# Variation in genetics, morphology, and recruitment in the invasive barnacle *Amphibalanus eburneus* (Gould, 1841) in the southern Korean peninsula (#67328)

Second revision

#### Guidance from your Editor

Please submit by 4 Aug 2022 for the benefit of the authors .



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for general guidance.



#### **Custom checks**

Make sure you include the custom checks shown below, in your review.



#### Raw data check

Review the raw data.



#### Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

#### **Files**

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 5 Figure file(s)
- 7 Table file(s)
- 3 Raw data file(s)

#### Custom checks

#### **DNA** data checks

- Have you checked the authors <u>data deposition statement</u>?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

#### Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

## Structure and Criteria



#### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

#### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

- Impact and novelty not assessed.

  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.



Conclusions are well stated, linked to original research question & limited to supporting results.



## Standout reviewing tips



The best reviewers use these techniques

| Τ | p |
|---|---|

## Support criticisms with evidence from the text or from other sources

## Give specific suggestions on how to improve the manuscript

## Comment on language and grammar issues

## Organize by importance of the issues, and number your points

## Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

#### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



## Variation in genetics, morphology, and recruitment in the invasive barnacle *Amphibalanus eburneus* (Gould, 1841) in the southern Korean peninsula

Jeongho Kim<sup>1</sup>, Michael Ubagan<sup>1,2</sup>, Soyeon Kwon<sup>2</sup>, Il-Hoi Kim<sup>3</sup>, Sook Shin <sup>Corresp. 1, 2</sup>

Corresponding Author: Sook Shin Email address: shins@syu.ac.kr

The ivory barnacle Amphibalanus eburneus is a marine crustacean, which presents nearcosmopolitan distribution due to extensive introduction and exhibits a wide spectrum of phenotypic variation. To elucidate geographical differentiation among populations through invasion, we investigated variation in genetic structure, shell morphology, and recruitment pattern for A. eburneus, from the southern Korean Peninsula where it has been established since the late 1980s. We selected samples from four populations ologically relevant regions representing all surrounding South Korean waters. From these we amplified the mitochondrial genetic marker cytochrome oxidase subunit I (COI) from 57 individuals and performed a populational genetic analyses with 11 additional GenBank sequences to evaluate population structure. To examine morphological variation, we applied twodimensional landmark-based geometric morphometrics to the scutum and tergum for 145 and 150 individuals, respectively. Furthermore, we estimated the density and plate occupancy of year-old individuals in the field to compare recruitment responses among localities. We detected 33 haplotypes among the four locations belonging to three distinct clades based on moderate intraspecific pairwise genetic distance (≥3.5%). The haplotypes in these clades were not locality-specific in their distribution. In contrast, we did detect interpopulation variation in opercular shape and morphospace structure, and one population could be separated from the rest based on its distinct tergum morphotype alone. This morphologically distinct population was also differentiated by displaying the lowest mean recruitment density and level of plate occupancy. Our results indicate that although there is no relationship between molecular variation in the COI gene and geographic regions in South Korea, association with locality for operculum morphology, and recruitment response suggest ecological adaptation by this barnacle in a new habitat.

<sup>1</sup> Marine Biological Resources Institute, Sahmyook university, Seoul, South Korea

<sup>&</sup>lt;sup>2</sup> Department of Animal Biotechnology and Resource, College of Science and Technology, Sahmyook University, Seoul, South Korea

Bepartment of Biology, College of Natural Science, Gangneung-Wonju National University, Gangneung, South Korea



#### 1 Variation in genetics, morphology, and recruitment in the

#### 2 invasive barnacle Amphibalanus eburneus (Gould, 1841) in

#### 3 the southern Korean peninsula

4 5

6 Jeongho Kim<sup>1</sup>, Michael Ubagan<sup>1,2</sup>, Soyeon Kwon<sup>2</sup>, Il-Hoi Kim<sup>3</sup>, Sook Shin<sup>1,2</sup>

7

- 8 <sup>1</sup>Marine Biological Resources Institute, Sahmyook University, Seoul, South Korea
- 9 <sup>2</sup>Department of Animal Biotechnology and Resource, College of Science and Technology,
- 10 Sahmyook University, Seoul, South Korea
- 11 <sup>3</sup>Department of Biology, College of Natural Science, Gangneung-Wonju National University,
- 12 Gangneung, South Korea

13

- 14 Corresponding Author:
- 15 Sook Shin<sup>1,2</sup>
- 16 Nowongu Hwarangro 815, Seoul, ASI|KR|KS013|SEOUL, South Korea
- 17 Email address: shins@syu.ac.kr

18

#### 19 Abstract

- 20 The ivory barnacle Amphibalanus eburneus is a marine crustacean, which presents near-
- 21 cosmopolitan distribution due to extensive introduction and exhibits a wide spectrum of
- 22 phenotypic variation. To elucidate geographical differentiation among populations through
- 23 invasion, we investigated variation in genetic structure, shell morphology, and recruitment
- 24 pattern for A. eburneus, from the southern Korean Peninsula where it has been established since
- 25 the late 1980s. We selected samples from four populations logically relevant regions
- 26 representing all surrounding South Korean waters. From these we amplified the mitochondrial
- 27 genetic marker cytochrome oxidase subunit I (COI) from 57 individuals and performed a
- 28 populational genetic analyses with 11 additional GenBank sequences to evaluate population
- 29 structure. To examine morphological variation, we applied two-dimensional landmark-based
- 30 geometric morphometrics to the scutum and tergum for 145 and 150 individuals, respectively.
- 31 Furthermore, we estimated the density and plate occupancy of year-old individuals in the field to
- 32 compare recruitment responses among localities. We detected 33 haplotypes among the four
- 33 locations belonging to three distinct clades based on moderate intraspecific pairwise genetic
- 34 distance ( $\geq$ 3.5%). The haplotypes in these clades were not locality-specific in their distribution.
- 35 In contrast, we did detect interpopulation variation in opercular shape and morphospace
- 36 structure, and one population could be separated from the rest based on its distinct tergum
- 37 morphotype alone. This morphologically distinct population was also differentiated by
- 38 displaying the lowest mean recruitment density and level of plate occupancy. Our results indicate
- 39 that although there is no relationship between molecular variation in the COI gene and



geographic regions in South Korea, association with locality for operculum morphology, and
 recruitment response suggest ecological adaptation by this barnacle in a new habitat.

42 43

#### Introduction

- 44 Barnacles are often dominant inhabitants of coastal ecosystems with some species that are
- 45 transportable and that have spread across the globe (Gilg et al., 2010). The cosmopolitan
- 46 distribution of a number of species may be attributed to human-mediated translocation recently
- and over the past centuries, primarily via ballast water and ship-hulls, serving as the vectors for
- 48 planktonic larvae and sessile adults, respectively (Zardus & Hadfield, 2005; Davidson et al.,
- 49 2009; Carlton, Newman & Pitombo, 2011). Widespread barnacle species with long-range
- 50 dispersal and massive population sizes often exhibit phenotypic variations across geographic
- 51 populations. Specifically, morphological variations in fitness-related physical traits in response
- 52 to heterogeneous environments has been commonly documented, which allow for the
- 53 comprehensive study of adaptive evolution. For instance, wave exposure levels drive
- 54 morphological variations in the calcareous structures and chitinous exoskeleton of individuals to
- protect the soft body inside (Pentcheff, 1991). Similarly, cirrus morphology varies with wave
- exposure to enhance particle capture efficiency (Arsenault, Marchinko & Palmer, 2001),
- 57 alternating between shorter and thicker in high exposure situations and longer and thinner forms
- 58 in wave-protected zones (Marchinko & Palmer, 2003; Li & Denny, 2004; Miller, 2007; López et
- 59 al., 2010). Furthermore, barnacles with bathymetric distribution often exhibit morphological
- of variations in the cirri, being longer in individuals inhabiting the upper intertidal zone than in
- 61 those inhabiting the middle-lower intertidal areas (Chan & Hung, 2005). Finally, the density at
- 62 which individuals recruit and grow is another significant factor, resulting in competition for
- space and mating, which further induces shell elongation (Barnes & Powell, 1950; Bertness,
- 64 Gaines & Yeh, 1998) and variations in penis length (Hoch, 2008).
- The ivory barnacle *Amphibalanus eburneus* (Gould, 1841) belonging to the family Balanidae is
- 66 native to the east coast of the USA, distributed from Nova Scotia to Florida, including the
- 67 Caribbean and Gulf of Mexico (Kaplan, 1988). However, the species has now become nearly
- 68 cosmopolitan due to extensive ship fouling (Henry & McLaughlin, 1975; Larsen, 1985). Until
- 69 recently, the range of A. eburneus distribution was limited to European seas (Relini &
- 70 Matricardi, 1979; Molnar et al., 2008; Jaberimanesh et al., 2019; Osca & Crocetta, 2020), Pacific
- 71 Ocean (Henry & McLaughlin, 1975; Iwasaki, 2018), the Indian Ocean (Biccard & Griffiths,
- 72 2016), and the Canadian Arctic (Chan et al., 2015). Now, however, A. eburneus has become a
- harmful invader in many countries, inflicting extensive ecological and industrial damage due to a
- suite of distinct traits (Visscher, 1927; Haderlie, 1984). First, A. eburneus is euryhaline,
- exhibiting a preference for waters with salinity ranging between 15 and 20 ppt, which allows
- 76 the o endure drastic differences in salinity across diverse geographic habitats (Bacon, 1971;
- 77 Jaberimanesh et al., 2019). Second, this species undergoes larval development across a range of
- 78 temperatures (Scheltema & Williams, 1982); as such, the duration from the nauplius to the
- 79 cyprid stage may vary from 7 to 13 days (Costlow & Bookhout, 1957). Given these high





