1 <u>Variation in Genetics</u>, and morphological morphology, and

2 recruitment variation in the Korean invasive barnacle

3 Amphibalanus eburneus (Gould, 1841) in Korea

4 5

6 Jeongho Kim¹, Michael Ubagan^{1,2}, Soyeon Kwon², Il-Hoi Kim³, Sook Shin^{1,2}

7

- 8 ¹Marine Biological Resources Institute, Sahmyook University, Seoul, South Korea
- 9 ²Department of Animal Biotechnology and Resource, College of Science and Technology,
- 10 Sahmyook University, Seoul, South Korea
- ³Department of Biology, College of Natural Science, Gangneung-Wonju National University,
- 12 Gangneung, South Korea

13

- 14 Corresponding Author:
- 15 Sook Shin^{1,2}
- Nowongu Hwarangro 815, Seoul, ASI|KR|KS013|SEOUL, South Korea
- 17 Email address: shins@syu.ac.kr

18 19

Abstract

- 20 The ivory barnacle Amphibalanus eburneus of the family Balanidae is a marine crustacean,
- 21 which presents near-cosmopolitan distribution due to extensive introduction and exhibits a wide
- spectrum of phenotypic variation. Here To elucidate processes of adaptive evolution through
- 23 invasion, we investigated variation in the genetic structure, and shell morphological morphology,
- 24 and recruitment patterns variation in for A. eburneus, from the southern Korean Peninsula which
- 25 where it has successfully settled in the Korean Peninsula since it has been established since the
- 26 late 1980s, to elucidate the processes of adaptive evolution through invasion. We amplified the
- 27 mitochondrial genetic marker mtCOI and generated a haplotype network to visualize the
- 28 population structure. We selected samples from four populations ecologically relevant regions
- 29 representing all surrounding South Korean waters. and From these we amplified the
- 30 mitochondrial genetic marker cytochrome oxidase subunit I (COI) from 258 individuals and
- 31 generated a haplotype network to visualize population structure. To examine morphological
- 32 variation, we applied two-dimensional landmark-based geometric morphometrics to the scutum
- and tergum for a subset of individuals.-. Furthermore, we estimated the density and plate
- occupancy of collected year-old individuals in the field to determine the compare difference in
- 35 their recruitment responses habitat conditions among localities. We detected 35 haplotypes in
- among the four populations locations belonging to three distinct clades based on the moderate
- 37 intraspecific pairwise genetic distance (≥3.5%). The haplotypes in these clades did were not
- 38 <u>locality-specific distribute in their distribution-locality-specific.</u> We In constrast, we did detected
- interpopulation variation in the opercular shape and morphospace structures, and one population

could be separated from the rest based on its distinct <u>tergum</u> morphotype <u>alone of the tergum</u>.

This morphologically distinct population was also differentiated by displaying the lowest mean recruitment density and <u>the level of plate occupancy</u>. Our results indicate that <u>although</u> there is no relationship between <u>the level of the molecular</u> variation <u>in the at the mt</u>COI gene and <u>the level of geographic regions in South Korea, association with locality for variation in the operculum morphology, and recruitment response suggest ecological adaptation by this barnacle in a new habitat.</u>

Introduction

47 48

49

50 51

52

53

54

55 56

57

58

59

60

61

62 63

64

65

66 67

68 69

70

71

72 73

74

75

76

77

78 79 Barnacles are often dominant inhabitants of the coastal ecosystems. Many barnacle with some species that are invasive transportable and that have spread across the globe (Gilg et al., 2010). Their cosmopolitan distribution of a number of species may be attributed to human-mediated translocation recently and over the past centuries, primarily via the ballast water and ship-hulls, serving as the vectors for planktonic larvae and sessile adults, respectively (Zardus & Hadfield, 2005; Davidson et al., 2009; Carlton, Newman & Pitombo, 2011). Invasive Widespread barnacle species with long-range dispersal and massive biomass population sizes often exhibit phenotypic variations across geographic populations. Specifically, morphological variations in fitnessrelated physical traits in response to heterogeneous environments have has been commonly documented, which allows for the comprehensive study of adaptive evolution. For instance, wave exposure levels drive morphological variations in the calcareous structures and chitinous exoskeleton of individuals to protect the soft body inside (Pentcheff, 1991). Similarly, cirrus morphology varies with wave exposure to enhance particle capture efficiency (Arsenault, Marchinko & Palmer, 2001), alternating between shorter and thicker in high exposure situations and longer and thinner forms in wave-protected zones (Marchinko & Palmer, 2003; Li & Denny, 2004; Miller, 2007; López et al., 2010). Furthermore, barnacles with bathymetric distribution often exhibit morphological variations in the cirri, being longer in individuals inhabiting the upper intertidal zone than in those inhabiting the middle-lower intertidal areas (Chan & Hung, 2005). Finally, the density at which the individuals recruit and grow is another significant factor, resulting in competition for space and mating, which further induces shell elongation (Barnes & Powell, 1950; Bertness, Gaines & Yeh, 1998) and variations in penis length (Hoch, 2008). The ivory barnacle Amphibalanus eburneus (Gould, 1841) belonging to the family Balanidae is native to the east coast of the USA, distributed from Nova Scotia to Florida, including the Caribbean and Gulf of Mexico (Kaplan, 1988). However, the species has now become nearly cosmopolitan due to extensive ship fouling (Henry & McLaughlin, 1975; Larsen, 1985). Until recently, the range of A. eburneus distribution was limited to the European seas (Relini & Matricardi, 1979; Molnar et al., 2008; Jaberimanesh et al., 2019; Osca & Crocetta, 2020), Pacific Ocean (Henry & McLaughlin, 1975; Iwasaki, 2018), the Indian Ocean (Biccard & Griffiths, 2016), and the Canadian Arctic (Chan et al., 2015). Now, however, A. eburneus has become a harmful invader in many countries, inflicting extensive ecological and industrial damage due to a suite of distinct traits. First, A. eburneus is euryhaline, exhibiting a preference for waters with

80 salinity ranging between 15 and 20 ppt, which allows them to endure drastic changes differences 81 in salinity across diverse geographic habitats (Bacon, 1971; Jaberimanesh et al., 2019 Dineen & Hines, 1994). Second, this species follows variable temperature-dependent undergoes larval 82 development across a range of temperatures (Scheltema & Williams, 1982); as such, at the 83 84 optimum temperature of 26°C, the duration from the nauplius to the cyprid stage may vary from 7 to 13 days (Costlow & Bookhout, 1957). Given these high competitive abilities, A. eburneus is 85 an excellent model to study the genetic, morphological, and ecological variations across 86 geographic populations accompanying biological invasion. 87 The Korean Peninsula is surrounded by four marginal seas: the Yellow Sea, East China Sea, 88 89 Korea Strait, and East Sea (Sea of Japan). These regions provide a distinct habitat conditions for 90 marine life due to their unique ocean dynamics and physical factors environments, leading to 91 biogeographic division of three ecoregions characterized by different biota (Rebstock & Kang, 92 2003; Han & Lee, 2020; Spalding et al., 2007). The western coast of Korea is strongly affected by the Yellow Sea. It generally shows low salinity in summer and high salinity in winter 93 94 (Spalding et al., 2007). The general characteristic of the southern coast of Korea is a relatively 95 warm current with a high salinity under the influence of the Tsushima Current of the Korea Strait 96 which branches out of the East China Sea (Lim et al., 2019). The East Sea is characterized by low temperature and high salinity, which is known to have an ocean ocean ogeographic 97 98 intersection in whichwhere warm and cold currents meet. Naturally, barnacles inhabiting Korea 99 show species-specific geographic distribution based on their preference for such ocean 100 characteristics (Kim et al., 2020). Kim et al. (2020) have collected 20 species of native and 101 invasive introduced barnacles in 44 localities of Korea from 2016 to 2018 and tracked changes in 102 their distribution along with water temperature and salinity changes. They found that A. eburneus 103 populations had settledestablished in the southwestern coast of Korea representing the East 104 China Sea ecoregion. They also found that A. eburneus preferred relatively warm water rather 105 than inhabiting in the cold one over the cooler water in both northeastern and northwestern parts 106 of Korea. 107 Recently, A. eburneus emergence was noted in an ecological monitoring project in the Korean harbors ("Improvement of management strategies on marine ecosystem disturbing and harmful 108 organisms"). Underway since 2013, the project is aimed at monitoring various alien marine 109 110 organisms invading the Korean harbors through ship fouling or ocean currents. During a survey 111 in April 2021, extensive A. eburneus spread was documented in four major harbors, namely 112 Incheon, Tongyeong, Sokcho, and Hanlim, representing all surrounding Korean waters, 113 including the Yellow Sea, East China Sea, Korea Strait, and East Sea (Sea of Japan). 114 Considering the substantial geographic distances and heterogeneous habitat conditions among 115 these regions, we speculated that A. eburneus might exhibit adaptive genetic and morphological 116 variation across geographies and morphological variations across geographies and what is a 117 possible routes of the invasion pathway. 118 To this end, in the present study, we first addressed the question of genetic variability by 119 analyzing the genetic structure of Korean A. eburneus populations using a mitochondrial genetic

