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ABSTRACT
Melatonin (MT) plays an important role in plant response to abiotic stress. In recent
years, lead (Pb) pollution has seriously affected the living environment of plants. In
this study, we applied two different concentrations of MT to naked oat seedlings under
Pb stress to explore the effect of MT on naked oat seedlings under Pb pollution. The
results showed that Pb stress seriously inhibited the growth and development of naked
oat seedlings, which was alleviated by MT. MT could increase the soluble protein
content and decrease the proline content of naked oat seedlings tomaintain the osmotic
balance of naked oat seedlings. The application of MT could accelerate the removal
of reactive oxygen species (ROS) and improve the activities of superoxide dismutase
(SOD), peroxidase (POD) and catalase (CAT), so as to maintain the redox balance in
naked oat seedlings. Exogenous melatonin could significantly increase the chlorophyll
content of naked oat seedlings under Pb treatment, so as to improve the photosynthesis
efficiency of naked oat seedlings. MT could also remarkably up regulate the expression
of the genes of LOX, POX andAsmap1, and affect the expression of transcription factors
NAC and WRKY1. It might regulate the expression of downstream genes through
MAPKs pathways and TFs to improve the Pb tolerance of naked oat seedlings. These
results proved that MT could significantly promote the growth and development of
naked oats seedlings under Pb stress, which is expected to be applied in agricultural
production practice.

Subjects Agricultural Science, Biotechnology, Plant Science, Environmental Contamination and
Remediation
Keywords Lead stress, Melatonin, Naked oats, Antioxidant protection

INTRODUCTION
After the third Industrial Revolution, science and technologymade great progress; however,
environmental problems also followed. The increase of motor vehicle exhaust emissions,
the abuse of sewage irrigation, pesticides and chemical fertilizers, as well as the rapid
development of modern mining industry have seriously polluted the soil, water and
atmosphere (Pellinen, Cherkashina & Gustaytis, 2021; Zhao et al., 2015). Heavy metal
contamination is potentially toxic to humans and animals, among which the heavy
metal pollution problems caused by heavy metals such as lead (Pb) and mercury or their
compounds, rank first for the biological threat (Rahman & Singh, 2019). Metal Pb is
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distributed in the atmosphere, water and soil, which leads to the excessive production and
accumulation of reactive oxygen species (ROS) in plants through plant growth. Excessive
ROS not only destroy plant proteins, carbohydrates, lipids and DNA, but also cause plant
oxidative stress (Gill & Tuteja, 2010), leading to intracellular dynamic imbalance, as well
as affecting and harming plant growth (Pérez-Chaca et al., 2014). At present, most plants
suffer from serious Pb pollution (Pace et al., 2020). Pb could significantly reduce the leaf
area and root length of Zygophyllum fabago (López-Orenes et al., 2018). Moreover, studies
revealed that Pb has negative effects on the biochemical and physiological processes that
regulate grain quality, and that high Pb concentrations can destroy several key metabolic
processes in plants, such as organelle integrity, membrane stability, mineral metabolism,
oxygen release and enzyme activities (Aslam et al., 2020). How to improve the yield and
quality of crops under Pb stress and ensure food security has always been one of the popular
topics in research.

Since the discovery ofmelatonin (MT) in plants in 1995 (Hattori et al., 1995), its function
in plants has been revealed rapidly. More and more studies have found that MT plays an
active role in plant stress resistance (Sun et al., 2021). MT can improve plant growth and
development under drought, low temperature and salt stress conditions (Li et al., 2019;
Wang, Zhang & Ding, 2020; Xia et al., 2020; Zhou et al., 2020). Under heavy metal stress,
MT, as an effective antioxidant (Reiter et al., 2016), can reduce the phytotoxicity of nickel
by improving the efficiency of photosynthesis, secondary metabolism and the tolerance of
oxidative stress of tomato seedlings (Jahan et al., 2020). MT can also reduce the toxicity
of copper by improving copper fixation and scavenging ROS in cucumber (Cao et al.,
2019). MT can respond to Pb stress through reducing the absorption of Pb by Carthamus
tinctorius and regulating the antioxidant system of Carthamus tinctorius (Namdjoyan et al.,
2020). It can reduce cadmium accumulation and reconstruct microRNA-mediated redox
homeostasis to enhance plant tolerance to cadmium stress as well (Lewitt & Hulting, 2017).
In addition, MT shows more other positive activities in plants, such as regulating seed
germination, root growth and development, leaf senescence, circadian rhythm, postharvest
fruit ripening, and plant response to adverse environmental conditions (Sun et al., 2021).
It has increasingly become one of the star hormones in plant stress resistance regulation.

