé et al., 2017). The main coral endosymbionts, especially in

Indo-Pacific, are species of Cladocopium and Durusdinium; meanwhile members Symbiodinium

and Brevolium are common in corals in the Caribbean (Baker, 2003; LaJeunesse et al., 2004,

2010; LaJeunesse, 2005; Stat & Gates, 2011). Many members of Cladocopium (e.g., ITS2

subclade C1) generally have high rates of carbon fixation, provide a high fitness benefit,

translocate high amounts of carbon to host corals, and positively impact host coral growth rates.
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By contrast, some species of Durusdinium tend to be opportunistic, even though they can help

corals to survive or quickly recover from bleaching when sea surface temperatures rise (Stat,

Morris & Gates, 2008; Stat & Gates, 2011; Lesser, Stat & Gates, 2013; Bay et al., 2016).

This study detected the three most common subclades, namely C.sym1, D1.sym2, and

G2.sym4. These subclades may represent the most common species or types of

Symbiodiniaceae. BLAST results showed that C.Sym1 was similar to C. goreaui (99.24%),

formerly clade C type C1, which is a generalist Symbiodiniaceae found in many coral hosts in

the Great Barrier Reef (LaJeunesse, 2005; Bongaerts et al., 2015). The sequence of D1.sym2

detected by BLAST has 100% sequence similarity with the molecular marker of D. trenchii, a

Symbiodiniaceae species that increases the tolerance of corals to bleaching stress (Stat & Gates,

2011). Previous studies have suggested the importance of a minimum density of D. trenchii as a

minority component alongside a dominant endosymbiont from the genus Cladocopium in the

Symbiodiniaceae community within a coral colony (Bay et al., 2016). However, Swain et al.

(2017) found that each genus of Symbiodiniaceae has the potential for heat-resistant species or

variants. For example, C. thermophilum is a thermotolerant variant of Cladocopium type C3

(Hume et al., 2015).

This study fully resolved the ASV of subclade G2.sym4 within the Foraminifera Clade G

(formerly clade G type G2). This genus can be isolated from the foraminifera, particularly in

Subfamily Soritinae (Pochon et al., 2007). Bo et al. (2011) also isolated a subclade close to type
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G2 from Indonesian octocorals. Foraminifera Clade G is a common endosymbiotic

Symbiodiniaceae in sponges, such as bio-eroding sponge (Cliona orientalis) in Australia

(Schonberg & Loh, 2005; Ramsby et al., 2017). However, G2.sym4 appears to be a common

type and is also found in the sediment samples. Therefore, this subclade may be an

endosymbiont of benthic foraminifera. Foraminifera communities around Lombok are diverse,

widely distributed, and present in the seabed in shallow coastal waters around the island

(Auliaherliaty, Dewi & Priohandono, 2004; Natsir, 2009, 2010; Dewi et al., 2012). However, no

studies of foraminifera endosymbiotic Symbiodiniaceae in Indonesia have been published.

The detected Halluxium in this study is the first record in the Southeast Asia region. To

date, Halluxium has only been found in Guam, Heron Island (Great Barrier Reef, Australia), and

the Caribbean (Pochon, LaJeunesse & Pawlowski, 2004; Pochon et al., 2007; Nitschke et al.,

2020). This genus and Clade I are generally foraminifera-specific endosymbionts. Meanwhile,

Breviolum or Effrenium species living as foraminifera endosymbionts have never been reported

(Pochon & Pawlowski, 2006; Pochon & Gates, 2010).

The richer Symbiodiniaceae subclades in sediment than in seawater indicate the potential

occurrence of benthic Symbiodiniaceae. These Symbiodiniaceae can have important implications

for the coral reef ecosystems of Lombok. The benthic sediment can be a source of free-living

Symbiodiniaceae that live outside the host (Hirose et al., 2008; Littman, van Oppen & Willis,