120 marker. Then, we examined variations in the shape and left-right symmetry of the opercular and 121 calcareous plates of A. eburneus, which are of evolutionary and taxonomic significance (Pitombo 122 et al., 2017), to evaluate morphology relative to habitat. For analysis, we employed two-123 dimensional landmark-based geometric morphometrics (LBGM)—a powerful statistical tool for 124 quantifying morphological variations (Slice, 2007) to distinguish populations. Finally, we 125 estimated the density and plate occupancy of collected A. eburneus individuals to determine 126 assess the potential differences in recruitment their habitat condition among localities that might explain the evolutionary trend of operculum morphology evaluated. 127

128129

130

Materials & Methods

Sample collection

131 We accessed ports and made collections with the permission of the Korea Institute of Marine 132 Science & Technology Promotion (KIMST, project number: 20190518). Individual barnacles were randomly collected from 10 pre-installed acrylic attachment plates (3×3 dm) (Fig. 1B) per 133 location in April 2020, submerged at a depth of 1-3 m from sea level. Plates were deployed for a 134 duration of 12 months to include exposure across both warm and cold seasons. We collected 135 136 respectively 60, 55, 61, and 82 individuals of A. eburneus from the Incheon (37°27'41.4"N, 126°36'49.8"E), Tongyeong (34°49'38.1"N, 128°26'03.5"E), Sokeho (38°13'36.7"N, 137 128°35′19.6″E), and Hanlim (33°25′11.2″N, 126°15′40.1″E) harbors of Korea in April 2021 (Fig. 138 1A). We accessed ports and made collections with the permission of the Korea Institute of 139 140 Marine Science & Technology Promotion (KIMST, project number: 20190518). We randomly collected the individuals using 10 pre-installed acrylic attachment plates (3×3 dm) (Fig. 1B) in 141 April 2020, submerged at the depth of 1-3 m from the sea level and lasted for 12 months, 142 143 covering both warm and cold seasons. The warm season lasted from April to October 2020 144 (spring and summer), while the cold season lasted from November 2020 to March 2021 (fall and 145 winter). Since the maximum age of the adult A. eburneus (Fig. 1C) remains unknown and their 146 lifespan may vary with food availability and environmental factors, we collected only individuals 147 with the basal diameters of 2–2.5 cm, according to the maximum reported diameter for the species (Kaplan, 1988; Gosner, 1999). We collected respectively 60, 55, 61, and 82 individuals 148 149 of A. eburneus from the Incheon (37°27'41.4"N, 126°36'49.8"E), Tongyeong (34°49'38.1"N, 150 128°26′03.5″E), Sokcho (38°13′36.7″N, 128°35′19.6″E), and Hanlim (33°25′11.2″N, 126°15′40.1″E) harbors of Korea in April 2021 (Fig. 1A). We photographed the each settlement 151 plate before the barnacle collection using a digital camera (Olympus TG-5) and used a knife to 152 153 remove the individuals from the plate and immediately preserved them in 95% ethanol. We returned the plates at the same place after the collection. To examine the seasonal changes in 154 155 water temperature and salinity, we collected these data of these parameters using a handheld YSI Pro30 temperature and conductivity meter (YSI, Yellow Springs, Ohio) at the four sampling sites 156 157 during 2020–2021. (How often??)

158 159 **DN**

DNA amplification and genetic analyses

```
160
       We randomly selected ten individuals from each locality sample and isolated genomic DNA with
161
       the aid of the LaboPassTM Kit (Cosmo, Seoul, Korea) following the manufacturer's protocols.
162
       We amplified partial sequences of the mitochondrial gene cytochrome c oxidase subunit I
163
       (mtCOI) partial sequences with polymerase chain reaction (PCR) using PCR premix (BIONEER.
164
       Co, Daejeon, Korea) in an AllInOneCycler<sup>TM</sup> PCR system (BIONEER. Co, Daejeon, Korea). We
       used universal primer pair, jgLCO1490 (5'- TIT CIA CIA AYC AYA ARG AYA TTG G-3')
165
       and igHCO2198 (5'- TAI ACY TCI GGR TGI CCR AAR AAY CA -3') (Geller et al. 2013).
166
167
       We used with the following amplification protocol: for mtCOI consisted of initial denaturation at
168
       94 °C for 2 min, followed by 30 cycles of denaturation at 94 °C for 1 min, annealing at 48 °C
169
       for 1 min, extension at 72 °C for 1 min, final extension at 72 °C for 10 min, and storing at 4 °C.
170
       We purified the PCR products for sequencing reactions using the Labopass PCR Purification Kit
171
       (Cosmo, Seoul, Korea) following the instructions of the manufacturer. We sequenced DNA on
172
       an ABI automatic capillary sequencer (Macrogen, Seoul, Korea) using the same set of primers.
173
        We performed a population genetic analysis at the continental scale, comparing the level of
174
       genetic differentiation between all obtained sequences. We confirmed the sequence identities
175
       with BLAST search (Altschul et al., 1990), and visualized using Finch TV, version 1.4.0
176
       (http://www.geospiza.com/Products/finchtv.shtml) to check the quality of signal and sites with
177
       possible low resolution. We deposited all obtained sequences in GenBank (Article S1) and
178
       performed a population genetic analysis at the continental scale, comparing the level of pairwise
179
       genetic differentiation between all obtained sequences and We deposited all obtained sequences
       in GenBank (Article S1). We performed sequence alignment using the MAFFT v7.313 (Katoh &
180
181
       Standley, 2013) with and included 13 additional sequences those of A. eburneus already
182
       published and publicly available in GenBank: one from Los Angeles (North Pacific Ocean,
       KU204257), one from Ketchikan (North Pacific Ocean, KU204298), four from Tangier Sound
183
184
       (North Atlantic Ocean, MK308058, MK308095, MK308188, MK308249), four from Mastic
       beach (North Atlantic Ocean, MZ595234, MZ595235, MZ595236, MT192780), and three from
185
186
       Gomishan Wetland (Caspian Sea, MK240317, MK240318, MK240319).. We estimated
187
       uncorrected pairwise distances using Geneious prime (https://www.geneious.com/prime/). We
188
       and used the TCS algorithm implemented in PopART (Clement, Posada & Crandall, 2000; Leigh
189
       & Bryant, 2015) to evaluate genealogical relationships among mtCOI haplotypes by
190
       reconstructing a haplotype network. We used DnaSP 5.10 (Librado & Rozas, 2009) to estimate
191
       haplotype diversity (Hd) (Rozas & Rozas, 1999), nucleotide diversity (\pi) (defined as the average
       number of pairwise nucleotide differences, and their standard deviations) (Tajima, 1983; Nei,
192
       1987). We examined the degree of gene flow among populations based on parameters F_{ST}
193
194
       (Hudson, Slatkin & Maddison, 1992) to check whether a phylogeographic structure existed for
195
       allamong populations.
196
```

Morphological data acquisition

197

198

199

How many barnacles were measured? The same individuals used for sequencing above? We dissected the animals under a stereo dissecting microscope, Nikon SMZ 1000 (Nikon, Tokyo,

Japan). For each individual, we first separated the left and right sides of the opercular plates from the body and subsequently divided them into scutum and tergum. We used 5% sodium hypochlorite (NaClO) to clean the surface of dissected parts. We placed the dissected parts on a petri dish covered by black paper and included a scale to take calibrated microscope images. To make a dorsal perspective angle perpendicular to the microscope objective, we manipulated the specimen using forceps. After each specimen was adequately positioned consistently, we took images on ventral view of scutum and tergum in multiple foci using a camera DP22 (Olympus, Tokyo, Japan) implemented in the dissecting microscope. To illustrate the three-dimensional depth of field more fully, we used stacking software Helicon Focus 7.7.5 (Kozub et al. 2008) to combine images.