Naked oats are plants of the family Gramineae and oats, with the scientific name
‘‘naked grain type oats’’ or ‘‘naked oats’’. Naked oats are native to China and recognized
as one of the food crops with the highest nutritional value in the world (Zhao et al., 2020),
whose protein content is the highest among cereal crops (Zhang, 2006). As a high-cold,
drought-tolerant and high-quality food crop, it has lower requirements for topography
(Khan et al., 2019). However, it is more vulnerable to soil pollution. It has been found
that when naked oat seeds were in the heavy metal environment, the plant height, root
length, and chlorophyll content were reduced (Wang, 2014). Like other crops, the growth
and development of naked oats is hindered by heavy metals in the soil. But at present,
the research on the metal toxicity to naked oats and the response mechanism of plants
to alleviate the toxicity is still relatively insufficient. There are no data on metal toxicity
mitigation and protection depending on MT in the growth of naked oats. In this paper,
we have more specifically elucidated the damage caused by Pb to naked oat seedlings. For
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the first time, we applied different concentrations of MT and investigated the effect of
different concentrations of exogenous melatonin on Pb-stressed naked oat seedlings, and
demonstrated that MT can promote the growth of naked oat seedlings under Pb stress.
This study shows that melatonin can be used in agricultural production.

MATERIALS & METHODS
Plant materials and seed germination conditions
The naked oat variety ‘‘Jinyan 2’’ (Avena nuda L.) was provided by the Shaanxi Key
Laboratory of Biotechnology and stored in a refrigerator at 4 ◦C. Healthy and full seeds
were selected, disinfected for 30s with 75% alcohol, rinsed with distilled water three
times, disinfected with 0.1% mercury solution for 7 min, finally rinsed with distilled water
six times, moved into a water culture box containing Hoagland nutrient solution (pH
6.5± 0.1). Hoagland nutrient solution was replaced every three days, and the water culture
box was placed in the culture room at 25 ◦C with 75% relative humidity, and a 14L/10D
photoperiod.

Experimental group design
When the naked oats seedlings grew to the 7th day, the control group was continued
to be irrigated with Hoagland nutrient solution, and the treatment group was irrigated
with different concentrations of Pb solution (0, 25, 50, 75, 100 mg L−1). According to the
statistical observation, the Pb treatment condition was set as 75 mg L−1 in this work. With
reference to the previous experiment, the concentration of MT was selected as 50 and 100
µM (Gao et al., 2018). The experiment was divided into six treatment groups: control, Pb,
MT50, MT100, MT50+Pb and MT100+Pb.Naked oat seedlings were cultured for 7 days and
then treated with 0 and 75 mg L−1 Pb(NO3)2, respectively, the hydroponic solution was
renewed every three days. The seedlings grown in Pb-free nutrient solution was used as the
control. MT50 and MT100 were treated with MT solution of 50 and 100 µM respectively
on the basis of the control group. MT50 +Pb and MT100+Pb were root-irrigated with MT
solution of 50 and 100 µM on the basis of the Pb treatment group. All six treatment groups
were sampled seven days after the start of stress. three groups of parallel repeats were set
up for sampling, testing and measurement, respectively.

Calculation of plant height, fresh weight and dry weight
After seven days of treatment in different treatment groups, naked oat seedlings were
randomly selected from each hydroponic culture box, and the plant height, plant fresh
weight and plant dry weight were measured. The plant height is the linear distance from
the base of the radicle to the top of the leaf. After the seedlings of naked oats were taken
out, they were simply washed with tap water, then rinsed with distilled water three times,
gently dried with paper towels, and the fresh plants were quickly weighed with electronic
scales. The seedlings of naked oats were dried at 105 ◦C for 30 min, then dried at 80 ◦C for
24 h, and the dry weight was measured by electronic balance.
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Determination of chlorophyll content and lead content
The leaf samples frozen in liquid nitrogen from -80 ◦C (fresh weight 0.2 g) were fully
ground in liquid nitrogen with 95% anhydrous ethanol, then the volume was fixed to 20
mL, 4 ◦C and placed in the dark for 24 h. The values of OD649 and OD665 of supernatants
were determined after samples were centrifuged for 10 min. The formula for calculating
chlorophyll is as follows: C = Ca+ Cb, in which Ca =13.95A665−6.88A649−7.32A665, Cb

