
Submitted 3 June 2022
Accepted 13 August 2022
Published 14 September 2022

Corresponding author
Justyna A. Karolak,
jkarolak@ump.edu.pl

Academic editor
Vladimir Uversky

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.14003

Copyright
2022 Bzdega and Karolak

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Phenotypic spectrum of FGF10-related
disorders: a systematic review
Katarzyna Bzdega and Justyna A. Karolak
Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences,
Poznan, Poland

ABSTRACT
FGF10, as an FGFR2b-specific ligand, plays a crucial role during cell proliferation,
multi-organ development, and tissue injury repair. The developmental importance of
FGF10 has been emphasized by the identification of FGF10 abnormalities in human
congenital disorders affecting different organs and systems. Single-nucleotide variants
in FGF10 or FGF10-involving copy-number variant deletions have been reported in
families with lacrimo-auriculo-dento-digital syndrome, aplasia of the lacrimal and
salivary glands, or lethal lung developmental disorders. Abnormalities involving FGF10
have also been implicated in cleft lip and palate, myopia, or congenital heart disease.
However, the exact developmental role of FGF10 and large phenotypic heterogeneity
associated with FGF10 disruption remain incompletely understood. Here, we review
human and animal studies and summarize the data on FGF10 mechanism of action,
expression, multi-organ function, as well as its variants and their usefulness for
clinicians and researchers.

Subjects Genetics, Molecular Biology, Oncology, Respiratory Medicine, Medical Genetics
Keywords Pulmonary diseases, Congenital diseases, FGF10 deficiency

INTRODUCTION
The fibroblast growth factor (FGF) signaling pathway plays an essential role in mammalian
embryo formation and is crucial for mesenchymal-epithelial communication, contributing
to the development of many different organs (Itoh, 2016). FGF signaling is also involved
in maintaining biological homeostasis due to the regulation of metabolism and endocrine
secretion (Hui et al., 2018). Disruption of the proper functioning of the FGF pathway can
cause congenital disorders, metabolic diseases, or cancers (Ornitz & Itoh, 2015; Itoh, 2016).

One of the most important FGF ligands is fibroblast growth factor 10 (FGF10), which
plays an essential role in airway branching (Jones, Chong & Bellusci, 2020), functioning of
the cardiovascular system (Itoh et al., 2016), and development of the kidney, cecum,
thymus, trachea, prostate, mammary gland, adipose tissue, and limb (Itoh, 2016).
Pathogenic variants in FGF10 can cause craniofacial defects (Prochazkova et al., 2018),
lung disorders (Vincent et al., 2019), myopia (Jiang et al., 2019), limb (Ohuchi et al., 2000)
or genitourinary system anomalies (Milunsky et al., 2006), and heart defects (Itoh et
al., 2016). Alterations in FGF10 have been associated with cancers, including breast or
pancreatic cancer (Dankova et al., 2017; Ndlovu et al., 2018). Complete understanding of
the developmental function of FGF10 and how its disruption influences the phenotype is
an important but challenging task. Here, we systemize the current knowledge on FGF10,
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relevant for clinically- and research-focused scientists. We provide an insight into the
significance of FGF10 in development by discussing its tissue-specific expression and
related phenotypic spectrum in humans.

SURVEY METHODOLOGY
All manuscripts cited in this review were found and analyzed from the PubMed database
(https://pubmed.ncbi.nlm.nih.gov/) using the following keywords: FGF family, FGF10
mutations, FGF10 diseases, FGF10 cancers, FGF10 expression, FGF10 role. Articles
unrelated to FGF10-linked disorders in humans and mice were excluded.

FGF family and their mechanism of action
The FGF protein family consists of 22 members that, based on the differences in their
biochemical nature, amino acid sequence, or evolutionary origin, are divided into seven
subfamilies: FGF1, FGF4, FGF7, FGF8, FGF9, FGF11, and FGF19 (Itoh & Ornitz, 2008).
Based on their mechanism of action, FGF subfamilies can be further classified as canonical,
hormone-like, or intracellular FGFs (Itoh, 2010).

The activation of canonical FGFs depends on their binding to FGF receptors (FGFRs),
mediated by heparan sulfate glycosaminoglycan (HSPG), leading to the formation of a
ternary FGF-FGFR-HSPG complex on a cell surface (Esko & Selleck, 2002; Lindahl & Li,
2009). In contrast, hormone-like FGFs have a poor affinity for HSPG and require other
co-receptors, Klotho proteins, for FGFR activation (Zhang et al., 2015; Prudovsky, 2021).