80 competitive abilities, A. eburneus is an excellent model to study genetic, morphological, and ecological variation across geographic populations accompanying biological invasion. 81 The Korean Peninsula is surrounded by four marginal seas: the Yellow Sea, East China Sea, 82 Korea Strait, and East Sea (Sea of Japan). These regions provide distinct habitat conditions for 83 84 marine life due to their unique ocean dynamics and physical environments, leading to biogeographic division of three ecoregions characterized by different biota (Rebstock & Kang, 85 2003; Han & Lee, 2020; Spalding et al., 2007). The western coast of Korea is strongly affected 86 by the Yellow Sea. It generally shows low salinity in summer and high salinity in winter 87 (Spalding et al., 2007). The general characteristic of the southern coast of Korea is a relatively 88 89 warm current with high salinity under the influence of the Tsushima Current of the Korea Strait which branches out of the East China Sea (Lim et al., 2019). The East Sea is characterized by 90 low temperature and high salinity, which is known to have an oceano-geographic intersection 91 92 where warm and cold currents meet. Naturally, barnacles inhabiting Korea show species-specific 93 geographic distribution based on their preference for such ocean characteristics (Kim et al., 2020). Kim et al. (2020) collected 20 species of native and introduced barnacles in 44 localities 94 of Korea from 2016 to 2018 and tracked changes in their distribution along with water 95 temperature and salinity changes. They found that A. eburneus populations had established in the 96 southwestern coast of Korea representing the East China Sea ecoregion. They also found that A. 97 eburneus preferred relatively warm water over the cooler water in both northeastern and 98 northwestern parts of Korea. 99 Recently, A. eburneus emergence was noted in an ecological monitoring project in the Korean 100 harbors ("Improvement of management strategies on marine ecosystem disturbing and harmful 101 102 organisms"). Underway since 2013, the project is aimed at monitoring various alien marine organisms invading the Korean harbors through ship fouling or ocean currents. During a survey 103 in April 2021, extensive A. eburneus spread was documented in four major harbors, namely 104 Incheon, Tongyeong, Sokcho, and Hanlim, representing all surrounding Korean waters, 105 106 including the Yellow Sea, East China Sea, Korea Strait, and East Sea (Sea of Japan). Considering the substantial geographic distances and heterogeneous habitat conditions among 107 these regions, we speculated that A. eburneus might exhibit adaptive genetic and morphological 108 variation across geographies and possible routes of invasion. 109 110 To this end, in the present study, we first addressed the question of genetic variability by analyzing the genetic structure of Korean A. eburneus populations using a mitochondrial genetic 111 marker. Then, we examined variations in the shape and left-right symmetry of the opercular 112 plates of A. eburneus, which are of evolutionary and taxonomic significance (Pitombo et al., 113 2017), to evaluate morphology relative to habitat. For analysis, we employed two-dimensional 114 landmark-based geometric morphometrics (LBGM)—a powerful statistical tool for quantifying 115 morphological variations (Slice, 2007) to distinguish populations. Finally, we estimated the 116 density and plate occupancy of A. eburneus individuals to assess potential differences in 117 118 recruitment among localities.

119



#### 120 Materials & Methods

#### 121 Sample collection and installation of plate

- We performed the monitoring survey and sample collection from four localities of the southern
- 123 Korean Peninsula, Incheon (37°27′41.4″N, 126°36′49.8″E), Tongyeong (34°49′38.1″N,
- 124 128°26′03.5″E), Sokcho (38°13′36.7″N, 128°35′19.6″E), and Hanlim (33°25′11.2″N,
- 125 126°15′40.1″E) harbors (Fig. 1A). We accessed the ports and made collections with the
- permission of the Korea Institute of Marine Science & Technology Promotion (KIMST, project
- number: 20190518). We installed a set of place onsisting of 10 acrylic attachment plates (3×3)
- dm) (Fig. 1B) per location in April 2020, submerged at a depth of 1–3 m from sea level. Plate
- numbers a placed in order starting with those class to the surface of the water. The plates were
- deployed for a duration of 12 months to include exposure across both warm and cold seasons.
- 131 The warm season lasted from April to October 2020 (spring and summer), while the cold season
- lasted from November 2020 to March 2021 (fall and winter). We collected respectively 60, 55,
- 133 61, and 82 individuals of A. eburneus from the plates of Incheon, Tongyeong, Sokcho, and
- Hanlim harbors in April 2021. Since the maximum age of adult A. eburneus (Fig. 1C) remains
- unknown and their lifespan may vary with food availability and environmental factors, we
- collected only individuals with basal diameters of 2–2.5 cm from semblage, the maximum
- reported diameter for the species (Kaplan, 1988; Gosner, 1999). We did a sample collection at
- random due to the appropriate size of individuals being unevenly distributed from plate to plate.
- We photographed each recruitment plate before barnacle collection using a digital camera
- 140 (Olympus TG-5) and used a knife to remove the individuals from the plate and immediately
- preserved them in 95% ethanol. To examine the seasonal changes in water temperature and
- salinity, we collected these data using a handheld YSI Pro30 temperature and conductivity meter
- 143 (YSI, Yellow Springs, Ohio) at the four sampling sites every three months from May 2020 to
- 144 April 2021 (Table S1).

145146

#### DNA amplification and genetic analyses

- We randomly selected 30 individuals from each locality sample and isolated genomic DNA with
- the aid of the LaboPassTM Kit (Cosmo, Seoul, Korea) following the manufacturer's protocols.
- We amplified partial sequence of the mitochondrial gene cytochrome c oxidase subunit I (COI)
- with polymerase chain reaction (PCR) using PCR premix (BIONEER. Co, Daejeon, Korea) in an
- 151 AllInOneCycler™ PCR system (BIONEER. Co, Daejeon, Korea). We used in iversal primer
- pair, jgLCO1490 (5'- TIT CIA CIA AYC AYA ARG AYA TTG G -3') and jgHCO2198 (5'-
- 153 TAI ACY TCI GGR TGI CCR AAR AAY CA -3') (Geller et al., 2013) with the following
- amplification protocol: initial denaturation at 94 °C for 2 min, followed by 30 cycles of
- denaturation at 94 °C for 1 min, annealing at 48 °C for 1 min, extension at 72 °C for 1 min, final
- extension at 72 °C for 10 min, and storing at 4 °C. We purified the PCR products for sequencing
- reactions using the Labopass PCR Purification Kit (Cosmo, Seoul, Korea) following the
- 158 instructions of the manufacturer. We sequenced DNA on an ABI automatic capillary sequencer
- 159 (Macrogen, Seoul, Korea) using the same set of primers.



We confirmed sequences identities with BLAST search (Altschul et al., 1990), and visualized 160 using Finch TV, version 1.4.0 (http://www.geospiza.com/Products/finchtv.shtml) to check the 161 quality of signal and sites with possible low resolution. We deposited all obtained sequences in 162 GenBank (OM060406-060438; OK103580-103597) and performed a population genetic 163 164 analysis at the continental scale, comparing the level of pairwise genetic differentiation between all obtained sequences. We performed sequence alignment using the MAFFT v7.313 (Katoh & 165 Standley, 2013) and included 11 additional sequences of A. eburneus already published and 166 publicly available: four from Tangier Sound (North Atlantic Ocean, MK308058, MK308095, 167 MK308188, MK308249), four from Mastic beach (North Atlantic Ocean, MZ595234, 168 169 MZ595235, MZ595236, MT192780), and three from Gomishan Wetland (Caspian Sea, MK240317, MK240318, MK240319). We estimated uncorrected pairwise distances using 170 Geneious prime (https://www.geneious.com/prime/) and used the TCS algorithm implemented in 171 172 PopART (Clement, Posada & Crandall, 2000; Leigh & Bryant, 2015) to evaluate genealogical 173 relationships among COI haplotypes by reconstructing a haplotype network. We used DnaSP 5.10 (Librado & Rozas, 2009) to estimate haplotype diversity (Hd) (Rozas & Rozas, 1999), 174 nucleotide diversity  $(\pi)$  (defined as the average number of pairwise nucleotide differences, and 175 their standard deviations) (Tajima, 1983; Nei, 1987). We examined the degree of gene flow 176 among populations using Arlequin 3.5 (Excoffier & Lischer, 2010) based on parameters F<sub>ST</sub> 177 (Hudson, Slatkin & Maddison, 1992) to check phylogeographic structure among populations. It 178 ranges from little genetic differentiation among populations (0–0.05) to great genetic 179 differentiation (>0.25) (Wright, 1978; Graves & McDowell, 2003). We performed an Analysis of 180 Molecular Variance (AMOVA) to investigate the contribution of variance components (based on 181 182 pairwise genetic/Euclidean distances) of gene frequencies in different population levels relative to the total variance (Excoffier et al., 1992). We defined three groups (Korean, Caspian Sea, 183 North Atlantic Ocean) accroding to geographic regions for seven populations (Incheon, 184 Tongyeong, Sokcho, Hanlim, Gomishan Wetland, Tangier Sound, Mastic beach) of sequences to 185 186 measure the amount of genetic variance that can be explained by population structure based on F-statistics (Wright, 1965). 187

188 189

190

191

192

193

194

195

196

197198

#### Morphological data acquisition

We dissected the animals under a stereo dissecting microscope, Nikon SMZ 1000 (Nikon, Tokyo, Japan). For each individual, we first separated the left and right sides of the opercular plates from the body and subsequently divided them into scutum and tergum. We used 5% sodium hypochlorite (NaClO) to clean the surface of dissected parts. We placed the dissected parts on a petri dish covered by black paper and included a scale to take calibrated microscope images. To make a dorsal perspective angle perpendicular to the microscope objective, we manipulated the specimen using forceps. After each specimen was adequately positioned consistently, we took images on ventral view of scutum and tergum in multiple foci using a camera DP22 (Olympus, Tokyo, Japan) implemented in the dissecting microscope. To illustrate



202203

204

205

206

207208

209

210211

212

213

214

215

216

217

218

the three-dimensional depth of field more fully, we used stacking software Helicon Focus 7.7.5
(Kozub et al. 2008) to combine images.
We generated two TPS files for the scutum (148 individuals) and the tergum (151 individuals)

We generated two TPS files for the scutum (148 individuals) and the tergum (151 individuals) separately to evaluate the geometric variation in size and shape, including the asymmetry in sideby-side pairs (matching symmetry between left and right parts) (Ho et al., 2009). We generated copies of all images and employed them along with originals for producing TPS files using tpsUtil software (Rohlf, 2015). We digitized the chosen landmark (LM), all Type I (Bookstein, 1991), twice using tpsDig2 software (Rohlf, 2010) to estimate digitization-related errors (Klingenberg, Barluenga & Meyer, 2002). We selected five anatomical reference points of the scutum for LM digitization (Fig. 2A); one located on apex (LM 1); one located on the posterolateral tip (LM 2); one located along the inflection point of basal margin (LM 3); one located along the inflection point of medial margin (LM 4); one located on the lower point of basal ridge (LM 5). We selected ten anatomical references of the tergum for LM digitization (Fig. 2B): one located on apex (LM 1); one located along the inflection point of lateral margin (LM 2); one located on the distolateral tip of scutal side (LM 3); one located on the basal and spur margin intersection on scutal side (LM 4); one located on the spur distolateral point (LM 5); one located on the spur distomedial point (LM 6); one located on the basal and spur margin intersection on carinal side (LM 7); one located along the inflection point of basal margin (LM 8); one located on the distormedial tip of cranial side (LM 9); one located on the proximomedial tip of cranial side (LM 10). The scutum and tergum datasets finally included 296, and 302 digitized images (from the original 148 and 151 images), respectively.