is 24.96A649−7.32A665. Chlorophyll content = chlorophyll concentration × extraction
liquid volume × dilution multiple / sample fresh weight (Porra, Thompson & Kriedemann,
1989). The content of Pb in leaves of naked oat seedlings was determined by graphite
furnace atomic absorption spectrophotometer (model Z2700), following the method of
Shi, Li & Pan (2009). The sample was dried in an air-forced oven at 60 ◦C for 48 h. Dry
plant material was ground in a stainless-steel blender to pass through a 0.4-mm sieve. Leaf
samples were subjected to mixed acid digestion (HNO3-HClO4-HF). A certified reference
material of sediment IRMM-804 with (0.42 ± 0.07) mg kg−1 Pb was purchased from the
National Centre for Certificate Reference Materials, China, and was used with all patch of
digestions. Dried plant samples were digested in a 4:1 (V V−1) mixture of HNO3-HClO4.
Ten milliliter of mixed acids was added to 0.75 g of plant sample in a high-walled beaker
and allowed to stand for 12 h at 25 ◦C. The samples were then heated in a sand bath at
170 ◦C until clear. After cooling, the solution was diluted to 25 mL with deionized water.
The Pb content of the digested solutions was determined by graphite furnace AAS. A
reagent blank was incorporated within each batch of analytical samples.

Determination of antioxidant enzyme activity, soluble protein and
proline content
The fresh weight of the leaf sample is 0.2 g. PBS buffer (pH7.4) was added to the sample,
which was ground to homogenate in an ice bath, and then centrifuged at 8,000 × g for
10 min to collect the supernatant. The supernatant was used for the determination of
superoxide dismutase (SOD; EC1.15.1.1), peroxidase (POD; EC1.11.1.7) and catalase
(CAT; EC1.11.1.6). The activities of SOD, POD and CAT were recorded at 550 nm, 420
nm and 405 nm, respectively, according to Elavarthi & Martin’ s method (2010).

The content of soluble proteins was detected by kits (Nanjing Institute of Bioengineering,
Nanjing, China). 0.1 g of fresh leaves was homogenized with 900 µL buffer and the
homogenate was centrifuged for 10 min (3000 g); 50 µL supernatant was added to three
mL Coomassie brilliant blue solution. The mixture was incubated at 25 ◦C for 30 min and
the absorbance of soluble protein content was recorded at 595 nm.

Proline content in seedlings of naked oat was measured according to the ninhydrin
method described by Bates, Waldren & Teare (1973). The leaf sample was 0.2 g. Proline
was extracted with 3% sulphosalicylic acid and then filtered. A portion of the filtrate was
supplemented by the addition of one mL of ninhydrin and glacial acetic acid reagent. The
reaction mixture was boiled (95 ◦C) for 1 h. Then the mixture was placed on ice to stop
the reaction, the absorbance of the sample was measured at 520 nm.
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Determination of malondialdehyde and ROS accumulation
Malondialdehyde (MDA) was measured according to the procedure described by Tan et al.
(2019). The leaf sample (0.5 g fresh weight) was ground with five mL of 5% trichloroacetic
acid and centrifuged for 10 min (8000 g, 4 ◦C). one mL of supernatant was mixed with
one mL of 0.67% thiobarbituric acid (TBA). The mixture was then boiled in water for
30 min, the absorbance at 532 nm and 600 nmwas measured respectively to calculate MDA
content.

To measure H2O2, the methods described by Nawaz et al. (2018) was followed. Fresh
leaves (100 mg) were ground in a mortar with 900 µL buffer, H2O2 content was recorded
at a wavelength of 405 nm. The kit method (Nanjing Jiancheng Institute of Biological
Engineering, Nanjing, China) was applied to detect O2

•−−, Fresh leaves (100 mg) were
centrifuged at 4000 g and 25 ◦C for 10 min. 50 µL of the supernatant was mixed with the
four mL reagent solution. The mixture was bathed at 37 ◦C for 40 min and then two mL
reagent solution was added. O•−−2 content was recorded at a wavelength of 550 nm.