Canonical FGFs
Canonical FGFs constitute the largest group of FGFs, consisting of FGF1, FGF4, FGF7,
FGF8, and FGF9 subfamilies (Giacomini et al., 2021). All but the FGF9 subfamilies are
characterized by a paracrine/autocrine secretion mechanism (Imamura, 2014) and are
crucial for the development of many organs, including glands and limbs (Zinkle &
Mohammadi, 2019). In contrast, members of the FGF9 subfamily act only as paracrine
factors and play an essential role in cardiac development and maintenance of cardiac
homeostasis (Wang et al., 2018a; Khosravi et al., 2022).

Hormone-like FGFs
Members of the FGF19 subfamily belong to hormone-like FGFs that act as endocrine
hormones (Dolegowska et al., 2019). The FGF19 family regulates glucose and lipid
metabolism (Beenken & Mohammadi, 2009) by increasing hepatic glycogen synthesis,
glucose tolerance, and insulin sensitivity and decreasing gluconeogenesis and hepatic
triglyceride content (Fu et al., 2004). It is also essential for the enterohepatic circulation of
bile or phosphorus and vitamin D3 homeostasis (Imamura, 2014; Dolegowska et al., 2019).

Intracellular FGFs
Intracellular FGFs from the FGF11 subfamily demonstrate FGFR-independent intracrine
activity (Dolegowska et al., 2019).Members of the FGF11 subfamily are involved in neuronal
development (Wiedlocha, Haugsten & Zakrzewska, 2021). They regulate voltage-gated
sodium channel activity in neurons and are required for axon development, neuronal
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Figure 1 A simplified scheme of the FGF10/FGFR2b activation.Numbers I-III indicate
immunoglobulin-like subdomains of the FGFR2b extracellular domain, with the FGF10 ligand and
HSPG binding sites between subdomains II and III. In the tyrosine kinase domains, the purple square
box indicates the phosphorylation sites required for activation of the FGF receptor substrate 2 α (FRS2
α), growth factor receptor-bound protein 2 (GRB2) and phospholipase C gamma 1 (PLC γ 1). After
phosphorylation of PLC γ 1, calcium is released and protein kinase C (PKC) is enabled. Activated FRS2 α
and GRB2 lead to activation of RAS-MAPK and PI3K-AKT signaling pathways.

Full-size DOI: 10.7717/peerj.14003/fig-1

migration in the cerebral cortex, and microtubules stabilization (Wu et al., 2012; Zhang et
al., 2012).

Activation of the FGF10 binding
FGFRs are high-affinity trans-membrane surface tyrosine kinase receptors encoded in
humans by the FGFR1, FGFR2, FGFR3, FGFR4, and FGFRL1 genes (Katoh & Nakagama,
2014). FGF10 binds specifically to epithelial FGFR2b, characterized by three domains,
extracellular, transmembrane, and intracellular tyrosine kinase (Itoh, 2016; Xie et al.,
2020). In the extracellular domain of FGFR2b, three immunoglobulin-like subdomains (I,
II, and III) are distinguished, where II and III subdomains represent the sites of HSPG and
FGF10 ligand binding (Fig. 1) (Itoh, 2016; Ferguson, Smith & Francavilla, 2021).

The FGF10 ligand binds to the FGFR2 through HSPG to initiate signaling (Watson
& Francavilla, 2018). Ligand–receptor binding triggers dimerization of FGFR2b and
phosphorylation of tyrosine residues within its intracellular domains, resulting in
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the FGFR2b activation (Belov & Mohammadi, 2013; Watson & Francavilla, 2018).
Phosphorylated FGFR2b activates FGF receptor substrate 2α (FRS2α) and phospholipaseC
gamma 1 (PLC γ 1) (Itoh, 2016;Watson & Francavilla, 2018). Whereas the activated FRS2α
enables the recruitment of growth factor receptor-bound protein 2 (GRB2) (Ong et al.,
2000; Watson & Francavilla, 2018), leading to the activation of Ras/Raf/mitogen-activated
protein kinases (MAPKs) and phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT)
(Ornitz & Itoh, 2015; Dai et al., 2022), PLC γ 1 leads to the intracellular calcium release
followed by the activation of protein kinase C (PKC) (Marchese et al., 2001; Itoh, 2016;
Watson & Francavilla, 2018) (Fig. 1).

Modification of FGF10 signaling occurs through molecular cross-talk between
FGF10/FGFR2b andWnt, retinoic acid, or transforming growth factor β signaling pathways
(Xie et al., 2020). Furthermore, the FGF10/FGFR2b pathway can be also regulated by several
proteins that are co-expressed with FGF and can either inhibit or enhance the signaling
(Fürthauer et al., 2001; Zhao & Zhang, 2001; Tsang et al., 2002;Watson & Francavilla, 2018;
Chanda et al., 2019; Böttcher et al., 2004; Xie et al., 2020).