219220221

222223

224225

226

227

228229

230

231

232

233234

235

236237

238

#### Geometric morphometric analyses

We employed algorithms implemented in Morpho J package software ver. 1.07d (Klingenberg, 2011) for all LBGM analyses. We aligned and superimposed all landmark configurations in six TPS files with Generalized Procrustes Analysis (GPA) to remove the effects of non-shape variation (Rohlf & Slice, 1990). We converted the Procrustes shape coordinates into a covariance matrix (Brusatte et al., 2011). As a size proxy, we estimated the centroid size (CS) for each individual from the raw LM coordinates (Bookstein, 1989). We calculated the CS as the square root of the sum of squared distances for a set of centroid LMs (Mitteroecker et al., 2013). We performed Procrustes analysis of variance (ANOVA) test for group structuring evidence in the overall dataset using population and side as classifiers. We also used it to evaluate digitizing errors (Klingenberg & McIntyre, 1998). After implementing the Procrustes ANOVA to test error terms, we employed the first digitization dataset and divided it into the left and right datasets. We carried out typical LBGM analyses on the left and right datasets, including regression, principal component analysis (PCA), and canonical variate analysis (CVA), following the procedure previously described in Kim et al. (2021). We performed regressions of shape onto size to test allometry based on regression scores and CS (Monteiro, 1999; Klingenberg, 2016). We applied a permutation test (Good, 2013) to assess the statistical significance against the null hypothesis. We estimated residual components to subtract the portion of shape variations predicted by the



- regression for further analyses. We used the residual shape component for PCA, which is
- 240 frequently applied for the first exploratory analysis of a large dataset composed of several
- samples to provide a visual impression of overall shape variations (Mitteroecker et al., 2013).
- We used the wire frame to visualize scutum and tergum's average shape variations along major
- 243 PCA axes. We employed separated residual components for CVA, which is a multivariate
- 244 method, producing a criterion for reliably distinguishing among multiple groups preliminarily
- 245 defined. The analysis generated a multivariate statistical value as Mahalanobis Distances, (MD)
- 246 (Timm, 2002). The permutation test assessed the statistical significance against the equal group
- 247 means' null hypothesis.

248249

#### Measurement of density of recruited barnacle

- We calculated the density of A. eburneus per attachment plate across sampling areas as the
- number of barnacles found in each plate photograph by its area (9 dm²). We counted the
- 252 individual number of A. eburneus based on pixel analysis of photographs using ImageJ software
- 253 (Schneider, Rasband & Eliceiri, 2012). We estimated the mean, standard deviation, maximum,
- and minimum values of density.

255256

257

#### Results

#### Population genetic diversity

- 258 Fifty seven COI patrial sequences were obtained: ten from Incheon, 12 from Tongyeong, 13
- 259 from Sokcho, 22 from Hanlim. The final alignment including GenBank sequences comprised 68
- sequences, which included no stop codons, and the sequences encoded polypeptides of 208
- amino acids. The alignment was trimmed to a length of 627 base pairs, of which 579 were
- 262 constant and 48 were variable (16 singleton and 32 parsimony informative). The average
- 263 nucleotide frequency of the aligned sequences was 28.8, 37.4, 16.1, and 17.7% for each A, T, G,
- and C, respectively. In other words, the sequences were AT-rich (66.2%). The uncorrected
- pairwise distances between the four populations ranged between 0 and 3.5% (Table S2), with the
- 266 highest value recorded between the individuals of Tongyeong and Hanlim.
- The parsimony network generated with TCS (Fig. 3) detected 33 haplotypes (Hd = 0.961,  $\pi$  =
- 268 0.016) from all obtained sequences, forming three distinct clades (A, B, and C). Clade A was
- separated from Clade B by 12 mutational substitutions. Clade C was distinguished from Clades
- A and B by 12 and 6 substitutions, respectively. Overall, the frequency of haplotypes in each
- 271 clade was not locality-specific but Clade A contained only individuals matching closely with
- those from the Atlantic Ocean and Caspian Sea, Clade B contained only indivduals matching
- 273 closely with those from the Caspian Sea, whereas Clade C individuals were intermediate with no
- 274 identifiable match with any sea or ocean. Nearly all haplotypes detected presented widespread
- 275 geographic distribution except for those of Tangier Sound, which were only found in clade A.
- 276 The Incheon population included seven haplotypes (Hd = 0.933,  $\pi = 0.01336$ ) belonging to
- 277 clades A and B. Four of these seven haplotypes were shared by Tongyeong, Hanlim, Tangier
- 278 Sound, and Mastic beach populations. The Tongyeong population comprised eight haplotypes



- 279 (Hd = 0.924,  $\pi = 0.01418$ ) belonging to clades A and B. Two of these eight haplotypes were shared by Sokcho, Hanlim at the former clade. The Sokcho population included eight haplotypes 280 (Hd = 0.897,  $\pi$  = 0.01795), two of which exclusively belonged to clade C. The Hanlim 281 population included 14 haplotypes (Hd = 0.957,  $\pi$  = 0.01668), which belonged to clades A and 282 283 Encompassing all haplotypes of A. eburneus, the evidence of population genetic structuring in 284 Korea was not statistically significantly different as revealed by pairwise Fst analysis (Table 1). 285 However, Incheon, Tongyeong, and Sokcho populations of Korea were significantly 286 differentiated from North Atlantic populations, Tangier sound, and Mastic beach, with Fst values 287 ranging from 0.41849 to 0.52013. While the Caspian population, Gomishan wetland, was 288 differentiated from North Atlantic ones, with Fst values of 0.29225 for Tangier Sound and 289
- 0.30524 for Mastic Beach. In the total genetic variance among groups and populations based on 290 structure, 27% was attributed to the group difference, and 72.3% was explained by the individual 291

292 differences within populations (Table 2).

#### 293 294

#### Variations in size and shape

295 The ANOVA results (Table 3) yielded negligible digitizing errors for all datasets, with the individual variability mean square (MS) and F values far exceeded the error values. The 296 297 individuals significantly varied in terms of size of the scutum (F = 7.99, p < 0.0001) and tergum 298 (F = 3.58, p < 0.0001). However, neither population nor asymmetry side-by-side contributed to 299 the observed variations in the size of the scutum (asymmetry by the side, p = 0.7304) and tergum (population, p = 0.1104; asymmetry by the side, p = 0.194). The effect of asymmetry side-by-300 side was significant, contributing to the variations in the shape of the scutum (F = 5.49, p < 301 302 0.0001) and tergum (F = 6.33, p < 0.0001) and exceeding that of individual variability. The population most significantly contributed to the variations in the shape of the scutum (F = 7.39, p 303 < 0.0001) and tergum (F = 8.23, p < 0.0001), and its contribution exceeded that of the 304 asymmetry by the side. 305

306 307

#### Allometry and size-corrected shape variations among populations

Regression analysis revealed an allometric effect in the left (4.33%, p = 0.011) and the right 308 309 (3.6%, p = 0.0459) scutum datasets, thus the null hypothesis regarding isometric shape development was rejected. PCA based on residuals revealed major shape variations of the left 310 311 (Fig. 4A) and right scutum (Fig. 4B), with the first two axes explaining respectively 69.6% (PC1 = 37.5%; PC2 = 32.1%) and 66.5% (PC1 = 41.3%; PC2 = 25.2%) of the total variance. Although 312 PCA on both datasets did not reveal apparently distinguishable clustering among the populations. 313 the Incheon population was recognizable in the PC1 morphospace of the left scutum based on a 314 315 slightly different trend. Specifically, the Incheon individuals occupied the space between -0.15 316 and 0.05 for the left scutum, with a negative center of gravity. The wireframe demonstrated the shape variations in Incheon individuals corresponding to PC1. As such, the left (Fig. 4C) and 317 right scuta (Fig. 4D) were horizontally narrower than the average due to medially shifted LMs 1– 318 319 4 and LMs 1–3, respectively.



Regression analyses rejected the allometric association in the left (1.983%, p = 0.127) and right 320 (1.597%, p = 0.3037) tergum datasets. The first two PC axes of the left (Fig. 5A) and right 321 tergum (Fig. 5B) datasets explained respectively 38.9% (PC1 = 23.7%; PC2 = 15.2%) and 39.3% 322 (PC1 = 24.6%; PC2 = 14.7%) of the total variance. The PC1 of both datasets emphasized the 323 324 variations in the shape of the tergum among the populations, with the morphospace clustering of the Tongyeong population on one side (with the center of gravity in the negative part of the 325 PC1). The Sokcho population was clustered on the negative side in the left tergum dataset but 326 not in the right one. Meanwhile, the Incheon and Hanlim populations displayed clustering on the 327 positive side of PC1 morphospace. The wireframe corresponding to PC1 (Fig. 5C, D) showed a 328 329 narrow and elongated shape for the Tongyeong and Sokcho populations due to proximally shifted LMs 1, 2, and 8; medially shifted LMs 3, 4, 9, and 10; and distally shifted LMs 5, 6, and 330 331 7.