According to the method of DAB staining (Orozco-Cardenas & Ryan, 1999), fresh leaves
were soaked in DAB solution (1 mg mL−1), the pH was adjusted to 3.8, vacuum was
permeated for 30 min, shaker dark treatment was placed for 8 h, washed twice with 95%
anhydrous ethanol, then was boiled in a water bath (20 min), and stored in 50% glycerin
after cooling, stored at 4 ◦C. At least three leaves were selected for each treatment, and
photographed with a stereomicroscope.

Extraction of RNA and analysis of related gene expression
Sequence search and primer design were carried out according to previous work (Gao et al.,
2018). The list of primers is shown in Table S1. The total RNA of naked oats was extracted
by TRIzol method. First-strand cDNAwas synthesized using the PrimeScriptTM RT reagent
kit with the gDNA Eraser (Takara, Shiga, Japan). qRT-PCR was performed on a Bio-Rad
CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA, USA) using FastStart Essential
DNA Green Master (Tiangen, Beijing, China). The procedure is as follows: 95 ◦C for 10
min, 1 cycle, 95 ◦C for 10 s, 60 ◦C for 30 s, 40 cycles. Finally, a melting curve was drawn to
reconfirm the specificity of the primers by heating the product from 60 ◦C to 95 ◦C. The
internal reference gene was Actin (KP257585.1) (Gao et al., 2018; Genty, Briantais & Baker,
1989). Three independent biological replications were performed for each experiment.
The relative gene expression levels were calculated according to the 2−11Ct method and
presented as fold changes.

Data analysis
All the measurements reported in this study are the means of three replicates. Vertical
bars represent± S.D. SPSS26.0 software was used for data statistics univariate analysis and
minimum significant difference (LSD) test to compare the average values. We use prism
8.00 to organize pictures.
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RESULTS
MT improves the growth of naked oat seedlings under lead stress
In the simulated experimental group (Control, Pb, MT50, MT100, MT50 +Pb, MT100 +Pb),
on the 7th day (Fig. 1), the Pb solution decreased the plant height, fresh weight, dry weight
and total chlorophyll content of naked oat seedlings. Under Pb stress, MT treatment
improved seedlings growth with the plant height of seedlings increasing by 27.8% inMT100

+Pb group, and 18.6% in MT50 +Pb group compared with Pb group (Fig. 1A). The
fresh weight of seedlings decreased by 47.2% after Pb treatment, which was significantly
alleviated by the application of MT (Fig. 1B). Compared with the the Pb group, the dry
weight ofMT50+Pb andMT100+Pb groups increased by 20% and 33.3%, respectively (Fig.
1C). The chlorophyll content of the seedlings treated with 50 and 100 µM MT increased
by 21.4% and 1.7% respectively compared with the control group, and the effect of 50
µM MT was more significant. Pb stress decreased the total chlorophyll content, but after
MT treatment, the total chlorophyll content of naked oat seedlings increased considerably,
with leaves also turning to green. Furthermore, the toxic symptoms were alleviated, with
the total chlorophyll content increasing by 66.7% and 33.3% respectively compared with
the Pb group. It can be observed that Pb inhibited the growth of naked oat seedlings, while
the application of exogenous MT improved the tolerance of naked oat seedlings to Pb.

Exogenous application of MT enhances the activity of antioxidant
enzymes in naked oat seedling cells
SOD, POD and CAT are important protective enzymes in plants, and they are all important
indicators of plant resistance to stress. Pb stress changed the antioxidant enzyme activity
of naked oat seedlings (Fig. 2), in which SOD, POD, CAT activity increased. After 50 and
100 µM MT pretreatment, SOD activity was significantly increased by 84.0% and 76.4%,
respectively. Interestingly, the efficiency of MT to increase SOD activity decreased under
Pb stress, but after MT50 +Pb and MT100 +Pb treatment, it increased 31.8% and 28.1%
respectively compared with Pb group. Compared with the Pb stress group, the POD activity
of the group treated with MT50 +Pb and MT100 +Pb increased by 50.7% and 62.0%, while
the activity of CAT increased by 49.5% and 36.0%. The results showed that exogenous MT
could enhance the activity of antioxidant enzymes in naked oats cells under Pb stress, so as
to strengthen the antioxidant system of plants and reduce the toxicity of Pb to naked oats.