FGF10 expression
In a murine model, high Fgf10 expression was observed in the neural crest-derived
mesenchyme of the forming salivary gland, mesenchyme of the developing epithelial bud
of the lacrimal gland, and Harder’s gland (Makarenkova et al., 2000; Govindarajan et al.,
2000; Teshima, Lourenco & Tucker, 2016).

FGF10 is expressed throughout the human lung parenchyma and partially in airway
smooth muscle cells or vasculature from 10 to 21 weeks of gestation (Al Alam et al., 2015;
Danopoulos et al., 2019). A constant level of FGF10 transcripts is persistent during the
pseudoglandular phase of lung development and increases during the canalicular phase
(Al Alam et al., 2015; Danopoulos et al., 2019). The spatial lung Fgf10 expression shows
different patterns depending on the branching phases (Hirashima, Iwasa & Morishita,
2009). In the earliest stage of lung branching, elongation mode, Fgf10 expression occurs at
a single site in the bud apex region in the axial direction of elongation (Hirashima, Iwasa
& Morishita, 2009). During the terminal bifurcation mode, Fgf10 expression localizes into
two sites between the bud apex and the lung border, while in the last stage, lateral budding,
it appears at sites on either side of the stem where potential budding is located (Hirashima,
Iwasa & Morishita, 2009).

FGF10 expression has also been observed in other organs, including human and mouse
sclera (Lim et al., 2012) or developing human posterior colon and rectum (Yin et al., 2013).
In addition, FGF10 RNA is considered an endogenous marker in the second heart field
(Kelly, Brown & Buckingham, 2001).

Role of the FGF10 gene in human morphogenesis
The human FGF10 gene spanning 89 kb consists of three coding exons and maps to
the reverse strand of the 5p12 chromosome (Emoto et al., 1997). The FGF10 protein
has 23.4 kDa composed of 208 amino acids and comprises a signal peptide (1-37 aa)
and an FGF domain (38–208 aa) with two known glycosylation sites (51 and 196 aa)
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Figure 2 Schematic representation of the FGF10 protein. Blue, grey, and dark green boxes indicate sig-
nal peptide, the FGF10 domain, and glycolysation sites, respectively. Variants identified in patients with
lethal lung developmental disorders (LLDD), lacrimo-auriculo-dento-digital syndrome (LADD), aplasia
of the lacrimal and salivary glands (ALSG), and risk of chronic obstructive pulmonary disease (COPD)
are shown as lollipops and are represented in orange, light green, dark blue, and yellow, respectively. The
number of circles in the lollipop represent a number of individuals with a particular variant and two-
colored circles indicate patients affected by two different conditions.

Full-size DOI: 10.7717/peerj.14003/fig-2

(Fig. 2) (Beenken & Mohammadi, 2009). The secreted FGF10 protein proceeds through the
canonical endoplasmic reticulum-Golgi secretory pathway, after which the signal peptide
is cleaved (Watson & Francavilla, 2018).

The role of FGF10 begins in the gastrulation stage (Thiery et al., 2009). FGF10 is involved
in the formation of lacrimal and salivary glands at the embryonic period (Prochazkova
et al., 2018; Karasawa et al., 2022) by regulating the progenitor cell population and
stimulating gland outgrowth (Chatzeli, Gaete & Tucker, 2017). In adults, FGF10 is critical
in maintaining gland homeostasis and/or regeneration (Mauduit et al., 2022).

The FGF10/FGFR2b signaling is also required for lung development and is involved in
the induction of several genes responsible for the branching of lung epithelial tubules and
alveolar formation (Bellusci et al., 1997; Wang et al., 2018b; Yuan et al., 2018; Yang et al.,
2021). In vitro studies have also indicated the involvement of the FGF10 signaling in fluid
secretion (Graeff, Wang & McCray, 1999). It also promotes the growth of lung buds (Hines
& Sun, 2014). The FGF10 gene initiates lung bud proliferation through mesenchymal-
epithelial signaling via the B isoform of FGFR2 (Bellusci et al., 1997; Abler, Mansour & Sun,
2009).

During facial formation, Fgf10 is involved in the development of the palatal shelves,
mandible, or teeth (Ohuchi et al., 2000; Prochazkova et al., 2018). It is also important in
cranial development and eyelid (Prochazkova et al., 2018) or lens formation (Chaffee et al.,
2016). FGF10 is essential for the proliferation of hepatoblasts (Berg et al., 2007), regulation
of radial glial cell differentiation, controlling the number of progenitor cells and neurons
(Sahara & O’Leary, 2009), adipogenesis (Sakaue et al., 2002), and heart repair mechanisms
(Rochais et al., 2014).
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Role of FGF10 in diseases
Pathogenic variants in FGF10 can lead to congenital disorders involving the respiratory
system as well as the lacrimal and salivary glands (Fig. 2, Table 1) (Vincent et al., 2019).
In addition, a number of single-nucleotide variants (SNVs) within FGF10 have been
associated with the increased risk of nonsyndromic cleft lip with or without cleft palate
(NSCL/P) (Yu et al., 2017), chronic obstructive pulmonary disease (COPD) (Klar et al.,
2011; Sun et al., 2021) and myopia (Jiang et al., 2021) (Table 2).