We generated two TPS files for the scutum and the tergum separately to evaluate the geometric variation in size and shape, including the asymmetry in side-by-side pairs (matching symmetry between left and right parts) (Ho et al., 2009). We generated copiesy of all images and employed them along with originals for producing TPS files using tpsUtil software (Rohlf, 2015). We digitized the chosen landmark (LM), all Type I (Bookstein, 1991), twice using tpsDig2 software (Rohlf, 2010) to estimate digitization-related errors (Klingenberg, Barluenga & Meyer, 2002). We selected five anatomical reference points of the scutum for LM digitization (Fig. 2A): one located on apex (LM 1); one located on the posterolateral tip (LM 2); one located along the inflection point of basal margin (LM 3); one located along the inflection point of medial margin (LM 4); one located on the lower point of basal ridge (LM 5). We selected ten anatomical references of the tergum for LM digitization (Fig. 2B): one located on apex (LM 1); one located along the inflection point of lateral margin (LM 2); one located on the distolateral tip of scutal side (LM 3); one located on the basal and spur margin intersection on scutal side (LM 4); one located on the spur distolateral point (LM 5); one located on the spur distomedial point (LM 6); one located on the basal and spur margin intersection on carinal side (LM 7); one located along the inflection point of basal margin (LM 8); one located on the distomedial tip of cranial side (LM 9); one located on the proximomedial tip of cranial side (LM 10). The scutum and tergum datasets finally included 290, and 300 digitized images (from the original 145 and 150 images), respectively.

Geometric morphometric analyses

We employed algorithms implemented in Morpho J package software ver. 1.07d (Klingenberg, 2011) for all LBGM analyses. We aligned and superimposed all landmark configurations in six TPS files with Generalized Procrustes Analysis (GPA) to remove the effects of non-shape variation (Rohlf & Slice, 1990). We converted the Procrustes shape coordinates into a covariance matrix (Brusatte et al., 2011). As a size proxy, we estimated the centroid size (CS) for each individual from the raw LM coordinates (Bookstein, 1989). We calculated the CS as the square root of the sum of squared distances for a set of centroid LMs (Mitteroecker et al., 2013). We performed Procrustes analysis of variance (ANOVA) test for group structuring evidence in the overall dataset using population and side as classifiers. We also used it to evaluate digitizing

errors (Klingenberg & McIntyre, 1998). After implementing the Procrustes ANOVA to test error terms, we employed the first digitization dataset and divided it into the left and right datasets. We carried out typical LBGM analyses on the left and right datasets, including regression, principal component analysis (PCA), and canonical variate analysis (CVA), following the procedure previously described in Kim et al. (2021). We performed regressions of shape onto size to test allometry based on regression scores and CS (Monteiro, 1999; Klingenberg, 2016). We applied a permutation test (Good, 2013) to assess the statistical significance against the null hypothesis. We estimated residual components to subtract the portion of shape variations predicted by the regression for further analyses. We used the residual shape component for PCA, which is frequently applied for the first exploratory analysis of a large dataset composed of several samples to provide a visual impression of overall shape variations (Mitteroecker et al., 2013). We used the wire frame to visualize scutum and tergum's average shape variations along major PCA axes. We employed separated residual components for CVA, which is a multivariate method, producing a criterion for reliably distinguishing among multiple groups preliminarily defined. The analysis generated a multivariate statistical value as Mahalanobis Distances, (MD) (Timm, 2002). The permutation test assessed the statistical significance against the equal group means' null hypothesis.

Measurement of density and plate occupancy of recruited barnacle

We calculated the density of *A. eburneus* recruited per attachment plate across sampling areas as the number of barnacles found in the each plate photograph by its area (9 dm²). We measured the occupied area occupied of by *A. eburneus* with other macroinvertebrates based on pixel analysis of photographs using ImageJ software (Schneider, Rasband & Eliceiri, 2012). We used the plates where from which *A. eburneus* was collected to calculate the occupancy of animals as the ratio of the covered area (%) to the total area of the attachment plate. We estimated the mean, standard deviation, maximum, and minimum occupancy. This method has been used for a long time as has been done to measurefor measuring the recruitment potential and abundance of various sessile marine organisms (Harriott & Fisk, 1987; Fisk & Harriott, 1990; Guy-Haim, Rilov & Achituv, 2015).

Results

Population genetic diversity

Seventy-Fifty seven partial mtCOI patrial sequences were obtained: ten from Incheon, 12 from Tongyeong, 13 from Sokcho, 22 from Hanlim, one from Los Angeles (North Pacific Ocean, KU204257), one from Ketchikan (North Pacific Ocean, KU204298), four from Tangier Sound (North Atlantic Ocean, MK308058, MK308095, MK308188, MK308249), four from Mastic beach (North Atlantic Ocean, MZ595234, MZ595235, MZ595236, MT192780), and three from Gomishan Wetland (Caspian Sea, MK240317, MK240318, MK240319). The final alignment was trimmed to a length of 627 base pairs, of which 578 were constant and 49 were variable (17 singleton and 32 parsimony informative). No stop codons were detected, and the sequences

encoded polypeptides of 227 amino acids. The average nucleotide frequency of the aligned sequences was 28.8, 38.1, 15.6, and 17.5% for each A, T, G, and C, respectively. In other words, the sequences were AT-rich (66.9%). The uncorrected pairwise distances between the four populations ranged between 0 and 3.5% (Table S1), with the highest value recorded between the individuals of Sokcho and Hanlim.

The <u>parsimony</u> network generated with TCS (Fig. 3) detected 35 haplotypes (Hd = 0.961, π = 0.016) from the all obtained sequences, forming three distinct clades (A, B, and C). Clade A was separated from Clade B by 12 mutational substitutions. Clade C was distinguished from Clades A and B by 12 and 6 substitutions, respectively. Overall, the frequency of haplotypes in each clade was not locality-specific but Clade A contained only individuals matching closely with those from the Atlantic Ocean and Caspian Sea, Clade B contained only indivduals matching closely with those from the Pacific Ocean and Caspian Sea, whereas Clade C individuals were intermediate with no identifiable match with any sea or ocean. Nearly all haplotypes detected presented widespread geographic distribution except for those of Tangier Sound, which were only found in clade A. The Incheon population included seven haplotypes (Hd = 0.933, π = 0.01304) belonging to clades A and B. Four of these seven haplotypes were shared by Tongyeong, Hanlim, Los Angeles, Tangier Sound, and Mastic beach populations. The Tongyeong population comprised eight haplotypes (Hd = 0.924, π = 0.01352) belonging to clades A and B. Two of these eight haplotypes were shared by Sokcho, Hanlim at the former clade. The Sokcho population included nine haplotypes (Hd = 0.897, $\pi = 0.01795$), two of which exclusively belonged to clade A. The Hanlim population included 14 haplotypes (Hd = 0.957, π = 0.01606), two of which belonged to clades A and B. Throughout Encompassing all populations haplotypes of A. eburneus, except for those of Los Angeles and Ketchikan represented by only single sequences, the evidence of for population genetic structuring in Korea was low as revealed by Fst analysis (Table 1). All-But, all Korean populations were significantly differentiated from North Atlantic populations, Tangier sound, and Mastic beach, with Fst values ranging from 0.3634 (Hanlim) to 0.63869 (Tongyeong). While the Caspian population, Gomishan wetland, was more closely related to Korean ones, with Fst values ranging from -0.01160 (Sokcho) to 0.09686 (Tongyeong), than North Atlantic ones, with Fst values of 0.2037 for Tangier Sound and 0.20952 for Mastic Beach. Within Korean populations, Tonyeong was most distantly related to populatios of Sokcho and Hanlim, with Fst values of 0.04338 and 0.07844, respectively.