332 333

334

335

336 337

338

339

342

343

#### Population differentiation based on morphological distance

Based on the Mahalanobis distances (Table 4), the Tongyeong population was the most distantly related to the rest, with the highest values of the left and right tergum morphology. The permutation test of CVA rejected the PE null hypothesis for equal group means between populations (p < 0.0001). CVA of the left and right tergum datasets showed that the first two axes explained respectively 81.4% (CV1 = 42.7%; CV2 = 38.7%) and 88.5% (CV1 = 69.6%; CV2 = 18.9%) of the total variance.

340 341

#### Plate density of Amphibalanus eburneus

Table 5 summarizes plate density of *A. eburneus* recruitment in the surveyed areas. The Hanlim population showed the most significant mean density at 65.27 indi/dm<sup>2</sup>, followed by Incheon, Sokcho, and Tongyeong populations (density at 54.89, 32.04, 8.67 indi/dm<sup>2</sup>, respectively).

344 345 346

#### Discussion

347 The present study investigated geographical differentiation in the genetics, morphology, and recruitment of Korean populations of alien barnacle A. eburneus. Based on the pairwise distance 348 of the COI sequences, A. eburneus populations showed a low diversification rate. The values 349 ranged between 0% and 3.5%, falling within the level of intra-specific variability for this species, 350 compared to the much higher inter-specific values of COI sequences in other balanomorph 351 352 barnacles (Tsang et al., 2008; Chen et al., 2014). Parsimony haplotype network analysis revealed detailed genetic characteristics of the populations, establishing three separate clades. 353 Interestingly, the clade separation was not locality-specific, and nearly all haplotypes of the 354 355 populations were randomly placed in the three clades. Fst value comparison confirmed an absence of genetic structuring between Korean populations indicating A. eburneus has been 356 introduced in all directions of the Korean Peninsula without significant genetic differentiation 357 suggesting that dispersal and/or delivery are intermixed. As such *A. eburneus*'s invasion success 358 could be primarily attributed to its wide range of adaptability in various salinity and water 359



| 360 | temperatures (Costlow & Bookhout, 1957; Dineen & Hines, 1994), comparable to other                      |
|-----|---------------------------------------------------------------------------------------------------------|
| 361 | introduced balanomorph species. Amphibalanus improvisus (Darwin, 1854) is wn to exhibit a               |
| 362 | complex haplotype admixture with global distribution (Chen et., 2014; Wrange et al., 2016)              |
| 363 | based on a high degree of euryhalinity and eurythermy (Pansch et al., 2013). It showed a similar        |
| 364 | distribution in the Korean Peninsula (Kim et al., 2020). Contrarily, another balanomorph                |
| 365 | invasive species, Perforatus perforates (Bruguière, 1789), showed a distribution confined to            |
| 366 | eastern and southern parts of the Korean Peninsula owing to its weak capability to vary                 |
| 367 | physically (Kim et al. 2020). Indeed, the capability to endure environmental fluctuation is             |
| 368 | known as a significant biological factor determining various marine invertebrates' geographical         |
| 369 | distributions (Chang et al. 2017; Seo et al 2021).                                                      |
| 370 | Parsimony network revealed that Korean populations shared haplotypes with North Atlantic and            |
| 371 | the Caspian Sea populations. However, the genetic structure indicated by Fst value confirmed            |
| 372 | that the etic differentiation occurred significantly only between Korean and North Atlantic             |
| 373 | populations. This corresponded to the AMOVA results where the majority of the total variation           |
| 374 | was accounted for by within-population variations. Lacking genetic differentiation between              |
| 375 | Korean and Caspian Sea is somewhat noteworthy given that the latter region is geographically            |
| 376 | isolated wi large distance from the Far East. Wrange et al. (2016) have reported a similar              |
| 377 | phenomenon based on their global scale population genetics study of A. improvises. They                 |
| 378 | showed that the Caspian population shared haplotypes with Japan's with nearly no genetic                |
| 379 | differentiation. However, they did not provide any specific hypothesis on the dispersal process         |
| 380 | between both regions. Unfortunately, it is also challenging to determine the actual invasion            |
| 381 | pathway into the Korean Peninsula due to insufficient alien genetic information. Shipping and           |
| 382 | other anthropogenic activities might have played an important role in shaping the current               |
| 383 | population genetic structure of A. eburneus. Indeed, fouling organisms including barnacles often        |
| 384 | form dense populations on ship hulls as large founding populations and/or potential admixture           |
| 385 | which is necessary for the invaders to overcome the founder effect and demographic bottlenecks          |
| 386 | (Roman & Darling, 2007; Dlugosch & Parker, 2008). Previous monitoring surveys (Park et al.,             |
| 387 | 2017; Kim et al., 2020) support our speculation that Korean A. eburneus populations are more            |
| 388 | frequently found in the possible han in exposed habitats. It is also likely that the shipping along the |
| 389 | coastline is more responsible for the gene flow among Korean populations than internal shipping.        |
| 390 | Because internal shipping across the Korean Peninsula is impossible due to the mountain range           |
| 391 | developed along the eastern publisturbing direct linkage between the east and west coast.               |
| 392 | Our LBGM analysis revealed substantial geometric variations in the opercular plates of $A$ .            |
| 393 | eburneus, which are reported for the first time in a s you on barnacles. We identified two              |
| 394 | different aspects of morphological variations in the datasets: allometry and shape variations           |
| 395 | between sides and among populations. Allometry is a known factor contributing to                        |
| 396 | morphological integration (Klingenberg, 2013; 2016), and group discrimination can often be              |
| 397 | improved following size correction (Sidlauskas, Mol & Vari, 2011). The examined individuals             |
| 398 | significantly varied in terms of the size of the scutum and tergum, indicating moderate allometric      |
| 399 | effects on the scutum morphology. Although we could not markedly improve population                     |
|     |                                                                                                         |



400 discrimination following size correction, the discrepancy in the presence of allometry between the scutum and tergum is noteworthy. In recent years, with increase in the number of studies 401 analyzing the invertebrate morphology using LBGM, cases of the independent evolution of 402 specific body parte gardless of being physically connected to one another ve been noted 403 404 (Karanovic & Bláha, 2019; Karanovic, Huyen & Brandão, 2019; Budečević et al., 2021). In this context, our findings suggest that the scutum and tergum of A. eburneus have evolved in size 405 independently, despite being connected to each other to form the opercular plate. 406 Furthermore, similar trends were noted in the size-corrected shape variations between the sides. 407 As such, the left and right sides of the plates were not described by the identical direction of LM 408 409 shift (see Figs. 4C, D and 5C, D). Indeed, asymmetry side-by-side of the opercular plates is not unknown finding in barnacles. Specifically, members of the order Verrucomorpha, which inhabit 410 deep-sea hydrothermal vents hibit an asymmetric form of the scutum, with one house and 411 412 the other fixed side (Newman, 2000). However, apart from that in such taxa presenting parent 413 disparity, the geometric asymmetry between the sizes of the opercular plate has never been documented in acorn barnacles, with the exception of a previous study in which linear 414 measurements of asymmetry were reported (Barnes & Healy, 1971; Chen et al., 2014). In our 415 dataset, individuals from the Sokcho population showed obvious asymmetry in the tergum, 416 forming a distinct cluster in the left and right morphospace of the PCA biplot (see Fig 5A, B). 417 Therefore, the two sides of the opercular plate have likely traced independent evolutionary paths 418 in terms of shape, which may lead to incorrect population or species identification depending on 419 which of the two sides is selected for taxonomic examination. 420 Regarding population differentiation, the Tongyeong population could be clearly differentiated 421 422 from the rest based on variations in the shape of the tergum on both sides of the opercular plate. Several external factors that may cause this phenomenon can be taken into account. A high 423 recruitment density can dete ne the barnacle shape, often resulting in the columnar star in 424 response to intensive competition for the space and foraging (Barnes & Powell, 1950; Bertness, 425 426 Gaines & Yeh, 1998; Hills & Thomason 2003). Our analysis, however, sug letted a less possibility of t elationship between shape variation and intra-specific competition and 427 Tongyeong population showed the lowest we among populations. According to Barnes and 428 Healy (1971), water temperature is also another major factor affecting variations in the opercular 429 430 plate morphology of A. eburneus. Based on linear measurement results, they reported that the population of A. eburneus in the cold regic  $\overline{\psi}$  iffered markedly from those in the warm  $\frac{1}{2}$  on by 431 showing the basal margin of the carinal side of the tergum deeply hollowed out. Lively (1986) 432 reported shape variations in the barnacle *Chthamalus anisopoma* Pilsbry, 1916 exposed to the 433 predatory snail Mexacanthina lugubris angelica Oldroyd, 1918; as such, under predation 434 435 pressure, some juveniles developed a bent morphology. Jarrett (2008) reported that *Chthamalus* fissus Darwin, 1854, which possesses an oval operculum, manages predation risk by changing 436 the shape of the plate to become narrower, which is advantageous in escaping to datory 437 438 gastropod, Mexacanthina lugubris lugubris Sowerby, 1821. Unfortunately the present study, we failed to determine possible correlations of the observed shape variations in Tongyeong 439



populations with a vear ord of water temperature and salinity due to to ack of a significant 440 differences with other localities (Table S1). In addition, we did not observe any evidence of 441 predation-related characteristics of the A. eburneus communities in the monitoring plates. 442 Compared with direct observations in natural habitats, surveys using monitoring plates offer 443 444 limited opportunities to witness natural phenomena representing the relationships among organisms due to limited space and resource accessibility. Nonetheless, based on our genetic 445 analyses, the genetic diversity in the Korean A. eburneus populations imply a great plasticity for 446 adaptation, which can drive variations in shape of the tergum in response to certain external 447 stimuli. Therefore, further studies are warranted on A. eburneus in the adjacent natural habitats 448 449 using additional information on their community structure and trophic relationships.