Lacrimo-auriculo-dento-digital syndrome and aplasia of lacrimal and
salivary glands
Lacrimo-auriculo-dento-digital syndrome (LADD; MIM#149730) and aplasia of the
lacrimal and salivary glands (ALSG; MIM #180920) are rare genetic diseases manifesting
with variable expression and inherited in an autosomal dominant manner (Milunsky et
al., 2006; Ryu et al., 2020). LADD and ALSG belong to the same phenotypic spectrum;
however, LADD patients present a more severe phenotype than individuals with ALSG
(Milunsky et al., 2006; Rohmann et al., 2006). In addition to characteristic features observed
in both LADD and ALSG patients, including dryness and infections of the eyes and mouth
as well as dental caries due to atresia or hypoplasia of the lacrimal and salivary glands
(Milunsky et al., 2006; Seymen et al., 2017), patients affected with LADD syndrome often
present with facial dysmorphism with ear underdevelopment and hearing loss, anomalies
of fingers and toes, kidneys, gastrointestinal symptoms, or respiratory disorders (Ryu
et al., 2020). Interestingly, both LADD syndrome and ALSG have a large variability of
associated symptoms, even when patients are from the same family and have the same
genetic background, making phenotype-genotype correlation challenging (Shams et al.,
2007).

LADD syndrome and ALSG are caused by heterozygous SNVs or copy-number variant
(CNV) deletions involving the FGF10 gene (Rohmann et al., 2006; Shams et al., 2007).
LADD can also be associated with changes affecting FGFRs, FGFR2 and FGFR3 (Rohmann
et al., 2006; Shams et al., 2007). In contrast to gain-of-function FGFR2 variants associated
with craniosynostosis, LADD-related variants usually lead to a decrease in the activity of
FGF10 signaling (Shams et al., 2007).

An ALSG-associated variant c.577C>T (p.Arg193*) in FGF10 was first described in 2005
(Entesarian et al., 2005). A missense variant c.467T>G (p.Ile156Arg) and a heterozygous
variant c.409A>T (p.Lys137*) in FGF10 were described in two unrelated LADD patients
(Milunsky et al., 2006). In one proband, the pathogenic variant was inherited from her
mother with ALSG (Milunsky et al., 2006). A year later, the c.240A>C (p.Arg80Ser) variant
was identified in a son and father, both affected by ALSG (Entesarian et al., 2007). A
missense de novo variant c.413G>A (p.Gly138Glu) was also detected in patient with
ALSG associated with anomalies in the genitourinary system and coronal hypospadias,
demonstrating clinical overlap between ALSG and LADD syndrome (Entesarian et al.,
2007). The c.218T>G (p.Leu73Arg) variant in FGF10 was reported in three individuals
with ALSG from the same family (Rodrigo et al., 2018).
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Table 1 List of the coding variants within FGF10 identified in patients with lethal lung developmental
disorders, lacrimo-auriculo-dento-digital syndrome, and aplasia of the lacrimal and salivary glands.

Genetic
findings

Diseases References

c.577C>T ALSG, CAD, risk of COPD Entesarian et al. (2005), Karolak et al. (2019) and Klar et al.
(2011)

c.467T>G LADD Milunsky et al. (2006)
c.409A>T ALSG, LADD Milunsky et al. (2006)
c.240A>C ALSG Entesarian et al. (2007)
c.413G>A ALSG, LADD Entesarian et al. (2007)
c.317G>T LADD Rohmann et al. (2006)
c.237G>A, ALSG Seymen et al. (2017)
c.526 del LADD, AcDys Karolak et al. (2019)
c.218T>G ALSG Rodrigo et al. (2018)
c.68_70del Risk of CTD Zhou et al. (2020)

Notes.
ALSG, aplasia of the lacrimal and salivary glands; LADD, lacrimo-auriculo-dento-digital syndrome; AcDys, acinar dyspla-
sia; CAD, congenital alveolar dysplasia; COPD, chronic obstructive pulmonary disease; CTD, conotruncal defects.

Table 2 List of single nucleotide variants identified in FGF10 associated with the risk of
nonsyndromic cleft lip with or without cleft palate, chronic obstructive pulmonary disease and
myopia.