Variations in size and shape

280

281

282

283284

285

286

287288

289

290

291

292

293

294

295

296

297298

299

300

301

302

303

304

305

306

307

308 309

310

311312

313 The ANOVA results (Table 2) yielded negligible digitizing errors for all datasets, with the 314 individual variability mean square (MS) and F values far exceeding exceeded the error values. 315 The individuals significantly varied in terms of the size of the scutum (F = 7.92, p < 0.0001) and 316 tergum (F = 7.92, p < 0.0001). However, neither population nor asymmetry side-by-side contributed to the observed variations in the size of the scutum (population, p = 0.0389; 317 318 asymmetry by the side, p = 0.6323) and tergum (population, p = 0.1104; asymmetry by the side, 319 p = 0.194). The effect of asymmetry side-by-side was significant, contributing to the variations 320 in the shape of the scutum (F = 5.34, p < 0.0001) and tergum (F = 6.33, p < 0.0001) and

exceeding that of individual variability. The population most significantly contributed to the variations in the shape of the scutum (F = 7.44, p < 0.0001) and tergum (F = 8.23, p < 0.0001), and its contribution exceeded that of the asymmetry by the side.

Allometry and size-corrected shape variations among populations

Regression analysis revealed an allometric effect in the left (4.33%, p = 0.011) and the right (3.6%, p = 0.0459) scutum datasets, thus the null hypothesis regarding isometric shape development was rejected. PCA based on residuals revealed major shape variations of the left (Fig. 4A) and right scutum (Fig. 4B), with the first two axes explaining respectively 69.6% (PC1 = 37.5%; PC2 = 32.1%) and 66.5% (PC1 = 41.3%; PC2 = 25.2%) of the total variance. Although PCA on both datasets did not reveal apparently distinguishable clustering among the populations, the Incheon population was recognizable in the PC1 morphospace of the left scutum based on a slightly different trend. Specifically, the Incheon individuals occupied the space between -0.15 and 0.05 for the left scutum, with a negative center of gravity. The wireframe demonstrated the shape variations in Incheon individuals corresponding to PC1. As such, the left (Fig. 4C) and right scuta (Fig. 4D) were horizontally narrower than the average due to medially shifted LMs 1-4 and LMs 1-3, respectively.

Regression analyses rejected the allometric association in the left (1.983%, p = 0.127) and right (1.597%, p = 0.3037) tergum datasets. The first two PC axes of the left (Fig. 5A) and right tergum (Fig. 5B) datasets explained respectively 38.9% (PC1 = 23.7%; PC2 = 15.2%) and 39.3% (PC1 = 24.6%; PC2 = 14.7%) of the total variance. The PC1 of both datasets emphasized the variations in the shape of the tergum among the populations, with the morphospace clustering of the Tongyeong population on one side (with the center of gravity in the negative part of the PC1). The Sokcho population was clustered on the negative side in the left tergum dataset but not in the right one. Meanwhile, the Incheon and Hanlim populations displayed clustering on the positive side of PC1 morphospace. The wireframe corresponding to PC1 (Fig. 5C, D) showed a narrow and elongated shape for the Tongyeong and Sokcho populations due to proximally shifted LMs 1, 2, and 8; medially shifted LMs 3, 4, 9, and 10; and distally shifted LMs 5, 6, and 7.

Population differentiation based on morphological distance

Based on the Mahalanobis distances (Table 3), the Incheon population was distinguishable from the rest, with the highest values of the left and right scutum morphology. The Tongyeong population was the most distantly related to the rest, with the highest values of the left and right tergum morphology. The permutation test of CVA rejected the PE null hypothesis for equal group means between populations (p < 0.0001). CVA of the left and right scutum datasets showed that the first two axes explained respectively 86.5% (CV1 = 54.5%; CV2 = 32%) and 92.1% (CV1 = 62.7%; CV2 = 29.4%) of the total variance. In the CV1 morphospace, the Incheon population was the most distinct, occupying the space between -4 and 1 for the left scutum and between -4 and 0 for the right one. The wireframe demonstrated variations in the

shape of the left and right scutum in the Incheon population. As such, the left and right scuta were horizontally narrower than the average due to medially shifted LMs 2–4. The Tongyeong population occupied the CV1 morphospace between –6 and 0 for the left scutum and between 0 and 8 for the right one. The wireframe corresponding to CV1 described a narrow and elongated tergum due to proximally shifted LMs 1, 2, and 8; medially shifted LMs 3, 9, and 10; and distally shifted LMs 5, 6, and 7.

366367368

370371

361

362

363

364

365

Density and plate occupancy of Amphibalanus eburneus with other macroinvertebrates

Table 4 summarizes plate density of *A. eburneus* recruited recruitment in the surveyed areas. The

Hanlim population showed the most significant mean density at 65.27 indi/dm², followed by

Incheon, Sokcho, and Tongyeong populations (density at 54.89, 32.04, 8.67 indi/dm²,

372 respectively).

Plate occupancies of A. eburneus with other sessile macroinvertebrates in the surveyed areas are

374 summarized in Table 5. In Incheon, A. eburneus was recruited across plates with five

375 macroinvertebrate species. Amphibalanus eburneus showed much higher mean occupancy of

376 43.89% than other animals, with the maximum occupancy of 59.23%. Of the 11 species recruited

377 in Tongyeong plates, *Didemnum vexillum* Kott, 2002, called "sea vormit" belonging to Chordata,

was the most dominant group with a mean occupancy of 19.64%. Balanus trigonus Darwin,

379 1854 was the second most dominant barnacle species with a mean occupancy of 17.04%. While

A. eburneus was the fourth most dominant one (6.21%) after the third most dominant one,

381 Halichondria (Halichondria) bowerbanki Burton, 1930, the sea sponge (12.99%). Five

macroinvertebrate species appeared in the Sokcho plates. Amphibalanus eburneus was the

second most dominant taxon in Sokcho with an occupancy of 13.31% following the most

dominant one of Ascidiella aspersa (Müller, 1776), a species of solitary sea squirts. In the

Hanlim plates, seven species were observed, of which A. eburneus was the most dominant taxon

with a mean occupancy of 29.27%. Amphibalanus amphitrite (Darwin, 1854) showed the second

most mean occupancy at 4.86%.

387 388 389

390

391

392

393

394

395

396

397

398

399

400

386

380

382

383

Discussion

The present study investigated the adaptive phenotypic responses of in the genetics, morphology, and morphological recruitment traits in of the Korean populations of the alien barnacle A. eburneus populations. Based on the pairwise distance of the mtCOI sequences, A. eburneus populations showed a low diversification rate. The values ranged between 0% and 3%, falling within the level of intra-specific level variability for this species, compared to the much higher inter-specific values of mtCOI sequences in other balanomorph barnacles (Tsang et al., 2008; Chen et al., 2014). Haplotype network analysis revealed detailed genetic characteristics of the populations, establishing three separate clades. Interestingly, the clade separation was not locality-specific, and nearly all haplotypes of the populations were randomly placed in the three clades. Fst value comparison between Korean populations confirmed that A. eburneus had has