450 451

#### Conclusion

452 Using mitochondrial gene sequence and LBGM analyses, the present study successfully unveiled genetic structure, shell morphology, and recruitment pattern in the alien barnacle A. eburneus in 453 Korea. Genetic comparisons among four regions confirmed three clades based on 3.5% pairwise 454 genetic distances and 33 haplotypes, albeit without regional specificity. In contrast, the 455 quantitatively described variations in opercular plate size and shape did identify a unique 456 convergence in narrow elongated tergum in the population from Tongyeong. This population 457 458 was also differentiated from all others by reduced recruitment density. Despite the inability to predict major factors driving dispersal and morphological variation in A. eburneus in South 459 Korea, we demonstrated a situater phenotypic differentiation in A. eburneus among diverse 460 genotypes from a single location. 461

투

#### Acknowledgements

We would like to thank Jaehyun Kim (Hanyang University) for providing valuable comments on designing the genetic analysis.

465 466 467

462

463 464

#### References

- 468 Altschul SF, Gish W, Miller W, Myers EW. Lipman DJ. 1990. Basic local alignment search tool.
- 469 *Journal of Molecular Biology*, 215: 403–410. doi: org/10.1016/S0022-2836(05)80360-2.
- 470 Arsenault DJ, Marchinko KB, Palmer AR. 2001. Precise tuning of barnacle leg length to coastal
- 471 wave action. *Proceedings of the Royal Society of London. Series B: Biological Sciences* 268:
- 472 2149–2154. doi:org/10.1098/rspb.2001.1776.
- 473 Bacon PR. 1971. The maintenance of a resident population of *Balanus eburneus* (Gould) in
- 474 relation to salinity fluctuations in a Trinidad mangrove swamp. *Journal of Experimental Marine*
- 475 *Biology and Ecology*. 6:187–198. doi:org/10.1016/0022-0981(71)90018-9.
- Barnes H, Healy MJR. 1971. Biometrical studies on some common cirripedes. III. Discriminant
- 477 analysis of measurements on the scuta and terga of *Balanus eburneus* Gould. *Journal of*
- 478 Experimental Marine Biology and Ecology 6: 83–90. doi: org/10.1016/0022-0981(71)90051-7.



- Barnes H, Powell HT. 1950. The development, general morphology and subsequent elimination
- of barnacle populations, *Balanus crenatus* and *B. balanoides*, after a heavy initial settlement. *The*
- 481 *Journal of Animal Ecology* 19: 175–179. doi:org/10.2307/1526.
- 482 Bertness MD, Gaines SD, Yeh SM. 1998. Making mountains out of barnacles: the dynamics of
- 483 acorn barnacle hummocking. *Ecology* 79: 1382–1394. doi: org/10.1890/0012-
- 484 9658(1998)079[1382:MMOOBT]2.0.CO;2
- 485 Biccard A, Griffiths CL. 2016. Additions to the barnacle (Crustacea: Cirripedia) fauna of South
- 486 Africa. African Zoology 51: 99–116. doi: org/10.1080/15627020.2016.1196610.
- Bookstein FL. 1989. "Size and shape": a comment on semantics. Systematic zoology 38: 173–
- 488 180. doi: org/10.2307/2992387.
- 489 Bookstein FL. 1991. Morphometric Tools for Landmark Data: Geometry and Biology, 1st ed.
- 490 Cambridge: Cambridge University Press.
- 491 Brusatte SL, Sakamoto M, Montanari S, Hartcourt Smith WEH. 2011. The evolution of cranial
- 492 form and function in theropod dinosaurs: insights from geometric morphometrics. *Journal of*
- 493 Evolutionary Biology 25(2): 365–377. doi: org/10.1111/j.1420-9101.2011.02427.x.
- 494 Budečević S, Savković U, Đorđević M, Vlajnić L, Stojković B. 2021. Sexual Dimorphism and
- 495 Morphological Modularity in *Acanthoscelides obtectus* (Say, 1831) (Coleoptera:
- 496 Chrysomelidae): A Geometric Morphometric Approach. *Insects* 12: 350. doi:
- 497 org/10.3390/insects12040350.
- 498 Carlton JT, Newman WA, Pitombo FB. 2011. Barnacle invasions: introduced, cryptogenic, and
- range expanding Cirripedia of North and South America. In: Galil BS, Clark PF, Carlton JT, ed.
- 500 *In the wrong place-alien marine crustaceans: distribution, biology and impacts.* Dordrecht.:
- 501 Springer, 159–213.
- 502 Chan BKK, Hung OS. 2005. Cirral length of the acorn barnacle *Tetraclita japonica* (Cirripedia:
- Balanomorpha) in Hong Kong: effect of wave exposure and tidal height. *Journal of Crustacean*
- 504 *Biology* 25: 329–332. doi: org/10.1651/C-2535.
- 505 Chan FT., MacIsaac HJ, Bailey SA. 2015. Relative importance of vessel hull fouling and ballast
- water as transport vectors of nonindigenous species to the Canadian Arctic. Canadian Journal of
- 507 Fisheries and Aquatic Sciences, 72: 1230–1242. doi: org/10.1139/cjfas-2014-0473.
- 508 Chang YW, J. Chan SM, Hayasi R, Shuto T, Tsang LM, Chu KH, Chan BKK. 2017. Genetic
- 509 differentiation of the soft shore barnacle *Fistulobalanus albicostatus* (Cirripedia: Thoracica:
- Balanomorpha) in the West Pacific. *Marine Ecology-An Evolutionary Perspective* 38: e12422.
- 511 Chen HN, Tsang LM, Chong VC, Chan BKK. 2014. Worldwide genetic differentiation in the
- 512 common fouling barnacle, *Amphibalanus amphitrite*. *Biofouling* 30: 1067–1078. doi:
- 513 org/10.1080/08927014.2014.967232.
- 514 Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene
- 515 genealogies. *Molecular Ecology* 9: 1657–1659. doi: org/10.1046/j.1365-294x.2000.01020.x.
- 516 Costlow Jr JD, Bookhout CG. 1957. Larval development of *Balanus eburneus* in the laboratory.
- 517 *The Biological Bulletin* 112: 313–324. doi: org/10.2307/1539123.



- 518 Davidson IC, Brown CW, Sytsma MD, Ruiz GM. 2009. The role of containerships as transfer
- mechanisms of marine biofouling species. *Biofouling* 25: 645-655. doi:
- 520 10.1080/08927010903046268.
- 521 De Jong, G. 2005. Evolution of phenotypic plasticity: patterns of plasticity and the emergence of
- 522 ecotypes. New Phytologist 166: 101–118. doi: 10.1111/j.1469-8137.2005.01322.x.
- 523 Dineen JF, Hines AH. 1994. Effects of salinity and adult extract on settlement of the oligohaline
- barnacle Balanus subalbidus. Marine Biology 119: 423–430. doi: org/10.1007/BF00347539
- 525 Dlugosch KM, Parker IM. 2008. Invading populations of an ornamental shrub show rapid life
- history evolution despite genetic bottlenecks. *Ecology letters* 11: 701–709. doi:
- 527 org/10.1111/j.1461-0248.2008.01181.x.
- 528 Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: A new series of programs to perform
- 529 population genetics analyses under Linux and Windows. *Molecular ecology resources*, 10: 564–
- 530 567. doi: 10.1111/j.1755-0998.2010.02847.x.
- Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric
- distances among DNA haplotypes: application to human mitochondrial DNA restriction data.
- 533 *Genetics*, 131: 479–491. doi:org/10.1093/genetics/131.2.479.
- Fisk DA, Harriott VJ. 1990. Spatial and temporal variation in coral recruitment on the Great
- Barrier Reef: Implications for dispersal hypotheses. *Marine Biology* 107: 485–490.
- 536 doi:org/10.1007/BF01313433.
- 537 Geller J, Meyer C, Parker M, Hawk H. 2013. Redesign of PCR primers for mitochondrial
- 538 cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic
- 539 surveys. *Molecular ecology resources*, 13: 851–861. doi: org/10.1111/1755-0998.12138.
- 540 Geller J, Sotka EE, Kado R, Palumbi SR, Schwindt E. 2008. Sources of invasions of a
- 541 northeastern Pacific acorn barnacle, *Balanus glandula*, in Japan and Argentina. *Marine Ecology*
- 542 *Progress Series* 358: 211–218. doi: org/10.3354/meps07466.
- 543 Gilg MR, Lukaj E, Abdulnour M, Middlebrook M, Gonzalez E, Turner R, Howard R. 2010.
- 544 Spatio-temporal settlement patterns of the non-native titan acorn barnacle, *Megabalanus*
- 545 coccopoma, in northeastern Florida. Journal of Crustacean Biology 30: 146–150. doi:
- 546 org/10.1651/09-3148.1.
- 547 Good P. 2013. Permutation tests: a practical guide to resampling methods for testing
- 548 hypotheses. Berlin: Springer Science & Business Media.
- Gosner KL. 1999 A field guide to the Atlantic seashore: from the Bay of Fundy to Cape Hatteras
- 550 (Vol. 24). Boston: Houghton Mifflin Harcourt.
- Graves JE, McDowell JR. 2003. Stock structure of the world's istiophorid billfishes: a
- genetic perspective. *Marine and Freshwater Research*, 54: 287–298. doi: org/10.1071/MF01290.
- 553 Guy-Haim T, Rilov G, Achituv Y. 2015. Different settlement strategies explain intertidal
- 554 zonation of barnacles in the Eastern Mediterranean. Journal of Experimental Marine Biology and
- 555 *Ecology* 463: 125–134. doi: org/10.1016/j.jembe.2014.11.010.
- Haderlie EC. 1984. Marine biodeterioration: An interdisciplinary study. Annapolis. Naval
- 557 Institute Press. doi:org/10.1007/978-1-4615-9720-9 21.