Genetic findings Disease References

rs2973644 risk of COPD Ren et al. (2013)
rs1011814 risk of COPD Ren et al. (2013)
rs980510 risk of COPD Smith et al. (2018)
rs10512844 risk of COPD Smith et al. (2018)
rs10462065 NSCL/P Yu et al. (2017)
rs10473352 risk of COPD Ren et al. (2013)
rs339501 Risk of extreme/high myopia Hsi et al. (2013)
rs12517396 Risk of extreme/high myopia Jiang et al. (2019)
rs10941679 Risk of breast cancer Stacey et al. (2008)

Notes.
COPD, chronic obstructive pulmonary disease; NSCL/P, nonsyndromic cleft lip with or without cleft palate.

A 53 kb deletion removing exons 2 and 3 of FGF10 was identified in two families with
ALSG (Entesarian et al., 2005). Recently, a novel heterozygous 12,158 bp deletion involving
the last two exons of the FGF10 gene was identified in a large family with members affected
by LADD or pulmonary hypoplasia (Wade et al., 2021).

Based on the molecular findings and association of FGF10 with LADD and ALSG
phenotypes it has been postulated that ALSG is a milder form of LADD and not a separate
disease entity (Seymen et al., 2017). It is also possible that variable expressivity of FGF10
variants results from other cis or trans genetic variants (Milunsky et al., 2006).

Phenotypes of mice with Fgf10+/− deficiency partially recapitulate the phenotypes
observed in humans with FGF10 abnormalities (Entesarian et al., 2005). For example,
adult Fgf10+/− mice have shown aplasia of lacrimal glands and hypoplasia of salivary
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glands, similar to the characteristic features observed in ALSG patients (Entesarian et al.,
2005).

Lethal lung developmental disorders (LLDD)
Lethal lung developmental disorders (LLDDs) are rare diseases of newborns, characterized
by severe respiratory failure, refractory to treatment (Vincent et al., 2019). LLDDs include
alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) that is
mainly caused by changes within the FOXF1 locus, and acinar dysplasia (AcDys), congenital
alveolar dysplasia (CAD), or primary pulmonary hypoplasia (PH) (Vincent et al., 2019).
Recent studies have shown that 45% and 20% of AcDys, CAD, or PH is associated with
heterozygous SNVs or CNVs involving TBX4 and FGF10, respectively (Vincent et al., 2019).
Moreover, a homozygous variant c.764G>A (p.Arg255Gln) in FGFR2 was reported in a
neonate with AcDys accompanied by ectrodactyly and inherited from consanguineous
parents (Barnett et al., 2016). A heterozygous FGF10 variant c.526del (p.Met176Cysfs*5)
has been identified in a patient with AcDys (Karolak et al., 2019). Interestingly, the variant
c.577C>T (p.Arg193*), previously detected in a family with ALSG syndrome (Entesarian
et al., 2005), was also found in a patient with CAD (Karolak et al., 2019). Additionally, in
two unrelated families, patients with severe lethal PH were found to have a heterozygous
deletion in 5p12 (∼2.18 Mb and ∼2.32 Mb in size), involving FGF10, inherited from their
parents with LADD syndrome who had no evidence of lung disease (Karolak et al., 2019).
A similar phenomenon was observed in a Dutch family, in which a proband with PH
inherited a heterozygous deletion involving the FGF10 gene from a mother with LADD
syndrome (Wade et al., 2021).

The observation of various phenotypes in a single family with the same FGF10 variant
suggests a complex model of inheritance (Karolak et al., 2019). It was postulated that
haploinsufficiency of FGF10 alone is not sufficient to induce AcDys or CAD, but requires
additional genetic modifiers, such as, e.g., non-coding variants (inherited or de novo; rare or
common) in regulatory elements (Karolak et al., 2019). Interestingly, in the study described
by Karolak et al., all infants with lung disease and coding variants in the FGF10 gene also
had at least one non-coding SNV within the lung-specific enhancer ∼70 kb upstream of
TBX4 (Karolak et al., 2019).

The lung phenotypes observed in patients with mutations in FGF10 were similar to
that observed in mice with FGF10 abnormalities. Homozygous knockout of Fgf10 leads
to a severe lung phenotype in mice and to death shortly after birth due to impaired lung
morphogenesis (Min et al., 1998; Sekine et al., 1999). Mice without functional Fgfr2 die
around implantation, whereas mice deficient in Fgfr2 isoform IIIb survive until birth
but die shortly after due to the lack of lungs (Arman et al., 1998; Arman et al., 1999; De
Moerlooze et al., 2000). The same lethal phenotype observed in Fgf10−/− and Fgfr2b−/−

indicates that FGF10 is active as a specific ligand for FGFR2b (Ohuchi et al., 2000).