Changes of osmotic regulation substances in naked oat seedlings
After naked oat seedlings cells sensed the external Pb stress, plant soluble proteins and
proline increased or decreased accordingly to maintain the redox balance and alleviate the
Pb poisoning of plant cells (Fig. 3). MT50 and MT100 treatment did not cause significant
changes in intracellular soluble protein content in the control group, and Pb stress decreased
the soluble protein content, but after 50 µM or 100 µM MT pretreatment, the soluble
protein content increased. Compared with the Pb group, the soluble protein content of
MT50 +Pb and MT100 +Pb group increased by 99.3% and 96.9%, respectively (Fig. 3A).
The content of proline increased by 31.5% and 24.2% in MT50 and MT100 treatments,
respectively compared with the control group (Fig. 3B). Pb stress significantly increased

Wang et al. (2022), PeerJ, DOI 10.7717/peerj.13978 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.13978


Figure 1 Effects of different concentrations of MT on the growth of naked oat seedlings under lead
stress. (A) Plant height; (B) plant fresh weight; (C) plant dry weight; (D) chlorophyll content.− Pb means
lead-free and it is not a stress,+ Pb means 75 mg L−1 lead stress. Data are shown as means± SD (n= 3).
Different letters indicate a significant difference between control and treatment (P < 0.05).

Full-size DOI: 10.7717/peerj.13978/fig-1

Figure 2 Effect of MT treatment on enzyme activity of naked oat seedlings under lead stress. (A) SOD;
(B) POD; (C) CAT.− Pb means lead-free and it is not a stress,+ Pb means 75 mg L−1 lead stress. Data are
shown as means± SD (n= 3). Different letters indicate a significant difference between control and treat-
ment (P < 0.05).

Full-size DOI: 10.7717/peerj.13978/fig-2
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Figure 3 Effects of different concentrations of melatonin on osmotic regulatory substances in naked
oat seedlings under lead stress. (A) soluble protein content; (B) proline content.− Pb means lead-free
and it is not a stress,+ Pb means 75 mg L−1 lead stress. Data are shown as means± SD (n= 3). Different
letters indicate a significant difference between control and treatment (P < 0.05).

Full-size DOI: 10.7717/peerj.13978/fig-3

proline content, and the effect of MT treatment was more significant. In MT50 +Pb
treatment group it increased by 25.4% while for MT100 +Pb group the number was 19.8%.
Therefore, MT might eliminate the increase of ROS in naked oat seedlings caused by Pb
stress, stabilize the molecular structure of soluble proteins and enhance the tolerance of
naked oats to heavy metal Pb stress. At the same time, the ROS of naked oat seedlings were
elevated under Pb stress, and MT application could effectively alleviate the accumulation
of ROS in naked oat seedlings.

Pb stress caused a significant increase in the contents of H2O2 and O•−2 in young leaves
of naked oats (Fig. 4). MT could significantly alleviate this phenomenon. Compared with
the Pb group, the contents of H2O2 in MT50 +Pb and MT100 +Pb groups decreased by
30.3% and 25.7%, respectively, and the content of O•−2 decreased by 25.7% and 24.7%,
respectively. In the experiment, the content of MDA increased significantly under Pb stress,
but MT treatment could reduce the content of MDA, and the content of MDA decreased
by 42.9% and 34.4% in MT50 +Pb and MT100 +Pb groups, respectively (Fig. 4C). DAB
histochemical staining of naked oat seedling leaves (Fig. 4D) showed that Pb stress induced
oxidative stress of naked oats, and a large amount of H2O2 was accumulated in seedling
leaves, which affected the leaf morphology. After Pb poisoning, the seedling leaves became
smaller and narrower, and the DAB staining was aggravated. After MT treatment, the
symptoms of the leaves treated with MT50 +Pb and MT100 +Pb were relieved, and the
accumulation of H2O2 was reduced. The above results showed that after the Pb ion entered
into naked oat seedlings, oxidative stress produced O2

•−, H2O2 and other reactive oxygen
species, which could be reduced by external application of MT. It is speculated that MT
might be used as an antioxidant to help plants remove excessive ROS, lessen the degree of
membrane lipid peroxidation in naked oat leaves, improve their tolerance under Pb stress,
and improve the growth of naked oat seedlings.
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Figure 4 Effects of different concentrations of MT on the changes of intracellular reactive oxygen
species in naked oat seedlings under lead stress. (A) H2O2 content; (B) O•−2 content; (C) MDA content;
(D) DAB staining histochemical analysis.− Pb means lead-free and it is not a stress,+ Pb means 75 mg
L−1 lead stress. Data are shown as means± SD (n = 3). Different letters indicate a significant difference
between control and treatment (P < 0.05).