- Han IS, Lee JS. 2020. Change in the annual amplitude of sea surface temperature due to climate
- 559 change in a recent decade around the Korean Peninsula. *Journal of the Korean Society of Marine*
- 560 Environment & Safety 26: 233–241. doi: org/10.7837/kosomes.2020.26.3.233.
- Harriott VJ, Fisk DA. 1987. A comparison of settlement plate types for experiments on the
- recruitment of scleractinian corals. *Marine Ecology Progress Series* 37: 201–208. doi:
- 563 10.3354/meps037201.
- Henry DP, McLaughlin PA. 1975. The barnacles of the *Balanus amphitrite* complex (Cirripedia,
- Thoracica). *Zoologische verhandelingen* 141: 1–254. <a href="https://repository.naturalis.nl/pub/317846">https://repository.naturalis.nl/pub/317846</a>.
- 566 Hills JM, Thomason JC. 2003. Recruitment density can determine adult morphology and
- fecundity in the barnacle, Semibalanus balanoides. Biofueling 19: 205–213. doi:
- 568 org/10.1080/08927014.2003.10382983
- Ho GWC, Leung KMY, Lajus D, Ng JSS, Chan BKK. 2009. Fluctuating asymmetry of
- 570 Amphibalanus (Balanus) amphitrite (Cirripedia: Thoracica) in association with shore height and
- 571 metal pollution. *Hydrobiologia* 621: 21–32. doi: org/10.1007/s10750-008-9629-0.
- Hudson RR, Slatkin M, Maddison WP. 1992. Estimation of levels of gene flow from DNA
- 573 sequence data. *Genetics* 132: 583–589. doi: org/10.1093/genetics/132.2.583.
- 574 Iwasaki K. 2018. Nonindigenous marine invertebrates on four populated islands in the Sea of
- 575 Japan. *Biogeography* 20: 67–72.
- Jaberimanesh Z, Oladi M, Nasrolahi A, Ahmadzadeh F. 2019. Presence of *Amphibalanus*
- 577 eburneus (Crustacea, Cirripedia) in Gomishan Wetland: molecular and morphological evidence
- of a new introduction to the southern Caspian Sea. Regional Studies in Marine Science 25:
- 579 100469. doi: org/10.1016/j.rsma.2018.100469.
- Jarrett JN. 2008. Inter-population variation in shell morphology of the barnacle *Chthamalus*
- 581 fissus. Journal of Crustacean Biology 28: 16–20. doi: org/10.1651/07-2851R.1.
- 582 Kaplan EH. 1988. A field guide to southeastern and Caribbean seashores: Cape Hatteras to the
- 583 Gulf coast, Florida, and the Caribbean. Boston: Houghton Mifflin Harcourt.
- Karanovic I, Huyen PTM, Brandão SN. 2019. Ostracod shell plasticity across longitudinal and
- bathymetric ranges. Deep Sea Research Part I: Oceanographic Research Papers 143: 115–126.
- 586 doi: org/10.1016/j.dsr.2018.11.005.
- 587 Karanovic T, Bláha M. 2019. Taming extreme morphological variability through coupling of
- molecular phylogeny and quantitative phenotype analysis as a new avenue for taxonomy.
- 589 *Scientific reports* 9: 1–15. doi: org/10.1038/s41598-019-38875-2.
- 590 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
- improvements in performance and usability. *Molecular biology and evolution* 30: 772–780.
- 592 Kim HK, Chan BKK, Lee SK, Kim W. 2020. Biogeography of intertidal and subtidal native and
- 593 invasive barnacles in Korea in relation to oceanographic current ecoregions and global climatic
- 594 changes. Journal of the Marine Biological Association of the United Kingdom 100: 1079–1091.
- 595 doi:10.1017/S0025315420001009.
- 596 Kim J, Kim J, Lee W, Karanovic I. 2021. The first insight into the patterns of size and shape
- variation of a microcerberid isopod. *Water* 13: 515. doi: org/10.3390/w13040515.



- 598 Kim IH. 1988. Illustrated Encyclopedia of Fauna & Flora of Korea Vol.38. Korea: Ministry of
- 599 Education.
- 600 Klingenberg CP, Barluenga M, Meyer A. 2002. Shape analysis of symmetric structures:
- Quantifying variation among individuals and asymmetry. Evolution 56: 1909–1920. doi:
- 602 org/10.1111/j.0014-3820.2002.tb00117.x.
- 603 Klingenberg CP, McIntyre GS. 1998. Geometric morphometrics of developmental instability:
- analyzing patterns of fluctuating asymmetry with Procrustes methods. *Evolution* 52: 1363–1375.
- 605 doi: org/10.1111/j.1558-5646.1998.tb02018.x.
- 606 Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics.
- 607 *Molecular ecology resources* 11: 353–357. doi: org/10.1111/j.1755-0998.2010.02924.x.
- 608 Klingenberg CP. 2013. Cranial integration and modularity: insights into evolution and
- development from morphometric data. *Hystrix* 24: 43–58.
- 610 Klingenberg CP. 2016. Size, shape, and form: concepts of allometry in geometric
- 611 morphometrics. Development genes and evolution 226: 113–137. doi: org/10.1007/s00427-016-
- 612 0539-2.
- Kozub D, Khmelik V, Shapoval Y, Chentsov V, Yatsenko S, Litovchenko B, Starykh V. 2008.
- 614 Helicon Focus Software.
- 615 Larsen PF. 1985. The benthic macrofauna associated with the oyster reefs of the James River
- 616 Estuary, Virginia, USA. Internationale Revue der gesamten Hydrobiologie und Hydrographie
- 617 70: 797–814.
- 618 Leigh JW, Bryant D. 2015. popart: full-feature software for haplotype network construction.
- 619 *Methods in Ecology and Evolution* 6: 1110–1116. doi: org/10.1111/2041-210X.12410.
- 620 Li NK, Denny MW. 2004. Limits to phenotypic plasticity: flow effects on barnacle feeding
- 621 appendages. *The Biological Bulletin* 206: 121–124. doi: org/10.2307/1543635.
- 622 Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA
- polymorphism data. *Bioinformatics* 25: 1451–1452. doi: org/10.1093/bioinformatics/btp187.
- 624 Lim NL, Lee HM, Jeung HD, Noseworthy RG, Jung S, Choi KS. 2019. Early larval development
- and annual gametogenesis of the brooding oyster *Ostrea circumpicta* (Pilsbry, 1904) in the
- 626 shallow subtidal benthic ecosystem in Jeju Island, off the south coast of Korea. Zoological
- 627 Studies 58: 29. doi: 10.6620/ZS.2019.58-29.
- 628 Lively CM. 1986. Predator-induced shell dimorphism in the acorn barnacle *Chthamalus*
- 629 anisopoma. Evolution 40: 232–242. doi: org/10.1111/j.1558-5646.1986.tb00466.x.
- 630 López DA, López BA, Pham CK, Isidro EJ, De Girolamo M. 2010. Barnacle culture:
- background, potential and challenges. Aquaculture research 41: 367–375. doi:10.1111/j.1365-
- 632 2109.2010.02508.x.
- 633 Marchinko KB, Palmer AR. 2003. Feeding in flow extremes: dependence of cirrus form on
- 634 wave-exposure in four barnacle species. *Zoology* 106: 127–141. doi: org/10.1078/0944-2006-
- 635 00107.
- 636 Miller LP. 2007. Feeding in extreme flows: behavior compensates for mechanical constraints in
- barnacle cirri. Marine Ecology Progress Series 349: 227–234. doi: 10.3354/meps07099.