Chronic obstructive pulmonary disease (COPD)
COPD is characterized by abnormalities in the lung epithelium and airspace (Klar et al.,
2011), which contributes to irreversible and progressive changes in airflowwith an impaired
response to pathogens (Tashkin et al., 1996; Rabe et al., 2007). About 26% of individuals
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with defects in airway development have been found to have an increased risk of COPD
(Prince, 2018). Therefore, genetic factors may be important in the etiology of this disorder
(Molfino, 2004).

A study of two Swedish ALSG/LADD families, including twelve affected members
with the heterozygous 53 kb deletion (n= 10) or c.577C>T (p.Arg193*) variant (n= 2)
involving FGF10 (Entesarian et al., 2005), showed that haploinsufficiency of FGF10 is
associated with compromised lung function and likely a risk factor for COPD (Klar et al.,
2011). Another study performed in the Han Chinese population of North China revealed
the apparent association of the rs2973644 and rs10473352 variants in FGF10 with COPD,
and suggested that rs1011814 might be responsible for the severity of COPD (Ren et al.,
2013). Additionally, recent analyses showed that FGF10 variants rs980510 and rs10512844
are associated with the absence of the proper medial-basal airway in smokers, increasing
the COPD risk in these individuals (Smith et al., 2018).

Fgf10+/− mice showed reduced lung function similar to that in patients with
heterozygous mutations in FGF10 and COPD risk. However, this phenotype may result
from the smaller size of Fgf10+/− mice compared to wild-type animals (Klar et al., 2011).
Fgf10 expression also occurs in murine airway smooth muscle cells (ASMCs) (Chu et al.,
2021). After an injury, the transient expression of Fgf10 in ASMCs may be abnormal for
adequate airway epithelial regeneration, and sustained secretion of Fgf10 by ASMCs can
cause airway abnormalities resembling the defects observed in human COPD (Chu et al.,
2021).

Cleft lip and palate syndrome
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) are common birth defects
of complex etiology, occurring in about 1/1000 live births worldwide (Dixon et al., 2011).
While environmental factors influence the development of this disorder, it has been
suggested that genetic causes also contribute to the formation of cleft lip and palate (CLP)
(Riley et al., 2007). FGF10 is one of themembers of the FGF family whose signaling pathway
is important in craniofacial development and its abnormalities have been associated with
clefts in the craniofacial region (Riley et al., 2007). Family-based association testing in
the Philippine population with NSCL/P showed borderline significance for two markers:
rs1448037 and rs1482685 in FGF10 (Riley et al., 2007). In contrast, subsequent studies
conducted in the Polish population did not show any relationship between the cleft lip
and palate and the rs1448037 variant in FGF10 (Mostowska et al., 2010). The variant
rs10462065, located in proximity to FGF10, was recognized as a possible risk factor for
CLP in the Chinese population (Yu et al., 2017). Another study performed in the Chinese
population showed a correlation between rs2330542 in FGF10 and rs1946295 in TBX5,
or rs7704166 in FGF10 and rs7085073 in FGFR2 that may be etiologically associated with
NSCL/P. However, functional studies should be performed to clarify these statistically
significant associations (Li et al., 2019). Further evidence indicating that abnormalities in
FGF10 can contribute to the development of cleft palate was the identification of a deletion
in the intron of FGF10 (chr5:44,347,532-44,347,538) in affected patients (Shi et al., 2009).

Mice studies support the role of FGF10 in the development of CLP in humans.
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Fgf10−/− murine mutants show a complete cleft of the secondary palate caused by
improper tongue attachment to the anterior palatal shelves and the middle and posterior
mandible (Riley et al., 2007). SHH protein has been suggested to stimulate mesenchymal
proliferation and was proposed to be a downstream target for the FGF10/FGFR2 pathway
(Rice et al., 2004). Abnormal signaling of this epithelial-mesenchymal pathway leads to the
development of cleft palate in mice (Rice et al., 2004). Inactivation of Shh in mouse palatal
epithelium resulted in a cleavage phenotype resembling that observed in Fgfr10−/− and
Fgfr2b−/− animals (Rice et al., 2004). Furthermore, the SHH activation affects the FGFR2
signaling during human craniofacial development (Raju et al., 2021). Thus, disruption of
this pathway in humans may also contribute to palate defects.

Myopia
Myopia is one of the most common eye abnormalities identified in humans (Holden et
al., 2016). High myopia, characterized by refractive error (RE) ≤ -6 diopters (D) or axial
length (AL) ≥ 26 mm (Kempen et al., 2004; Pan, Ramamurthy & Saw, 2012), and extreme
myopia, with RE ≤ −10.00 D or AL ≥ 30 mm, can lead to pathological changes in the
eye, and disturbing vision (Jiang et al., 2019). High myopia can cause glaucoma, retinal
detachment, or macular degeneration, resulting in visual impairment (Saw et al., 2005;
Jiang et al., 2019). The incidence of myopia varies between populations and gender and
also depends on the patient’s age (Rose et al., 2008; Pan, Ramamurthy & Saw, 2012; Hsi et
al., 2013).