extensively settled downestablished in all directions of the Korean Peninsula without a

```
401
       significant genetic differentiation suggesting that dispersal and/or delivery is intermixed. As
402
       sSuch A. eburneus's invasion success could be primarily attributed to its wide range of
403
       adaptability in various salinity and water temperatures (Costlow & Bookhout, 1957;-3 new refs
404
       Dineen & Hines, 1994), comparable to other invasive introduced balanomorph species.
405
       Amphibalanus improvisus (Darwin, 1854) is known to exhibit a complex haplotype admixture
406
       with global distribution (Chen et., 2014; Wrange et al., 2016) based on a high degree of
407
       euryhalinity and eurythermy (Pansch et al., 2013). It showed a similar distribution in the Korean
408
       Peninsula (Kim et al., 2020). Contrarily, another balanomorph invasive species, Perforatus
409
       perforates (Bruguière, 1789), showed a distribution confined to eastern and southern parts of the
410
       Korean Peninsula owing to its weak capability to physical variation vary physically (Kim et al.
411
       2020). Indeed, the capability to endure environmental fluctuation is known as a significant
412
       biological factor determining various marine invertebrates' geographical distributions (Chang et
413
       al. 2017; Seo et al 2021).
414
        The Parsimony network analysis revealed that Korean populations shared haplotypes with North
415
       Atlantic, North Pacific, and the Caspian Sea populations. However, the genetic differentiation
       occurred more significantly between Korean and the North Atlantic populations than between
416
417
       Korean and Caspian Sea populations. Lacking genetic differentiation is noteworthy given that
       the Caspian Sea is a geographically isolated region with a large distance from the Far East.
418
419
       Wrange et al. (2016) have reported a similar phenomenon based on their global scale population
420
       genetics study of A. improvises. They showed that the Caspian population shared haplotypes
421
       with Japan's, with nearly no genetic differentiation. However, they did not provide any specific
422
       hypothesis on the dispersal process between both regions. Unfortunately, it is also challenging to
423
       determine the actual invasion pathway into the Korean Peninsula due to insufficient alien genetic
424
       information. We can hypothesize that the first introduction of A. eburneus into the Korean
425
       Peninsula might have occurred from the Caspian Sea, and the later genetic exchange has taken
       place with new populations from North Atlantic and North Pacific Oceans, significantly
426
427
       contributing to the genetic structure with a high haplotype diversity in these populations.
428
       Shipping and other anthropogenic activities might have played an important role in shaping the
429
       current population genetic structure of A. eburneus. Fouling organisms including barnacles often
       form dense populations on ship hulls as large founding populations and/or potential admixture
430
431
       are essential for the invaders to overcome the founder effect and demographic bottlenecks
432
       (Roman & Darling, 2007; Dlugosch & Parker, 2008). Previous monitoring surveys support our
433
       speculation (Park et al., 2017; Kim et al., 2020), reporting that Korean A. eburneus populations
434
       are more frequently found in the ports than in natural exposed habitats. It is also likely that the
435
       shipping along the coastline is primarily responsible for the gene flow within theamong Korean
436
       populations because the internal shipping of across the Korean Peninsula is generally inactive
437
       impossible due to the mountain range developed along the eastern part precluding direct linkage
438
       between the east and west coast.
439
        Our LBGM analysis revealed substantial geometric variations in the opercular plates of A.
```

eburneus, which are reported for the first time in a study on barnacles. We identified two

440

different aspects of morphological variations in the datasets: allometry and shape variations between sides and among populations. Allometry is a known factor contributing to morphological integration (Klingenberg, 2013; 2016), and group discrimination can often be improved following size correction (Sidlauskas, Mol & Vari, 2011). The examined individuals significantly varied in terms of the size of the scutum and tergum, indicating moderate allometric effects on the scutum morphology. Although we could not markedly improve population discrimination following size correction, the discrepancy in the presence of allometry between the scutum and tergum is noteworthy. In recent years, with increase in the number of studies analyzing the invertebrate morphology using LBGM, cases of the independent evolution of specific body parts regardless of being physically connected to one another have been noted (Karanovic & Bláha, 2019; Karanovic, Huyen & Brandão, 2019; Budečević et al., 2021). In this context, our findings suggest that the scutum and tergum of A. eburneus have evolved in size independently, despite being connected to each other to form the opercular plate. Furthermore, similar trends were noted in the size-corrected shape variations between the sides. As such, the left and right sides of the plates were not described by the identical direction of LM shift (see Figs. 4C, D and 5C, D). Indeed, asymmetry side-by-side of the opercular plates is not

As such, the left and right sides of the plates were not described by the identical direction of LM shift (see Figs. 4C, D and 5C, D). Indeed, asymmetry side-by-side of the opercular plates is not unknown finding in barnacles. Specifically, members of the order Verrucomorpha, which inhabit deep-sea hydrothermal vents, exhibit an asymmetric form of the scutum, with one movable and the other fixed side (Newman, 2000). However, apart from that in such taxa presenting apparent disparity, the geometric asymmetry between the sides of the opercular plate has never been documented in acorn barnacles, with the exception of a previous study in which linear measurements of asymmetry were reported (Barnes & Healy, 1971; Chen et al., 2014). In our dataset, individuals from the Sokcho population showed obvious asymmetry in the tergum, forming a distinct cluster in the left and right morphospace of the PCA biplot (see Fig 5A, B). Therefore, the two sides of the opercular plate have likely traced independent evolutionary paths in terms of shape, which may lead to incorrect population or species identification depending on which of the two sides is selected for taxonomic examination.

Regarding population differentiation, the Tongyeong population could be clearly differentiated from the rest based on variations in the shape of the tergum (narrow and elongated) on both sides of the opercular plate. In general, a high recruitment density can determine the barnacle shape, often resulting in the columnar shell in response to intensive competition for the space and foraging (Barnes & Powell, 1950; Bertness, Gaines & Yeh, 1998; Hills & Thomason 2003). Our analysis suggested a less possibility of the relationship between shape variation and intra-specific competition as the Tongyeong population showed the lowest value among populations. On the other hand, it was found that *A. eburneus* in Tongyeong had did not competed as favorably with the mostother diverse groups of macroinvertebrates, which was opposite to as it did in other localities in which *A. eburneus* was one of the most dominant groups among collected animals in all other locations. A threat by the complex relationship among collected animals in Tongyeong might have exceeded that of intra-specific space competition and enforced *A. eburneus*'s phenotypic change. For example, *Didemnum vexillum* (Stefaniak, 2017), known as a

481 worldwide invasive colonial tunicate, covered the plate over two times A. eburneus's mean 482 occupancy in Tongyeong. At some plates, this tunicate had dominantly occupied the plate by 483 covering not only the empty space, but also the top of the A. eburneus assemblage (see Tongyeong in Figure S1), disturbing significantly the movement of the opercular plates and the 484 485 cirri, which are essential behaviors of feeding, respiration, and copulation. This hypothesis needs further survey given that there has been no experimental record so far on the shape variation of 486 487 barnacle's opercular plate caused by such relationship with other sessile neighbors. According to Barnes and Healy (1971), water temperature is also another major factor affecting 488 489 variations in the opercular plate morphology of A. eburneus. Based on linear measurement 490 results, they reported that the population of A. eburneus in the cold region differed markedly 491 from those in the warm region by showing the basal margin of the carinal side of the tergum 492 deeply hollowed out. Lively (1986) reported shape variations in the barnacle Chthamalus 493 anisopoma Pilsbry, 1916 exposed to the predatory snail Mexacanthina lugubris angelica Oldroyd, 1918; as such, under predation pressure, some juveniles developed a bent morphology. 494 495 Jarrett (2008) reported that Chthamalus fissus Darwin, 1854, which possesses an oval 496 operculum, manages predation risk by changing the shape of the plate to become narrower, which is advantageous in escaping predatory gastropod, Mexacanthina lugubris lugubris 497 Sowerby, 1821. Unfortunately, in the present study, we failed to determine possible correlations 498 499 of the observed shape variations in Tongyeong populations with a year record of water temperature and salinity due to the lack of a significant differences with other localities (Table 500 501 S2). In addition, we did not observe any evidence of predation-related characteristics of the A. 502 eburneus communities in the monitoring plates. Compared with direct observations in natural 503 habitats, surveys using monitoring plates offer limited opportunities to witness natural 504 phenomena representing the relationships among organisms due to limited space and resource 505 accessibility. Nonetheless, based on our genetic analyses, the genetic diversity in the Korean A. eburneus populations imply a great plasticity for adaptation, which can drive variations in shape 506 507 of the tergum in response to certain external stimuli. Therefore, further studies are warranted on 508 A. eburneus in the adjacent natural habitats using additional information on their community 509 structure and trophic relationships.