2008; Fujise et al., 2021). Some of these can (re-) establish stable host—algal mutualisms
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(transient free-living), and others are true free-living, such as E. voratum (Yamashita & Koike,
2013; Jeong et al., 2014). Some transient free-living Symbiodiniaceae can come from expelled
coral endosymbionts. Corals regularly expel some of their endosymbionts into the seawater
column (Fujise et al., 2014), most of which are deposited in sediments. The other source of
transient free-living Symbiodiniaceae is reef fishes. Corallivorous, detritivorous, and herbivorous
fishes can contribute to the release and distribution of transient free-living Symbiodiniaceae in
their habitat through their feces (Castro-Sanguino & Sanchez, 2012; Grupstra et al., 2021). The
availability of such Symbiodiniaceae in the environment is essential. During larval stage and/or
recruitment time, most corals horizontally obtain transient free-living Symbiodiniaceae from the
nearby environment (Coffroth et al., 2006; Fujise et al., 2021). The presence of such
Symbiodiniaceae can also influence juvenile coral survival (Suzuki et al., 2013).

This study found that 13 of the 16 subclades were distinctive of different sampling
locations. These subclades may represent the species or types of Symbiodiniaceae originating
from local sources. Environmental genetic materials are prone to degradation (Barnes & Turner,
2016), so they tend to accumulate around the source. Therefore, eDNA is representative of the
local biotic genetic material. Shinzato et al. (2018) showed the feasibility of studying nearby
coral species and their symbiotic algae detection using eDNA; therefore, it might also be used to

monitor coral ecosystem health. However, such data must be carefully interpreted because of

Peer] reviewing PDF | (2021:09:65951:3:1:NEW 4 Aug 2022)



Peer]

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

some issues regarding the possible sources of eDNA from outside the sample site due to

biological factors and human activities (Goldberg et al., 2016).

The eDNA method also has some limitations, such as the dependence on the presence

and concentration of eDNA in the water sample, capture efficacy, extraction efficacy, sample

interference (e.g., inhibition), and assay sensitivity (see Goldberg et al., 2016). Seawater eDNA

samples can degrade beyond the detection threshold within 1 day to weeks (Dejean et al., 2011;

Thomsen et al., 2012). Water quality conditions, such as high temperatures, neutral pH, and

moderately high UV-B, tend to increase the eDNA degradation rate (Strickler, Fremier &

Goldberg, 2014). However, the degradation rate of eDNA in aquatic environments is different

from that in sediments. The nature and proportion of minerals, organic substances, and charged

particles adsorbing eDNA fragments influence the rate of eDNA degradation in sediments and

protect them from further destruction. A previous study showed that the degradation rate of

eDNA in sediment is about 57 times slower than that in seawater (Torti, Lever & Jorgensen,

2015; Turner, Uy & Everhart, 2015; Sakata et al., 2020). Limited information is available

regarding the factors that influence the rate of symbiont DNA shed by coral reef taxa and

maintained in the water column over spatial scales.

CONCLUSIONS
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This study demonstrates that eDNA surveys can describe the potential diversity of

Symbiodiniaceae in the reefs around Lombok. Six genera (or genera-equivalent clades) of

Symbiodiniaceae were identified. eDNA survey has higher sensitivity than traditional methods

and thus offer a rapid proxy for evaluating Symbiodiniaceae communities across different coral

reefs. This approach can also be used to enhance the understanding of the diversity and relative

ecological dominance of certain Symbiodiniaceae members. Moreover, the presence of

distinctive Symbiodiniaceae individuals in different locations support the potential application of

eDNA for monitoring the local and regional stability of coral-algal mutualisms. Further

confirmation through isolation from a variety of sources (including possible hosts) and

microscopic observations is warranted to strengthen the evidence for local eDNA sources.
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Figure 1

Manuscript to be reviewed

Map of the research sites around Lombok Island, Indonesia.

(A) West Lombok, (B) North Lombok, and (C) East Lombok.
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Figure 2

Proportion of Eukaryote taxa.

Based on the total ASVs of taxon level 4 out of 15 taxon levels according to the SILVA

database ( https://www.arb-silva.de/).
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Figure 3

Maximum likelihood phylogenetic tree based on V9-18S rRNA gene for Order Suessiales
(A) and Family Symbiodiniaceae (B).