The rs339501-G allele of FGF10 is a binding site for three different transcription factors
and has been identified as a putative risk marker for extreme myopia in the Chinese
population living in Taiwan (Hsi et al., 2013). The reporter assay showed that the G
risk allele may result in a higher expression of FGF10, suggesting that increased FGF10
expression might enhance susceptibility to myopia (Hsi et al., 2013). However, a study
performed in the Japanese population contradicted the findings of these studies in the
Chinese population, showing that the rs339501-A is an extreme myopia risk allele (Yoshida
et al., 2013). Although initial studies revealed an association of rs399501 with extreme
myopia (Hsi et al., 2013), recent analyses showed that rs399501 is also significantly related
to highmyopia inHanChinese (Jiang et al., 2021). Additionally, in a Japanese population, it
was found that the rs12517396-C and rs10462070-A alleles in FGF10may be associated with
extrememyopia (Yoshida et al., 2013). A subsequent study in a western Chinese population
confirmed the association of the rs12517396 and rs10462070 variants in extreme and high
myopia (Jiang et al., 2019).

Interestingly, another variant, rs2973644, correlated with a higher risk for myopia (Sun
et al., 2019), was also linked with a higher risk for COPD, as mentioned above (Ren et al.,
2013). The rs2973644, together with the rs399501 and rs79002828 variants, indicated a risk
of high myopia in young Chinese children (Sun et al., 2019). Furthermore, the G risk allele
rs2973644 leads to an increase in FGF10 expression as opposed to the protective A allele
(Sun et al., 2019).
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Bronchopulmonary dysplasia
Bronchopulmonary dysplasia (BPD) is characterized by respiratory failure, lung collapse,
or hypoxemia, caused by a deficiency of surfactant coating the inner surface of the lungs
due to abnormal lung development during the saccular stage (Coalson, 2003)

It has been shown that activation of Toll-like receptor 2 (TLR2) or Toll-like receptor 4
(TLR4) in mice inhibits the FGF10 expression, resulting in impaired airway morphogenesis
(Benjamin et al., 2007) with abnormal myofibroblast positioning at the saccular airway
observed in BPD (Benjamin et al., 2007). A subsequent study showed that soluble
inflammatory mediators in the tracheal fluid of earlier-born children, through NF-
κB, can also inhibit the FGF10 expression resulting in defects in epithelial-mesenchymal
interactions during lung development (Benjamin et al., 2010; Carver et al., 2013).

Interestingly, hyperoxia-induced neonatal lung injury was used as amousemodel of BPD
to study the effect of Fgf10 deficiency in Fgf10+/− pups (Chao et al., 2017). In normoxia,
no mortality was observed in either Fgf10+/+ or Fgf10+/− mice, while in hyperoxia, all
Fgf10+/− mice died within 8 days, and all Fgf10+/+ mice were alive (Chao et al., 2017).
Analysis of hyperoxic Fgf10+/− lungs showed increased hypoalveolarization and a lower
ratio of type II alveolar epithelial cells (AECII) to total Epcam-positive cells compared to
lungs in normoxia (Chao et al., 2017). Lower levels of Fgf10 transcripts lead to congenital
lung defects with postnatal survival but reduced ability to cope with sublethal hypertoxic
injury (Chao et al., 2017). Thus, deficiency of AECII cells caused by decreased level of FGF10
may be an additional complication in BPD patients (Chao et al., 2017). Furthermore, the
lungs of Fgf10+/− mice with hyperoxia were characterized by a decreased number of
blood vessels with an increase of poorly muscularized vessels (Chao et al., 2019). This may
represent an additional feature of the BPD (Chao et al., 2019). However, a recent study
showed that overexpression of Fgf10 and administration of rFGF10 rescued alveologenesis
defects in transgenic mice (Taghizadeh et al., 2022).

Cancer
FGF10 activates intracellular signaling pathways in several cell types that can lead to cancer
cell invasion and proliferation (Watson & Francavilla, 2018). Thus, abnormal regulation of
FGF10 may contribute to certain forms of cancer (Itoh, 2016).

Pancreatic cancer is a common exocrine neoplasm and one of the most deadly
diseases (Ndlovu et al., 2018). In a physiological state, FGF10 is involved in the formation
of pancreatic epithelial cells (Bhushan et al., 2001; Ndlovu et al., 2018) and maintains
undifferentiated pancreatic progenitor cells (Norgaard, Jensen & Jensen, 2003). In contrast,
abnormal expression of the FGF7 and FGF10 genes in stromal cells surrounding pancreatic
cancer cells have been observed (Ndlovu et al., 2018), indicating the role of FGF7 and
FGF10 in cell proliferation (FGF7), migration, and invasion (FGF10) (Ndlovu et al., 2018).
Moreover, ectopic expression of FGF10 can cause pancreatic hyperplasticity (Norgaard,
Jensen & Jensen, 2003).