Conclusion

510 511

512 Using mitochondrial gene sequence and LBGM analyses, the present study successfully unveiled 513 the genetic and morphological diversity of in the invasive alien barnacle A, eburneus in Korea. 514 The Genetic comparisons among the four populations regions confirmed three clades based on 515 3.5% pairwise genetic distances and 35 haplotypes, albeit without regional specificity. 516 Furthermore In contrast, the quantitatively expressed described variations in opercular plate size 517 and shape variations appeared in one did identify a unique convergence in narrow elongated tergums in the population from Tongyeong. This population was also differentiated from all 518 519 others in which the by reduced recruitment density and plate occupancy are differentiated it from 520 others. Nonetheless, the present study has limitations in that we could not accurately Despite the

- 521 <u>inability to</u> predict the major factors driving the dispersal of and morphological variations in A.
- 622 eburneus in South Korea, due to insufficient number of sequences and information on
- 523 environmental variables, which we intend to incorporate in future studies. we demonstrated a
- similar phenotypic response in A. eburneus among diverse genotypes from a single location.

525526

Acknowledgements

- We would like to thank Jaehyun Kim (Hanyang University) for providing valuable comments on
- 528 designing the genetic analysis.

529 530

References

- Altschul SF, Gish W, Miller W, Myers EW. Lipman DJ. 1990. Basic local alignment search tool.
- *Journal of Molecular Biology*, 215: 403–410. doi: org/10.1016/S0022-2836(05)80360-2.
- Arsenault DJ, Marchinko KB, Palmer AR. 2001. Precise tuning of barnacle leg length to coastal
- wave action. *Proceedings of the Royal Society of London. Series B: Biological Sciences* 268:
- 535 2149–2154. doi:org/10.1098/rspb.2001.1776
- Bacon PR. 1971. The maintenance of a resident population of *Balanus eburneus* (Gould) in relation to
- 537 <u>salinity fluctuations in a Trinidad mangrove swamp. Journal of Experimental Marine Biology and Ecology</u>
- 538 <u>6:187-198</u>
- Barnes H, Healy MJR. 1971. Biometrical studies on some common cirripedes. III. Discriminant
- analysis of measurements on the scuta and terga of *Balanus eburneus* Gould. *Journal of*
- *Experimental Marine Biology and Ecology* 6: 83–90. doi: org/10.1016/0022-0981(71)90051-7.
- Barnes H, Powell HT. 1950. The development, general morphology and subsequent elimination
- of barnacle populations, *Balanus crenatus* and *B. balanoides*, after a heavy initial settlement. *The*
- 544 *Journal of Animal Ecology* 19: 175–179. doi:org/10.2307/1526.
- Bertness MD, Gaines SD, Yeh SM. 1998. Making mountains out of barnacles: the dynamics of
- acorn barnacle hummocking. *Ecology* 79: 1382–1394. doi: org/10.1890/0012-
- 547 9658(1998)079[1382:MMOOBT]2.0.CO;2
- Biccard A, Griffiths CL. 2016. Additions to the barnacle (Crustacea: Cirripedia) fauna of South
- 549 Africa. *African Zoology* 51: 99–116. doi: org/10.1080/15627020.2016.1196610.
- Bookstein FL. 1989. "Size and shape": a comment on semantics. Systematic zoology 38: 173–
- 551 180. doi: org/10.2307/2992387.
- Bookstein FL. 1991. Morphometric Tools for Landmark Data: Geometry and Biology, 1st ed.
- 553 Cambridge: Cambridge University Press.
- 554 Brusatte SL, Sakamoto M, Montanari S, Hartcourt Smith WEH. 2011. The evolution of cranial
- form and function in theropod dinosaurs: insights from geometric morphometrics. *Journal of*
- 556 Evolutionary Biology 25(2): 365–377. doi: org/10.1111/j.1420-9101.2011.02427.x.
- 557 Budečević S, Savković U, Đorđević M, Vlajnić L, Stojković B. 2021. Sexual Dimorphism and
- Morphological Modularity in *Acanthoscelides obtectus* (Say, 1831) (Coleoptera:
- 559 Chrysomelidae): A Geometric Morphometric Approach. *Insects* 12: 350. doi:
- org/10.3390/insects12040350.

- 561 Carlton JT, Newman WA, Pitombo FB. 2011. Barnacle invasions: introduced, cryptogenic, and
- range expanding Cirripedia of North and South America. In: Galil BS, Clark PF, Carlton JT, ed.
- 563 *In the wrong place-alien marine crustaceans: distribution, biology and impacts.* Dordrecht.:
- 564 Springer, 159–213.
- 565 Chan BK, Hung OS. 2005. Cirral length of the acorn barnacle *Tetraclita japonica* (Cirripedia:
- Balanomorpha) in Hong Kong: effect of wave exposure and tidal height. *Journal of Crustacean*
- 567 *Biology* 25: 329–332. doi: org/10.1651/C-2535.
- 568 Chan FT., MacIsaac HJ, Bailey SA. 2015. Relative importance of vessel hull fouling and ballast
- water as transport vectors of nonindigenous species to the Canadian Arctic. Canadian Journal of
- 570 Fisheries and Aquatic Sciences, 72: 1230–1242. doi: org/10.1139/cjfas-2014-0473.
- 571 Chang YW, J. Chan SM, Hayasi R, Shuto T, Tsang LM, Chu KH, Chan BKK. 2017. Genetic
- 572 differentiation of the soft shore barnacle *Fistulobalanus albicostatus* (Cirripedia: Thoracica:
- Balanomorpha) in the West Pacific. *Marine Ecology-An Evolutionary Perspective* 38: e12422.
- 574 Chen HN, Tsang LM, Chong VC, Chan BK. 2014. Worldwide genetic differentiation in the
- 575 common fouling barnacle, Amphibalanus amphitrite. Biofouling 30: 1067–1078. doi:
- 576 org/10.1080/08927014.2014.967232.
- 577 Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene
- 578 genealogies. *Molecular Ecology* 9: 1657–1659. doi: org/10.1046/j.1365-294x.2000.01020.x.
- 579 Costlow Jr JD, Bookhout CG. 1957. Larval development of *Balanus eburneus* in the laboratory.
- *The Biological Bulletin* 112: 313–324. doi: org/10.2307/1539123.
- Davidson IC, Brown CW, Sytsma MD, Ruiz GM. 2009. The role of containerships as transfer
- mechanisms of marine biofouling species. *Biofouling* 25: 645-655. doi:
- 583 10.1080/08927010903046268.
- De Jong, G. 2005. Evolution of phenotypic plasticity: patterns of plasticity and the emergence of
- 585 ecotypes. New Phytologist 166: 101–118. doi: 10.1111/j.1469-8137.2005.01322.x.
- Dineen JF, Hines AH. 1994. Effects of salinity and adult extract on settlement of the oligonaline
- barnacle Balanus subalbidus. Marine Biology 119: 423–430. doi: org/10.1007/BF00347539
- 588 Dlugosch KM, Parker IM. 2008. Invading populations of an ornamental shrub show rapid life
- history evolution despite genetic bottlenecks. *Ecology letters* 11: 701–709. doi:
- 590 org/10.1111/j.1461-0248.2008.01181.x
- Fisk DA, Harriott VJ. 1990. Spatial and temporal variation in coral recruitment on the Great
- Barrier Reef: Implications for dispersal hypotheses. *Marine Biology* 107: 485–490.
- 593 doi:org/10.1007/BF01313433.
- 594 Geller J, Meyer C, Parker M, Hawk H. 2013. Redesign of PCR primers for mitochondrial
- 595 cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic
- 596 surveys. *Molecular ecology resources*, 13: 851–861.
- 597 Geller J, Sotka EE, Kado R, Palumbi SR, Schwindt E. 2008. Sources of invasions of a
- 598 northeastern Pacific acorn barnacle, Balanus glandula, in Japan and Argentina. Marine Ecology
- 599 *Progress Series* 358: 211–218. doi: org/10.3354/meps07466.