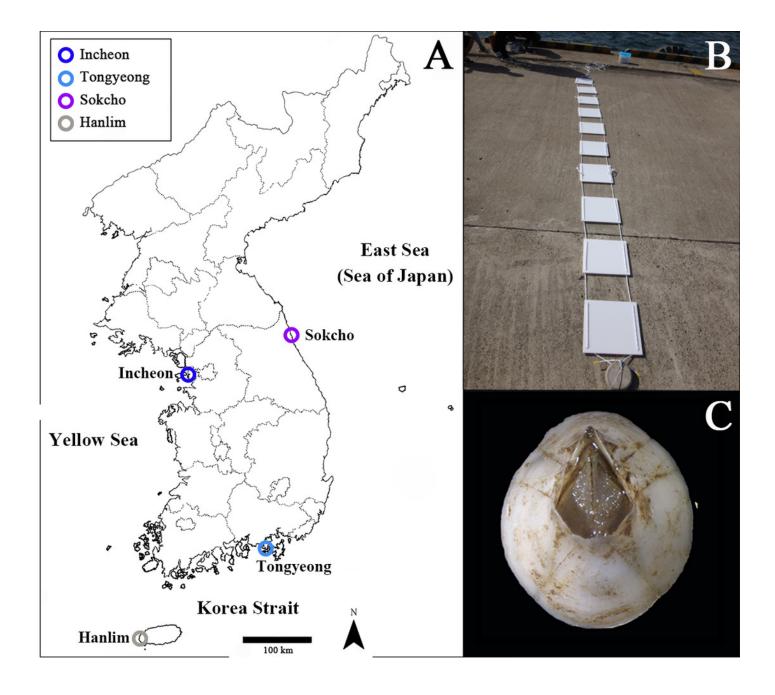


- 638 Mitteroecker P, Gunz P, Windhager S, Schaefer K. 2013. A brief review of shape, form, and
- allometry in geometric morphometrics, with applications to human facial morphology. *Hystrix*,
- 640 *the Italian Journal of Mammalogy* 24: 59–66. doi:10.4404/hystrix-24.1-6369.
- Molnar JL, Gamboa RL, Revenga C, Spalding MD. 2008. Assessing the global threat of invasive
- species to marine biodiversity. Frontiers in Ecology and the Environment 6: 485–492.
- Monteiro LR. 1999. Multivariate regression models and geometric morphometrics: the search for
- 644 causal factors in the analysis of shape. Systematic Biology 48: 192–199.
- 645 https://www.jstor.org/stable/2585275.
- Nei M. 1987. *Molecular evolutionary genetics*. New York: Columbia University Press.
- Newman WA. 2000. A new genus and species of barnacle (Cirripedia, Verrucomorpha)
- associated with vents of the Lau. Back-Arc Basin: its gross morphology, inferred first juvenile
- stage and affinities. Zoosystema 22: 71–84.
- Osca D, Crocetta F. 2020. The ivory barnacle *Amphibalanus eburneus* (Gould, 1841)
- 651 (Arthropoda: Hexanauplia: Sessilia) in Albania (Adriatic Sea). BioInvasions Records 9: 189–
- 652 194. doi: org/10.3391/bir.2020.9.2.03.
- Pansch C, Schlegel P, Havenhand J. 2013. Larval development of the barnacle *Amphibalanus*
- 654 *improvisus* responds variably but robustly to near-future ocean acidification. *ICES Journal of*
- 655 *Marine Science* 70: 805–811. doi: org/10.1093/icesjms/fst092
- Park C, Kim ST, Hong JS and Choi KH. 2017. A rapid assessment survey of invasive species of
- 657 macrobenthic invertebrates in Korean waters. *Ocean Science Journal* 52: 387–395. doi:
- 658 10.1007/s12601-017-0024-5.
- Pentcheff ND. 1991. Resistance to crushing from wave-borne debris in the barnacle *Balanus*
- 660 glandula. Marine Biology 110: 399–408. doi: org/10.1007/BF01344359
- Pitombo FB, Gobin J, Abreu NMN, Jute A. 2017. A Cryptic Invasion in the Western Atlantic:
- Presence of the Fouling Barnacle *Megabalanus zebra* (Darwin, 1854) (Crustacea, Cirripedia) in
- the Caribbean Sea. *Zootaxa*, 4237:131–153. doi: org/10.11646/zootaxa.4237.1.7.
- Rebstock GA, Kang YS. 2003. A comparison of three marine ecosystems surrounding the
- Korean peninsula: Responses to climate change. *Progress in Oceanography* 59: 357–379. doi:
- 666 org/10.1016/j.pocean.2003.10.002.
- Relini G., Matricardi G. 1979. I cirripedi toracici delle lagune di Orbetello. Atti della Societa
- 668 Toscana di Scienze Naturali, Memorie Serie B 86: 55–57.
- Rohlf FJ, Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of
- 670 landmarks. Systematic biology 39: 40–59. doi: org/10.2307/2992207.
- Rohlf FJ. 2010. tpsDig Version 2.16. New York: Department of Ecology and Evolution, State
- 672 University of New York Stony Brook.
- Rohlf, FJ. 2015. The tps series of software. *Hystrix, the Italian Journal of Mammalogy* 26. doi:
- 674 10.4404/hystrix-26.1-11264.
- Rozas J, Rozas R. 1999. DnaSP version 3: an integrated program for molecular population
- 676 genetics and molecular evolution analysis. *Bioinformatics* 15: 174–175. doi:
- 677 org/10.1093/bioinformatics/15.2.174.



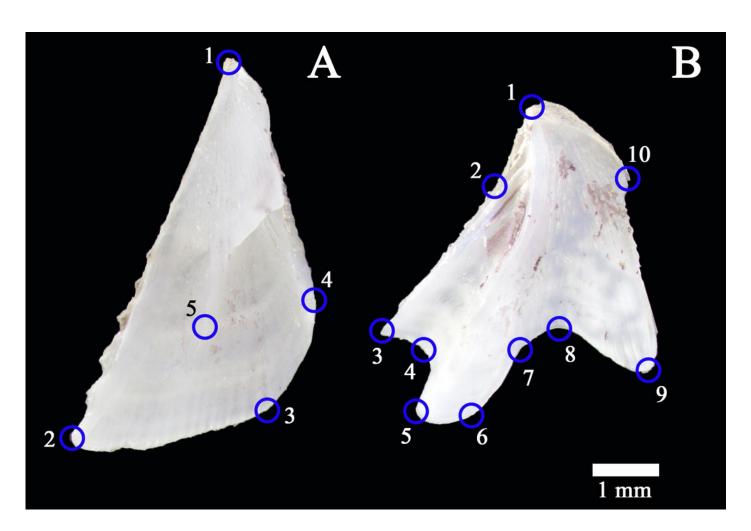
- 678 Scheltema, R.S. and Williams, I.P., 1982. Significance of Temperature to Larval Survival and
- 679 Length of Development in Balanus eburneus (Crustacea: Cirripedia). Marine ecology progress
- 680 *series Oldendorf.* 9: 43–49.
- 681 Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
- analysis. *Nature Methods* 9: 671–675. doi: org/10.1038/nmeth.2089.
- Seo Y, Muhammad BL, Chae J, Ki JS. 2021. Population genetic structures of the jellyfish
- 684 Aurelia coerulea polyps along Korean coasts and implications as revealed by Mitochondrial
- 685 COI. Zoological Studies 60:63. doi:10.6620/ZS.2021.60-63
- 686 Sidlauskas BL, Mol JH, Vari RP. 2011. Dealing with allometry in linear and geometric
- 687 morphometrics: a taxonomic case study in the *Leporinus cylindriformis* group (Characiformes:
- Anostomidae) with description of a new species from Suriname. Zoological Journal of the
- 689 *Linnean Society* 162: 103–130. doi: org/10.1111/j.1096-3642.2010.00677.x.
- 690 Slice DE. 2007. Geometric morphometrics. *Annual Review of Anthropology* 36: 261–281. doi:
- 691 org/10.1146/annurev.anthro.34.081804.120613.
- 692 Smith LD. 2009. The role of phenotypic plasticity in marine biological invasions. In: Rilov G,
- 693 Crooks JA, ed. *Biological invasions in marine ecosystems*. Berlin: Springer Verlag, 177–202.
- 694 Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge
- 695 MA, Lombana AI, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J.
- 696 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. *BioScience*
- 697 57: 573–583. doi: org/10.1641/B570707.
- 698 Stefaniak LM. 2017. Mechanisms for invasion success by *Didemnum vexillum* (Chordata:
- 699 Ascidiacea): observations versus manipulations. *Biological Invasions* 19: 1213–1225. doi:
- 700 org/10.1007/s10530-016-1317-9
- 701 Streftaris N Zenetos A, Papathanassiou E. 2005. Globalisation in marine ecosystems: the story of
- 702 non-indigenous marine species across European seas. In Oceanography and marine biology. In:
- 703 Gibson RN, Atkinson RJA, Gordon JDM, ed. Oceanography and marine biology. Florida: CRC
- 704 Press, 429–464.
- 705 Tajima F. 1983. Evolutionary relationship of DNA sequences in finite populations. *Genetics* 105:
- 706 437–460. doi.org/10.1093/genetics/105.2.437.
- 707 Timm NH. 2002. Applied Multivariate Analysis, 1st ed. Berlin: Springer.
- 708 Torres-Pratts H, Schärer MT, Schizas NV. 2009. Genetic diversity of *Chelonibia caretta*,
- 709 commensal barnacles of the endangered hawksbill sea turtle *Eretmochelys imbricata* from the
- 710 Caribbean (Puerto Rico). Journal of the Marine Biological Association of the United Kingdom
- 711 89: 719–725. doi: org/10.1017/S0025315409000046.
- 712 Tsang LM, Chan BKK, Ma KY, Chu KH. 2008. Genetic differentiation, hybridization and
- 713 adaptive divergence in two subspecies of the acorn barnacle *Tetraclita japonica* in the
- 714 northwestern Pacific. *Molecular Ecology* 17:4151–4163. doi: g/10.1111/j.1365-
- 715 294X.2008.03907.x.
- 716 Visscher JP. 1927. Nature and extent of fouling of ships' bottoms. *Bulletin of the Bureau of*
- 717 *Fisheries*. 43: 193–252.




- 718 Wrange AL, Charrier G, Thonig A, Alm Rosenblad M, Blomberg A, Havenhand JN, Johnsson
- PR, André C. 2016. The story of a hitchhiker: population genetic patterns in the invasive
- 720 barnacle Balanus (Amphibalanus) improvisus Darwin 1854. PLoS One 11(1), e0147082. doi:
- 721 org/10.1371/journal.pone.0147082.
- 722 Wright S. 1943. Isolation by distance. *Genetics*, 28: 114–138. doi: 10.1093/genetics/28.2.114.
- Wright S. 1965. The interpretation of population structure by F-statistics with special regard to
- 724 systems of mating. *Evolution* 19: 395–420. doi: 10.1111/j.1558-5646.1965.tb01731.x.
- 725 Wu TH, Tsang LM, Chan BKK, Chu KH. 2015. Cryptic diversity and phylogeography of the
- 726 island-associated barnacle *Chthamalus moro* in Asia. *Marine Ecology* 36: 368–378. doi:
- 727 org/10.1111/maec.12146.
- 728 Zardus JD, Hadfield MG. 2005. Multiple origins and incursions of the Atlantic barnacle
- 729 Chthamalus proteus in the Pacific. Molecular Ecology 14: 3719–3733. doi: 10.1111/j.1365-
- 730 294X.2005.02701.x.



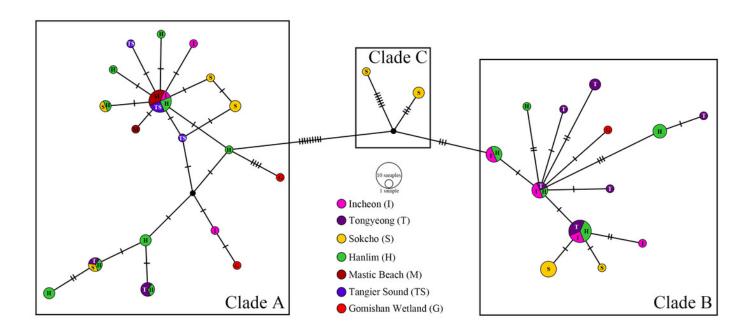
Localities and methods of survey.


(A) Map of the Korean Peninsula displaying collection sites of Amphibalanus eburneus for this study. Blue circle: Incheon; Sky blue circle: Tongyeong; Violet circle: Sokcho; Grey circle: Hanlim. (B) Photographs of 10 acrylic attachment plates for monitoring. (C) Photograph of A. eburneus in dorsal view.