FGF10 may also be involved in a subset of human breast cancers (Stacey et al., 2008;
Reintjes et al., 2013;Ghoussaini et al., 2016). Studies performed in 2008 identified rs4415084
and rs10941679 variants located approximately 274–317 kb downstream from FGF10 as
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likely associated with a higher risk of breast cancer (Stacey et al., 2008). While rs4415084
was subsequently excluded from breast cancer causality, the rs10941679-G allele has been
associated with a 15% higher risk of estrogen-receptor-positive breast cancer (Ghoussaini
et al., 2016). This variant maps to a putative enhancer interacting with the FGF10 promoter
regions in breast cancer cell lines, suggesting that it could regulate the FGF10 expression
(Stacey et al., 2008; Reintjes et al., 2013; Ghoussaini et al., 2016). Interestingly, FGF10 had
strongly increased expression in 10% of breast cancers compared to healthy tissues
(Theodorou et al., 2004).

Deregulation of FGF10-related signaling pathways was also associated with gastric
cancer (Carino et al., 2021). This assumption was further supported by Wu et al., who
indicated that regulatory networks involving FGF10 play an essential role in gastric cancer
proliferation, migration, and invasion (Wu, Liu & Zhang, 2022).

Other diseases
Because of its role in orchestrating various developmental processes, abnormalities inFGF10
have also been described in the context of other disorders. However, the importance of
FGF10 in these diseases is inconclusive and further studies are required to determine the
impact of the FGF10 impairment on some defects.

Among diseases in which the role of FGF10 was not well established are conotruncal
defects (CTDs), rare heart diseases with an incidence of 0.1 h in live births that account
for ∼25–30% of all non-syndromic congenital heart diseases (Shah et al., 2008; Zhou et
al., 2020). Zhou et al. identified two rare heterozygous variants c. 29G>A and c.551G>A
in FGF8 in two patients with tetralogy of Fallot and one c.68_70del variant in FGF10 in
a patient with complete atrioventricular valve defect, pulmonary valve stenosis, single
atrium, and single ventricle (Zhou et al., 2020). Whereas c.29G>A (p.Cys10Ter) in FGF8
and c.68_70del (p.Cys23del) in FGF10 may affect the protein function by reducing their
secretion, c.551G>A (p.Arg184His) in FGF8 can negatively impact the proliferation of
human cardiomyocytes, leading to CTD (Zhou et al., 2020). However, these assumptions
have not been confirmed in subsequent studies.

Another condition that requires further research on FGF10 is anorectal malformation
(ARM), including congenital malformations that affect the development of the distal
colon (Krüger et al., 2008). Approximately 40–50% of all ARM cases have isolated ARMs,
sometimes linked with malformations in the kidneys, the genitourinary system, or other
systems (Stoll et al., 2007). The remaining ARM cases are associated with the spectrum
of specific genetic syndromes (Draaken et al., 2012). Of note, changes in the FGFR2 gene
involved in the FGF10 signaling are known to cause various forms of autosomal dominant
craniosynostosis syndrome (Draaken et al., 2012). They are also associated with ARM in
patients with Apert syndrome, Pfeiffer syndrome types 1 and 2, Crouzon syndrome, and
Beare-Stevenson syndrome (Draaken et al., 2012).

Genetic studies have not confirmed the impact of variants in FGF10 and other genes
on ARM development in the screened patients (Krüger et al., 2008; Draaken et al., 2012).
However, the lack of association between ARM and FGF10 variants could be the result of a
limited number of tested samples or the use of a method that was unable to detect variants
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in the previously unknown regulatory sequences or non-coding sequences (Draaken et al.,
2012). FGF10 is likely a key factor regulating the growth in endoderm or mesenchyme and
thus also stimulates the development of the genitourinary system and the anus (Yucel et
al., 2004; Fairbanks et al., 2004). Future research should be extended to include additional
factors within the WNT/FGF signaling pathway (Draaken et al., 2012).

SUMMARY
FGF10 has diverse functions in organ development and their proper functioning and
its alterations have been found to lead to various diseases in humans. Despite advances
in understanding the pathways involved in FGF10 regulation and the discovery of new
pathogenic variants in the FGF10 gene, there are still many unknowns regarding the exact
role of FGF10 abnormalities in the disease etiology. Further studies of the FGF10 gene and
its regulatory elements are necessary to expand our knowledge of the involvement of this
gene in human diseases.
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