- 600 Gilg MR, Lukaj E, Abdulnour M, Middlebrook M, Gonzalez E, Turner R, Howard R. 2010.
- Spatio-temporal settlement patterns of the non-native titan acorn barnacle, *Megabalanus*
- 602 coccopoma, in northeastern Florida. Journal of Crustacean Biology 30: 146–150. doi:
- 603 org/10.1651/09-3148.1.
- 604 Good P. 2013. Permutation tests: a practical guide to resampling methods for testing
- 605 hypotheses. Berlin: Springer Science & Business Media.
- 606 Gosner KL. 1999 A field guide to the Atlantic seashore: from the Bay of Fundy to Cape Hatteras
- 607 (Vol. 24). Boston: Houghton Mifflin Harcourt.
- 608 Guy-Haim T, Rilov G, Achituv Y. 2015. Different settlement strategies explain intertidal
- 2009 zonation of barnacles in the Eastern Mediterranean. Journal of Experimental Marine Biology and
- 610 *Ecology* 463: 125–134. doi: org/10.1016/j.jembe.2014.11.010.
- Han IS, Lee JS. 2020. Change in the annual amplitude of sea surface temperature due to climate
- change in a recent decade around the Korean Peninsula. *Journal of the Korean Society of Marine*
- 613 Environment & Safety 26: 233–241. doi: org/10.7837/kosomes.2020.26.3.233.
- Harriott VJ, Fisk DA. 1987. A comparison of settlement plate types for experiments on the
- 615 recruitment of scleractinian corals. *Marine Ecology Progress Series* 37: 201–208. doi:
- 616 10.3354/meps037201.
- Henry DP, McLaughlin PA. 1975. The barnacles of the *Balanus amphitrite* complex (Cirripedia,
- Thoracica). Zoologische verhandelingen 141: 1–254. https://repository.naturalis.nl/pub/317846.
- 619 Hills JM, Thomason JC. 2003. Recruitment density can determine adult morphology and
- 620 fecundity in the barnacle, Semibalanus balanoides. Biofueling 19: 205–213. doi:
- 621 org/10.1080/08927014.2003.10382983
- 622 Ho GWC, Leung KMY, Lajus D, Ng JSS, Chan BKK. 2009. Fluctuating asymmetry of
- 623 Amphibalanus (Balanus) amphitrite (Cirripedia: Thoracica) in association with shore height and
- metal pollution. *Hydrobiologia* 621: 21–32. doi: org/10.1007/s10750-008-9629-0.
- Hudson RR, Slatkin M, Maddison WP. 1992. Estimation of levels of gene flow from DNA
- 626 sequence data. *Genetics* 132: 583–589. doi: org/10.1093/genetics/132.2.583.
- 627 Iwasaki K. 2018. Nonindigenous marine invertebrates on four populated islands in the Sea of
- 628 Japan. *Biogeography* 20: 67–72.
- Jaberimanesh Z, Oladi M, Nasrolahi A, Ahmadzadeh F. 2019. Presence of Amphibalanus
- 630 eburneus (Crustacea, Cirripedia) in Gomishan Wetland: molecular and morphological evidence
- of a new introduction to the southern Caspian Sea. Regional Studies in Marine Science 25:
- 632 100469. doi: org/10.1016/j.rsma.2018.100469.
- Jarrett JN. 2008. Inter-population variation in shell morphology of the barnacle *Chthamalus*
- 634 fissus. Journal of Crustacean Biology 28: 16–20. doi: org/10.1651/07-2851R.1.
- Kaplan EH. 1988. A field guide to southeastern and Caribbean seashores: Cape Hatteras to the
- 636 Gulf coast, Florida, and the Caribbean. Boston: Houghton Mifflin Harcourt.
- Karanovic I, Huyen PTM, Brandão SN. 2019. Ostracod shell plasticity across longitudinal and
- 638 bathymetric ranges. Deep Sea Research Part I: Oceanographic Research Papers 143: 115–126.
- 639 doi: org/10.1016/j.dsr.2018.11.005.

- Karanovic T, Bláha M. 2019. Taming extreme morphological variability through coupling of
- molecular phylogeny and quantitative phenotype analysis as a new avenue for taxonomy.
- 642 *Scientific reports* 9: 1–15. doi: org/10.1038/s41598-019-38875-2.
- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
- 644 improvements in performance and usability. *Molecular biology and evolution* 30: 772–780.
- Kim HK, Chan BK, Lee SK, Kim W. 2020. Biogeography of intertidal and subtidal native and
- 646 invasive barnacles in Korea in relation to oceanographic current ecoregions and global climatic
- changes. *Journal of the Marine Biological Association of the United Kingdom* 100: 1079–1091.
- 648 doi:10.1017/S0025315420001009.
- Kim J, Kim J, Lee W, Karanovic I. 2021. The first insight into the patterns of size and shape
- variation of a microcerberid isopod. Water 13: 515. doi: org/10.3390/w13040515.
- 651 Kim IH. 1988. *Illustrated Encyclopedia of Fauna & Flora of Korea Vol.38*. Korea: Ministry of
- Education.
- Klingenberg CP, Barluenga M, Meyer A. 2002. Shape analysis of symmetric structures:
- Quantifying variation among individuals and asymmetry. Evolution 56: 1909–1920. doi:
- 655 org/10.1111/j.0014-3820.2002.tb00117.x.
- Klingenberg CP, McIntyre GS. 1998. Geometric morphometrics of developmental instability:
- analyzing patterns of fluctuating asymmetry with Procrustes methods. *Evolution* 52: 1363–1375.
- doi: org/10.1111/j.1558-5646.1998.tb02018.x.
- Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics.
- 660 *Molecular ecology resources* 11: 353–357. doi: org/10.1111/j.1755-0998.2010.02924.x.
- Klingenberg CP. 2013. Cranial integration and modularity: insights into evolution and
- development from morphometric data. *Hystrix* 24: 43–58.
- Klingenberg CP. 2016. Size, shape, and form: concepts of allometry in geometric
- morphometrics. Development genes and evolution 226: 113–137. doi: org/10.1007/s00427-016-
- 665 0539-2.
- Kozub D, Khmelik V, Shapoval Y, Chentsov V, Yatsenko S, Litovchenko B, Starykh V. 2008.
- Helicon Focus Software.
- 668 Larsen PF. 1985. The benthic macrofauna associated with the oyster reefs of the James River
- 669 Estuary, Virginia, USA. Internationale Revue der gesamten Hydrobiologie und Hydrographie
- 670 70: 797–814.
- 671 Leigh JW, Bryant D. 2015. popart: full-feature software for haplotype network construction.
- 672 *Methods in Ecology and Evolution* 6: 1110–1116. doi: org/10.1111/2041-210X.12410.
- 673 Li NK, Denny MW. 2004. Limits to phenotypic plasticity: flow effects on barnacle feeding
- 674 appendages. *The Biological Bulletin* 206: 121–124. doi: org/10.2307/1543635.
- 675 Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA
- polymorphism data. *Bioinformatics* 25: 1451–1452. doi: org/10.1093/bioinformatics/btp187.
- 677 Lim NL, Lee HM, Jeung HD, Noseworthy RG, Jung S, Choi KS. 2019. Early larval development
- and annual gametogenesis of the brooding oyster Ostrea circumpicta (Pilsbry, 1904) in the