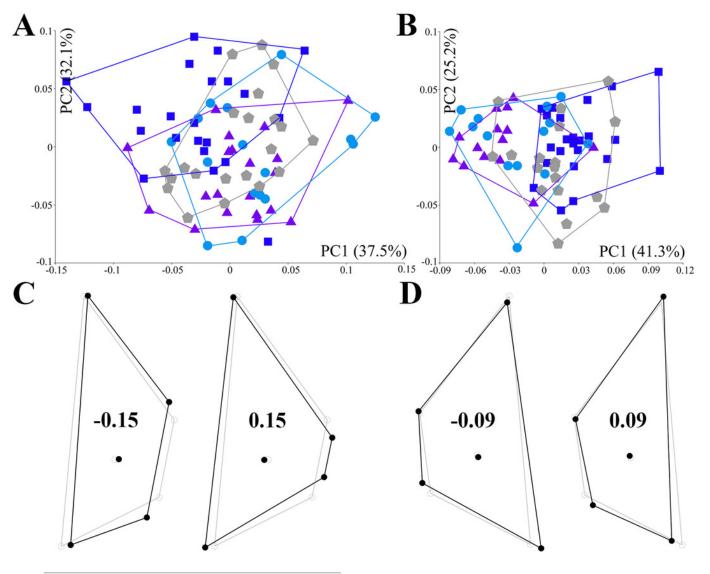


Opercular plates of Amphibalanus eburneus


(A) Ventral view of the left scutum with anatomical references for landmark digitization (marked by blue circles). (B) Ventral view of the left tergum with anatomical points for landmark digitization. Scale bar: 1 mm.

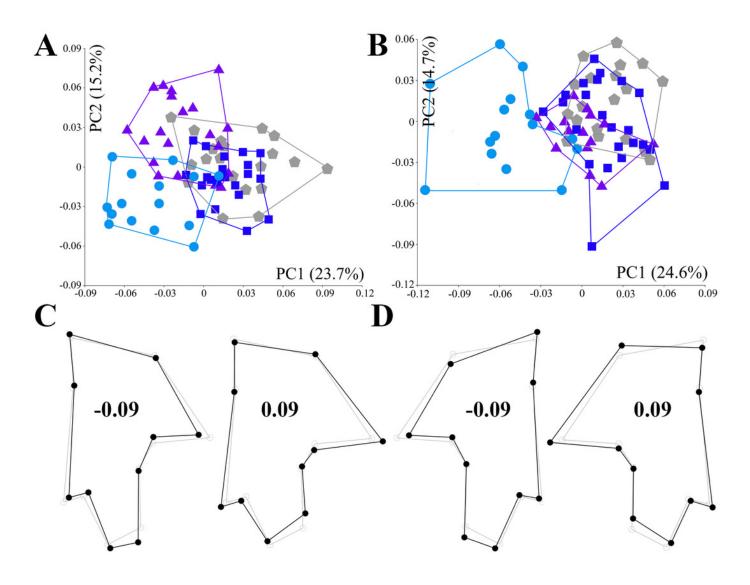





TCS haplotype network generated using 68 mtCOI sequences of Amphibalanus eburneus collected from four sites in Korea.

Different colors and alphabets in each circle indicate different collecting sites. Sizes of nodes and pie segments are proportional to haplotype frequency. Vertical parallel lines of the network represent the number of substitutions.




Principal component analysis of residuals of the scutum shape coordinate.

(A) Scatter plot of the left scutum. Principal components 1 and 2 are indicated on x-axis and y-axis, respectively. (B) Scatter plot of the right scutum. Blue squares: Incheon individuals; Sky blue circles: Tongyeong individuals; Violet triangles: Sokcho individuals; Grey pentagons: Hanlim individuals. (C) Wireframes of shape change in the left scutum (black line) corresponding to PC score against the mean shape (grey line). (D) Wireframes of shape change in the right scutum.



Principal component analysis of residuals of the tergum shape coordinate.

(A) Scatter plot of the left tergum. Principal components 1 and 2 are indicated on the x-axis and y-axis, respectively. (B) Scatter plot of the right tergum. Blue squares: Incheon individuals; Sky blue circles: Tongyeong individuals; Violet triangles: Sokcho individuals; Grey pentagons: Hanlim individuals. (C) Wireframes of shape change in the left tergum (black line) corresponding to the PC score against the mean shape (grey line). (D) Wireframes of the shape change in the right tergum.





### Table 1(on next page)

Estimation of gene differentiation (Fst) values of total populations.

Asterisk indicates statistical significance at P < 0.05.



|                  | Incheon  | Tongyeon | Sokcho   | Hanlim   | Tangier  | Mastic   |
|------------------|----------|----------|----------|----------|----------|----------|
|                  |          | g        |          |          | sound    | beach    |
| Tongyeong        | -0.05143 |          |          |          |          |          |
| Sokcho           | -0.01223 | 0.04245  |          |          |          |          |
| Hanlim           | 0.03482  | 0.07402  | 0.00013  |          |          |          |
| Tangier sound    | 0.48938* | 0.52013* | 0.41849* | 0.19610* |          |          |
| Mastic beach     | 0.48234* | 0.51564* | 0.26840  | 0.18695* | 0.00000  |          |
| Gomishan wetland | 0.11523  | 0.15744  | 0.27339  | -0.02264 | 0.29225* | 0.30524* |

1



#### Table 2(on next page)

Results of the AMOVA analyses of seven populations of *A. eburneus* with grouping according to geographic regions, Korea, North Pacific Ocean, and Caspian Sea.

Asterisk indicates statistical significance at P < 0.05.



### **PeerJ**

| Variation source                | d. f. | Sum of square | Variance components | Variation percentage | F-statistic  |
|---------------------------------|-------|---------------|---------------------|----------------------|--------------|
| Among groups                    | 2     | 42.245        | 1.70608             | 27                   | Fct=0.26931* |
| Among populations within groups | 4     | 20.419        | 0.04612             | 0.7                  | Fst=0.27659* |
| Within populations              | 61    | 279.557       | 4.58290             | 72.3                 | Fsc=0.00996* |
| Total                           | 67    | 342.221       | 6.33510             |                      |              |

1



#### **Table 3**(on next page)

Variation in the size and shape of the scutum and tergum inferred by Procrustes ANOVA using a randomized permutation procedure (10,000 iterations).

SS: sum of squares; MS: mean squares; df: degrees of freedom; F: Goodall's F critical value; P: probability of finding a random value larger than the observed value.

| Part     | Factor     | SS         | MS           | df  | F    | P        |  |
|----------|------------|------------|--------------|-----|------|----------|--|
|          |            |            | Size         |     |      |          |  |
|          | Population | 27.982413  | 9.327471     | 3   | 2.92 | 0.0414   |  |
|          | Individual | 181.80021  | 3.134486     | 58  | 7.99 | < 0.0001 |  |
|          | Side       | 0.091607   | 0.091607     | 1   | 0.12 | 0.7304   |  |
| <b>G</b> | Digitizing | 0.003736   | 0.000032     | 117 | 5.29 | 0.1721   |  |
| Scutum   | Shape      |            |              |     |      |          |  |
|          | Population | 0.25211324 | 0.0140062911 | 18  | 7.39 | < 0.0001 |  |
|          | Individual | 0.65532580 | 0.0018831201 | 348 | 1.88 | < 0.0001 |  |
|          | Side       | 0.03222771 | 0.0053712850 | 6   | 5.49 | < 0.0001 |  |
|          | Digitizing | 0.00123864 | 0.0000017644 | 702 | 0.78 | 0.7787   |  |
|          |            |            | Size         |     |      |          |  |
|          | Population | 14.863276  | 4.954425     | 3   | 2.09 | 0.1104   |  |
| Tergum   | Individual | 146.846511 | 2.368492     | 62  | 3.58 | < 0.0001 |  |
|          | Side       | 1.139178   | 1.139178     | 1   | 1.72 | 0.1940   |  |
|          | Digitizing | 0.10168    | 0.000776     | 131 | 7.79 | 0.2792   |  |
|          |            |            |              |     |      |          |  |

| Shape      |            |              |      |      |          |
|------------|------------|--------------|------|------|----------|
| Population | 0.31311889 | 0.0065233103 | 48   | 8.23 | < 0.0001 |
| Individual | 0.78594949 | 0.0007922878 | 992  | 3.53 | < 0.0001 |
| Side       | 0.02271775 | 0.0014198593 | 16   | 6.33 | < 0.0001 |
| Digitizing | 0.00117952 | 0.0000005627 | 2096 | 0.78 | 0.7956   |



#### Table 4(on next page)

Comparison of variation in the mean shape of the scutum and tergum among populations using canonical variate analysis (CVA).

Left score: Mahalanobis distance; Right score: probability of finding a random value larger than the observed value.



### **PeerJ**

|              | Locality  | Incheon       | Tongyeong     | Sokcho        |
|--------------|-----------|---------------|---------------|---------------|
|              | Tongyeong | 3.9417/0.0001 |               |               |
| Left tergum  | Sokcho    | 3.7791/0.0001 | 4.3321/0.0001 |               |
|              | Halim     | 2.5423/0.0001 | 4.3213/0.0001 | 3.4708/0.0001 |
|              | Tongyeong | 4.2982/0.0001 |               |               |
| Right tergum | Sokcho    | 2.7491/0.0001 | 5.3365/0.0001 |               |
| -            | Halim     | 3.2629/0.0001 | 5.7166/0.0001 | 2.6632/0.0001 |

1

2



### Table 5(on next page)

Density of recruited *A. eburneus* individuals in the attachment plate of all surveyed areas.

Left score: density; Right score: individual number; Plate No.: plate number; SD: standard deviation; Bold characters: maximum and minimum values estimated per locality.

| Plate No. | Incheon   | Tongyeong | Sokcho     | Hanlim    |
|-----------|-----------|-----------|------------|-----------|
| 1         | 28/252    | 13.11/118 | 3.11/28    | 56/504    |
| 2         | 36.11/325 | 18.44/166 | 1.56/14    | 71.33/642 |
| 3         | 65.11/586 | 15/135    | 1.44/13    | 59.78/538 |
| 4         | 67.67/609 | 9.78/88   | 8.89/80    | 82.44/742 |
| 5         | 73.67/663 | 8.33/75   | 3.11/28    | 38.67/348 |
| 6         | 85.22/767 | 5.44/49   | 14.44/130  | 46.44/418 |
| 7         | 61.11/550 | 1.33/12   | 33.56/302  | 49.89/449 |
| 8         | 88.22/794 | 6.89/62   | 71.33/642  | 42/378    |
| 9         | 71.22/641 | 2.78/25   | 75.78/682  | 59.44/535 |
| 10        | 76.33/687 | 5.56/50   | 107.22/965 | 42.89/386 |
| Mean      | 65.27     | 8.67      | 32.04      | 54.89     |
| SD        | 19.48     | 5.18      | 36.74      | 13.21     |