(A) Phylogeny of families in Order Suessiales. ASVs from this study (OTU.sym1-0OTU.sym22)
are shown in bold black font, and the branch support values represent the multi scores of SH-
alrt/Ibt/abayes/ufboot. Top: Motile stage of Symbiodinium natans and coccoid form of
Symbiodiniaceae (source: LaJeunesse, 2020), Middle: Ventral view of Borghiella dodgei
(source: Pandeirada, Craveiro & Calado, 2013), Bottom: Ventral view of Polarella glacialis
(source: Montresor et al., 2003). (B) Phylogeny of genera in Family Symbiodiniaceae. ASVs
are shown in bold black, and red circles represent branch support scores >50 in SH-alrt.
Phylogenetic reconstruction was performed in IQ-TREE and visualized with iToL (

https://itol.embl.de/ ).
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Figure 4

Venn diagram of Symbiodiniaceae subclades around Lombok by: (A) coastal area and
(B) method (sample type-filter pore size combination).

Sample labels: sea = seawater sample; sed = sediment sample; 0.4 and _12 indicate the

pore size of the filter (in um).

East Lombok North Lombok

A West Lombok
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Figure 5

Composition of the relative abundance of Symbiodiniaceae communities across different
sites, sample types, and fractions.

Relative abundance based on the total presence of ASV frequencies. Bar graphs represent
the total percent abundance of Symbiodiniaceae detected from all samples. Sample labels:
sea = seawater sample; sed = sediment sample; 0.4-12 um and >12 indicate the pore size

of the filter (in um) sample.
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Figure 6

Total diversity of Symbiodiniaceae in coral reefs waters around Lombok Island: (A) alpha
diversity and (B) beta diversity.

Alpha diversity is indicated by Shannon index and beta diversity is represented by Bray-
Curtis (BC) dissimilarity. Boxplots display the median as the midline, and the upper and lower
quartiles as the top and bottom lines of the boxes, respectively. Crossing symbols indicate

the mean, and circles denote the outliers.
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Table 1l(on next page)

Coordinates of sampling stations at each coastal area around Lombok Island, Indonesia.
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. % Position
Coastal area Station Date Depth (m) South East
East Lombok Gili Sulat 01 5 July 2018 <1 08°19.069' 116°42.355'
Gili Lawang 6 July 2018 1.2 08°17.833' 116°41.290'
Gili Sulat 02 5 July 2018 > 10 08°18.900' 116°43.519'
Gili Sulat 03 5 July 2018 <1 08°18.574' 116°42.767'
Gili Petagan 6 July 2018 2.8 08°24.698' 116°45.324'
Gili Kondo 6 July 2018 <1 08°26.572' 116°44.016'
North Lombok  Gili Trawangan 01 11 July 2018 8.46 08°21.253' 116°01.505'
Gili Air 12 July 2018 <1 08°21.854' 116°04.369'
Gili Trawangan 02 11 July 2018 1.4 08°20.271" 116°02.280
Gili Meno 11 July 2018 > 10 08°20.852' 116°03.077'
Tanjung Sire 01 12 July 2018 4.8 08°21.455' 116°06.506'
Tanjung Sire 02 12 July 2018 8.3 08°22.001" 116°05.840'
West Lombok Gili Nanggu 8 July 2018 <1 08°42.887' 116°00.362'
Gili Rengit 9 July 2018 <1 08°43.114' 115°55.135'
Gili Golek 9 July 2018 <1 08°44.967' 115°53.405'
Gili Gede 9 July 2018 <1 08°44.045' 115°54.945'
Tanjung Bunutan 01 8 July 2018 > 10 08°43.693' 116°02.848'
Tanjung Bunutan 02 8 July 2018 > 10 08°43.039' 116°02.363'
Notes:

BSOS S

* In lowest low water level (LLWL) based on Hydrographic and Oceanographic Center, The Indonesian
Navy (2007) and mean tidal range is 187 cm.
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Table 2(on next page)
Successfully amplified eDNA samples by sample type and filter pore size.