- shallow subtidal benthic ecosystem in Jeju Island, off the south coast of Korea. Zoological
- 680 Studies 58: 29. doi: 10.6620/ZS.2019.58-29.
- 681 Lively CM. 1986. Predator-induced shell dimorphism in the acorn barnacle Chthamalus
- *anisopoma. Evolution* 40: 232–242. doi: org/10.1111/j.1558-5646.1986.tb00466.x.
- 683 López DA, López BA, Pham CK, Isidro EJ, De Girolamo M. 2010. Barnacle culture:
- background, potential and challenges. Aquaculture research 41: 367–375. doi:10.1111/j.1365-
- 685 2109.2010.02508.x.
- Marchinko KB, Palmer AR. 2003. Feeding in flow extremes: dependence of cirrus form on
- wave-exposure in four barnacle species. *Zoology* 106: 127–141. doi: org/10.1078/0944-2006-
- 688 00107.
- 689 Miller LP. 2007. Feeding in extreme flows: behavior compensates for mechanical constraints in
- barnacle cirri. Marine Ecology Progress Series 349: 227–234. doi: 10.3354/meps07099.
- Mitteroecker P, Gunz P, Windhager S, Schaefer K. 2013. A brief review of shape, form, and
- allometry in geometric morphometrics, with applications to human facial morphology. *Hystrix*,
- 693 *the Italian Journal of Mammalogy* 24: 59–66. doi:10.4404/hystrix-24.1-6369.
- Molnar JL, Gamboa RL, Revenga C, Spalding MD. 2008. Assessing the global threat of invasive
- species to marine biodiversity. *Frontiers in Ecology and the Environment* 6: 485–492.
- Monteiro LR. 1999. Multivariate regression models and geometric morphometrics: the search for
- causal factors in the analysis of shape. *Systematic Biology* 48: 192–199.
- 698 https://www.jstor.org/stable/2585275.
- Nei M. 1987. *Molecular evolutionary genetics*. New York: Columbia University Press.
- Newman WA. 2000. A new genus and species of barnacle (Cirripedia, Verrucomorpha)
- associated with vents of the Lau. Back-Arc Basin: its gross morphology, inferred first juvenile
- stage and affinities. *Zoosystema* 22: 71–84.
- 703 Osca D, Crocetta F. 2020. The ivory barnacle *Amphibalanus eburneus* (Gould, 1841)
- 704 (Arthropoda: Hexanauplia: Sessilia) in Albania (Adriatic Sea). BioInvasions Records 9: 189–
- 705 194. doi: org/10.3391/bir.2020.9.2.03.
- Pansch C, Schlegel P, Havenhand J. 2013. Larval development of the barnacle *Amphibalanus*
- 707 *improvisus* responds variably but robustly to near-future ocean acidification. *ICES Journal of*
- 708 *Marine Science* 70: 805–811. doi: org/10.1093/icesjms/fst092
- 709 Park C, Kim ST, Hong JS and Choi KH. 2017. A rapid assessment survey of invasive species of
- 710 macrobenthic invertebrates in Korean waters. *Ocean Science Journal* 52: 387–395. doi:
- 711 10.1007/s12601-017-0024-5.
- Pentcheff ND. 1991. Resistance to crushing from wave-borne debris in the barnacle *Balanus*
- 713 *glandula. Marine Biology* 110: 399–408. doi: org/10.1007/BF01344359
- 714 Pitombo FB, Gobin J, Abreu NMN, Jute A. 2017. A Cryptic Invasion in the Western Atlantic:
- 715 Presence of the Fouling Barnacle Megabalanus zebra (Darwin, 1854) (Crustacea, Cirripedia) in
- 716 the Caribbean Sea. *Zootaxa*, 4237:131–153. doi: org/10.11646/zootaxa.4237.1.7.

- Rebstock GA, Kang YS. 2003. A comparison of three marine ecosystems surrounding the
- Korean peninsula: Responses to climate change. *Progress in Oceanography* 59: 357–379. doi:
- 719 org/10.1016/j.pocean.2003.10.002.
- 720 Relini G., Matricardi G. 1979. I cirripedi toracici delle lagune di Orbetello. Atti della Societa
- 721 Toscana di Scienze Naturali, Memorie Serie B 86: 55–57.
- Rohlf FJ, Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of
- 723 landmarks. *Systematic biology* 39: 40–59. doi: org/10.2307/2992207.
- Rohlf FJ. 2010. tpsDig Version 2.16. New York: Department of Ecology and Evolution, State
- 725 University of New York Stony Brook.
- Rohlf, FJ. 2015. The tps series of software. *Hystrix, the Italian Journal of Mammalogy* 26. doi:
- 727 10.4404/hystrix-26.1-11264.
- Rozas J, Rozas R. 1999. DnaSP version 3: an integrated program for molecular population
- 729 genetics and molecular evolution analysis. *Bioinformatics* 15: 174–175. doi:
- 730 org/10.1093/bioinformatics/15.2.174.
- 731 <u>Scheltema RS & Williams IP. 1982. Significance of temperature to larval survival and length of</u>
- 732 <u>development in Balanus eburneus (Crustacea: Cirripedia). Marine Ecology Progress Series 9:43-</u>
- 733 49.
- 734 Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
- 735 analysis. *Nature Methods* 9: 671–675. doi: org/10.1038/nmeth.2089.
- Seo Y, Muhammad BL, Chae J, Ki JS. 2021. Population genetic structures of the jellyfish
- 737 Aurelia coerulea polyps along Korean coasts and implications as revealed by Mitochondrial
- 738 COI. *Zoological Studies* 60:63. doi:10.6620/ZS.2021.60-63
- 739 Sidlauskas BL, Mol JH, Vari RP. 2011. Dealing with allometry in linear and geometric
- 740 morphometrics: a taxonomic case study in the *Leporinus cylindriformis* group (Characiformes:
- Anostomidae) with description of a new species from Suriname. Zoological Journal of the
- 742 Linnean Society 162: 103–130. doi: org/10.1111/j.1096-3642.2010.00677.x.
- 743 Slice DE. 2007. Geometric morphometrics. *Annual Review of Anthropology* 36: 261–281. doi:
- 744 org/10.1146/annurev.anthro.34.081804.120613.
- Smith LD. 2009. The role of phenotypic plasticity in marine biological invasions. In: Rilov G,
- 746 Crooks JA, ed. *Biological invasions in marine ecosystems*. Berlin: Springer Verlag, 177–202.
- 747 Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge
- MA, Lombana AI, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J.
- 749 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. *BioScience*
- 750 57: 573–583. doi: org/10.1641/B570707.
- 751 Stefaniak LM. 2017. Mechanisms for invasion success by *Didemnum vexillum* (Chordata:
- 752 Ascidiacea): observations versus manipulations. *Biological Invasions* 19: 1213–1225. doi:
- 753 org/10.1007/s10530-016-1317-9
- 754 Streftaris N Zenetos A, Papathanassiou E. 2005. Globalisation in marine ecosystems: the story of
- non-indigenous marine species across European seas. In Oceanography and marine biology. In:

- 756 Gibson RN, Atkinson RJA, Gordon JDM, ed. *Oceanography and marine biology*. Florida: CRC
- 757 Press, 429–464.
- 758 Tajima F. 1983. Evolutionary relationship of DNA sequences in finite populations. *Genetics* 105:
- 759 437–460. doi.org/10.1093/genetics/105.2.437.
- 760 Timm NH. 2002. Applied Multivariate Analysis, 1st ed. Berlin: Springer.
- Torres-Pratts H, Schärer MT, Schizas NV. 2009. Genetic diversity of *Chelonibia caretta*,
- 762 commensal barnacles of the endangered hawksbill sea turtle *Eretmochelys imbricata* from the
- 763 Caribbean (Puerto Rico). Journal of the Marine Biological Association of the United Kingdom
- 764 89: 719–725. doi: org/10.1017/S0025315409000046.
- 765 Tsang LM, Chan BK, Ma KY, Chu KH. 2008. Genetic differentiation, hybridization and
- adaptive divergence in two subspecies of the acorn barnacle *Tetraclita japonica* in the
- 767 northwestern Pacific. *Molecular Ecology* 17:4151–4163. doi: g/10.1111/j.1365-
- 768 294X.2008.03907.x.
- Wrange AL, Charrier G, Thonig A, Alm Rosenblad M, Blomberg A, Havenhand JN, Johnsson
- PR, André C. 2016. The story of a hitchhiker: population genetic patterns in the invasive
- barnacle Balanus (Amphibalanus) improvisus Darwin 1854. PLoS One 11(1), e0147082. doi:
- 772 org/10.1371/journal.pone.0147082.
- 773 Wu TH, Tsang LM, Chan BK, Chu KH. 2015. Cryptic diversity and phylogeography of the
- island-associated barnacle *Chthamalus moro* in Asia. *Marine Ecology* 36: 368–378. doi:
- 775 org/10.1111/maec.12146.
- Zardus JD, Hadfield MG. 2005. Multiple origins and incursions of the Atlantic barnacle
- 777 Chthamalus proteus in the Pacific. Molecular Ecology 14: 3719–3733. doi: 10.1111/j.1365-
- 778 294X.2005.02701.x.