EB356-EB396 are the sample codes; n.a. (not available) indicates the eDNA samples were

not successfully amplified; red font indicates Symbiodiniaceae were detected.
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Location Station Seawater fraction Sediment fraction
04-12pm >12pum 04-12um  >12 um
East Lombok Gili Sulat 1 n.a. EB356 EB357 EB358
Gili Lawang EB367 EB368 EB369 EB370
Gili Sulat 2 EB359 EB360 EB361 EB362
Gili Sulat 3 EB363 EB364 EB365 EB366
Gili Petagan n.a. EB371 EB372 EB373
Gili Kondo n.a. EB374 EB375 EB376
West Lombok Gili Nanggu n.a. n.a. EB377 n.a.
Gili Rengit n.a. n.a. EB379 n.a.
Gili Golek n.a. n.a. EB380 EB381
Gili Gede EB382 n.a. EB383 n.a.
Bunutan 1 n.a. n.a. EB378 n.a.
Bunutan 2 n.a. n.a. n.a. n.a.
North Lombok Gili Trawangan 1 EB384 EB385 EB386 EB387
Gili Air EB396 n.a. n.a. n.a.
Gili Trawangan 2 EB388 EB389 EB390 EB391
Gili Meno EB392 EB393 EB394 EB395
Tanjung Sire 1 n.a. n.a. n.a. n.a.
Tanjung Sire 2 n.a. n.a. n.a. n.a.
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Table 3(on next page)

Summary of Symbiodiniaceae classifications.

ASVs were classified using a probabilistic Bayesian method referring to SILVA database at similarities of
97% and 99%, NCBI database BLAST routine, and phylogenetic reconstruction.

Notes: 1 In SILVA 97%, OTU.sym13 was classified as Symbiodinium, but in SILVA 99%, OTU.sym13 and
OTU.sym11 were classified as Polarella. Therefore, the further analysis considered Polarella as possibly
belonging to the Symbiodiniaceae. 2 According to Decelle et al. (2018). 3 Non BLAST result. 4 Nearest
subclade branch (see Fig. 3). * Reference database. ** Confidence level. *** Percentage identity.
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Methods — Fit-Classifier-Naive Bayes BLAST Phylogenetics
DB Ref.* — (Sgl;“ 8\:91;% ) Conf. rates** Accession no.  NCBI* %]I1d.*** | Genera/subclades Scores: SH-alrt/Ibt/abayes/ufboot
OTUs
OTU.syml Symbiodinium 0.999410455 | KC816641.1 Cladocopium sp. clade C 100 | Cladocopium/C.syml 93.2/90.8/1/69
OTU.sym2 Symbiodinium 0.823380237 | AY165766.1 Symbiodinium sp. ex P. briareum/D1? 100 | Durusdinium/D1.sym2 84.5/79.8/0.875/62
OTU.sym3 Symbiodinium 0.890746449 | EF526860.1 uncultured marine Eukaryote 99.24 | Unclassified Suessiaceae/OTU.sym3 100/100/1/100
OTU.sym4 Symbiodinium 0.78273645 | MH702366 CladeG2_V9 72213 Formaninifera Clade G/. G2.sym4 54.8/64.4/0.838/63
OTU.sym5 Symbiodinium 0.768964536 | AB085912.1 Cladocopium sp.3 Cladocopium/C.sym5 93.2/90.8/1/69
OTU.sym6 Symbiodinium 0.993577182 | AF238261.1 Symbiodinium sp. clade E/D1? 99.24 | Durusdinium/D1.sym6 84.5/79.8/0.875/62
OTU.sym7 Symbiodinium 0.995164623 | KC816641.1 Cladocopium sp. clade C 99.24 | Cladocopium/C.sym7 93.2/90.8/1/69
OTU.sym8 Symbiodinium 0.999188819 | AF238258.1 Symbiodinium sp. type C 99.24 | Cladocopium/C.sym8 93.2/90.8/1/69
OTU.sym9 Symbiodinium 0.82770918 | KP404862.1 uncultured Eukaryote? Unclassified Suessiaceae/OTU.sym9 94.9/96.6/1/91
OTU.sym10 Symbiodinium 0.925078226 | AB085912.1 Cladocopium sp.3 Cladocopium/C.sym10 93.2/90.8/1/69
OTU.syml1 Symbiodinium' 0.998952834 | LN898222.1 Yihiella yeosuensis 100 | Yihiella/OTU.sym11 83.5/80.5/0.963/79
OTU.sym12 Symbiodinium 0.991677932 | MH702343.1 Symbiodinium sp. clade H 97.71 | Halluxium/H.sym12 89.2/87/0.964/83
OTU.sym13 Symbiodinium' 0.942758624 | LN898222.1 Yihiella yeosuensis 99.24 | Yihiella/OTU.sym13 83.5/80.5/0.963/79
OTU.syml14 Symbiodinium 0.890990315 Incertae Sedis Unclassified Suessiaceae/OTU.sym14 68/62.4/0.43/91
OTU.syml5 Symbiodinium 0.999046044 | KC816642.1 Cladocopium sp. clade C 99.24 | Cladocopium/C.syml15 93.2/90.8/1/69
OTU.syml16 Symbiodinium 0.999527293 | HM067612.1 Symbiodinium sp. 2-125/CladeC? 99.24 | Cladocopium/C.sym16 93.2/90.8/1/69
OTU.sym17 Symbiodinium 0.987978975 | MMETSP1371  Symbiodinium C153 Cladocopium/C.sym17 93.2/90.8/1/69
OTU.syml8 Symbiodinium 0.997997906 | LK934670.1 Breviolum minutum 99.24 | Breviolum/B.syml8 100/100/1/99
OTU.sym19 Symbiodinium 0.994027696 | AF238261.1 Symbiodinium sp. clade E/D1? 99.24 | Durusdinium/D1.sym19 84.5/79.8/0.875/62
OTU.sym20 Symbiodinium 0.742593275 | LC361448.1 Ansanella natalensis 98.47 | Ansanella/OTU.sym20 26.8/54.4/0.465/52
OTU.sym21 Symbiodinium 0.978735399 | AB085913.1 Cladocopium sp.? Symbiodinium/A.sym21 100/100/1/100
OTU.sym22 Symbiodinium 0.977772371 | AY165766.1 Symbiodinium sp. ex P. briareum/D1? 100 | Durusdinium/D1.sym22 84.5/79.8/0.875/62
Notes:

1 In SILVA 97%, OTU.sym13 was classified as Symbiodinium, but in SILVA 99%, OTU.sym13 and OTU.sym11 were classified as Polarella.

cONOULTPEWNE

Therefore, the further analysis considered Polarella as possibly belonging to the Symbiodiniaceae.
2 According to Decelle et al. (2018).

3 Non BLAST result.

4 Nearest subclade branch (see Fig. 3).

* Reference database

** Confidence level
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Table 4(on next page)

List of Symbiodiniaceae proportion per subclade based on present/absent analysis by
site-sample type-filter pore size combination.

Symbiodiniaceae types considered as “common” were =33.33% in the presence of all
sample combinations, and unique were <33.33% in the presence of all sample combinations.
Sample label: ESea0.4 indicate site-sample type-filter pore size combination of East

Lombok Sea Water 0.4-12 um; ESeal2: East Lombok Sea Water >12 um; ESed0.4: East
Lombok_Sediment 0.4-12 um; ESed12: East Lombok Sediment >12 um; NSea0.4: North
Lombok _Sea Water_0.4-12 uym; NSeal2: North Lombok_Sea Water_>12 um; NSed0.4: North
Lombok _Sediment_0.4-12 um; NSed12: North Lombok_Sediment_>12 um; WSed0.4: West
Lombok_Sediment 0.4-12 um.
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Intersection inter site-sample type-fraction Proportion per Total Subclades Type
subclade (%)
ESea0.4/Esed0.4/Esed12/NSea0.4/NSed0.4/NSed12/WSed0.4 77.78 1 C.syml  Common
ESeal2/ESed12/NSea0.4/NSed0.4 44.44 1 Dl.sym2 Common
ESeal2/Esed0.4/NSed0.4 33.33 1 G2.sym4 Common
ESea0.4 11.11 1 C.syml6  Unique
ESeal2 11.11 1 Dl.sym6  Unique
ESed0.4 11.11 3 C.sym7  Unique
11.11 C.syml17  Unique
11.11 C.syml10  Unique
ESed12 11.11 1 C.sym8  Unique
NSea0.4 11.11 1 Dl1.sym19 Unique
NSeal2 11.11 1 H.syml12  Unique
NSed0.4 11.11 3  Dl.sym22 Unique
11.11 C.syml5  Unique
11.11 B.syml18  Unique
WSed0.4 11.11 2 A.sym21  Unique
11.11 C.sym5  Unique
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Table 5(on next page)

Comparison of Symbiodiniaceae studies in Indonesia and Southeast Asia region.
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Geographic scope  Sample type(s) Identification Genera Reference(s)
Method(s)
Indonesia:
Sulawesi Sea slugs (Pteraeolidia SSU 18S rRNA, LSU  Cladocopium, Loh et al. 2006
ianthina) 28S rRNA, Single Durusdinium
Stranded
Conformational
Polymorphism (SSCP)
West Sumatra Anthipatharian black corals ITS2 rRNA, LSU 28S  Gerakladium Boetal. 2011
(Cirrhipathes sp.) rRNA, denaturing
gradient gel
electrophoresis
(DGGE), restriction
fragment length
polymorphisms
(RFLPs)
Papua & West Giant clams (Tridacna ITS2 rRNA, DGGE Symbiodinium, DeBoer et al. 2012
Papua spp.) Breviolum,
Cladocopium
Central Java Scleractinian corals, sea SSU 18S rRNA, Symbiodinium, Purnomo 2014
anemones, Tridacna sp. RFLPs Breviolum,
Cladocopium,
Durusdinium
West Nusa Seawater, sediment V9-SSU 18S rRNA Symbiodinium, This Study
Tenggara Breviolum,
Cladocopium,
Durusdinium,
Gerakladium,
Halluxium
Southeast Asia:
Palau Sponges (porifera), giant ~ SSU 18S rRNA, Symbiodinium, Carlos et al. 1999
clams (Tridacna spp.), RFLPs Cladocopium,
other bivalves (cardiids), Durusdinium
foraminifera (Amphisorus
hemprichii)
Scleractinian corals ITS1 rRNA, SSCP Cladocopium, Fabricius et al. 2004
Durusdinium
Scleractinian corals ITS2 rRNA, psbA™  Cladocopium, Kurihara et al. 2021
(Porites cylindrica) Durusdinium
Singapore Sea slugs (Pteraeolidia SSU 18S rRNA, LSU  Cladocopium, Loh et al. 2006
ianthina) 28S rRNA, SSCP Durusdinium
Zoantharians mt 16S rRNA, mt COl, Cladocopium, Reimer and Todd
ITS rRNA Durusdinium 2009
Scleractinian corals ITS2 rfRNA Symbiodinium, Tan et al. 2020
(Porites lutea) Cladocopium,
Durusdinium
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Malaysia Scleractinian corals ITS2 rfRNA Symbiodinium, Tan et al. 2020
(Porites lutea) Cladocopium,
Durusdinium
Thailand Scleractinian corals, ITST rRNA, ITS2 Symbiodinium, LaJeunesse et al.
Corallimorpharia sp., sea tRNA, DGGE, Cladocopium, 2010
anemones (Actiniidae &  microsatellite, Durusdinium,
Stichodactyliidae), soft Fugacium,
coral (Alcyonidae & Gerakladium
Nephtheidae), gorgonian
(Gorgonia sp.), giant clams
(Tridacna crocea),
Zoantharia (Palythoa sp.)
Philippines Giant clams (Hippopus SSU 18S rRNA, Symbiodinium Carlos et al. 1999
hippopus & Tridacna RFLPs
croceaq)
Heliopora blue corals SSU 18S rRNA, Cladocopium Taguba et al. 2016
(Heliopora coerulea) RFLPs
Scleractinian corals ITS2 rRNA, DGGE Cladocopium Ravelo and Conaco
(Acropora spp.) 2018
Scleractinian corals ITS2 rRNA, DGGE Cladocopium, Da-anoy et al. 2019
Durusdinium
South China Sea Scleractinian corals LSU 28S rRNA Cladocopium, Tong et al. 2018
Durusdinium
Timor-Leste Scleractinian corals mt cob, psbA™ Cladocopium, Brian et al. 2019
Durusdinium
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