Full-size DOI: 10.7717/peerj.13978/fig-4

Exogenous MT application increases the expression of genes related
to oat seedlings
The expression of Lipoxygenase (LOX) and peroxygenase (POX) of naked oats changed
significantly after exogenous application of MT (Figs. 5A and 5B). A total of 50 and 100 µM
MT significantly increased the expression of LOX by 431.2% and 475.5%. Under Pb stress,
the expression of LOX inMT50+Pb andMT100+Pb groups was also significantly increased
by 214.3% and 262.3% (Fig. 5A). POX gene expression also increased significantly after
Pb stress, and exogenous MT pretreatment increased 127.7% and 135.1% respectively
(Fig. 5B). The results showed that MT treatment changed the expression level of lipid
peroxidase in naked oat cells under Pb stress, which may protect plants from oxidative
stress by up-regulating LOX and POX.

Asmap1 gene is a MAPK (mitogen activated protein kinase) protein in naked oats.
After MT pretreatment, there was no significant change in MAPK cascade response in
the Control group, after Pb treatment, Asmap1 gene expression increased significantly by
273.3% and 233.7% respectively (Fig. 5C) in MT50+Pb and MT100+Pb groups treated with
MT, indicating that MT50 can induce a stronger MAPK cascade response. It is suggested
thatMT can induce gene upregulation inMAPK cascade reaction and enhance the tolerance
of naked oat seedlings to Pb stress.
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Figure 5 Effects of different concentrations of MT on the expression of LOX (A), POX (B), Asmap1
(C),NAC (D),WRKY1 (E) in leaves of naked oat seedlings under lead stress. − Pb means lead-free and
it is not a stress,+ Pb means 75 mg L−1 lead stress. Data are shown as means± SD (n= 3). Different let-
ters indicate a significant difference between control and treatment (P < 0.05).

Full-size DOI: 10.7717/peerj.13978/fig-5

Compared to the Pb group (Fig. 5D), the gene (NAC) expression of MT50 +Pb and
MT100 +Pb groups increased significantly by 99.1% and 267.2% respectively. Compared
to the Pb group, the gene (WRKY1) expression of MT50 +Pb and MT100 +Pb groups
increased by 5.0% and 66.1%. It is speculated that exogenous MTmay affect the expression
of related TFs in naked oat seedlings in some way, and further enhance the tolerance of
naked oat seedlings to Pb stress.

DISCUSSION
MT can reduce the oxidative stress damage caused by heavy metals in some plants (Sarafi
et al., 2017). The differences of its concentration and treatment methods, stress, as well as
environments have distinctive effects on the same plant. The Pb tolerance of plants is the
result of synergistic function in plants, and one of the indicators is plant biomass (Liu, Li
& Shen, 2007). Under 75 mg L−1 Pb stress, the plant height, fresh weight and dry weight of
naked oats seedlings were reduced, the growth slowed down, and serious wilting appeared.
After exogenous MT pretreatment, the wilting growth state of naked oats seedlings was
effectively alleviated and gradually returned to normal, this is similar toHasan et al. (2015).

Photosynthesis maintains plant growth and development, and the change of chlorophyll
content in chloroplast can be used as a marker to measure photosynthetic efficiency
(Lee et al., 2003; Xiong, Zhao & Li, 2006). In our experiment, Pb stress led to the decrease
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of chlorophyll content which could be increased by MT treatment in varying degrees.
Chlorophyll content is closely related to the dry weight of the plant (Hu et al., 2018), the
increase of chlorophyll content may also increase the dry weight of naked oat seedlings. So
we speculated that MT could improve the photosynthetic efficiency and help the seedlings
to restore growth.

Singh et al. (2010) found that under the stress of heavy metal Pb, a large amount of ROS
in indica rice cells could accumulate and destroy the balance in the oxidation system and
aggravatemembrane lipid peroxidation. The activities of SOD, POD and CAT in naked oats
seedlings induced by Pb stress did not change significantly, while exogenous MT increased
the activities of the three. The increase of activity was related to the concentration of MT,
in which POD and CAT changed significantly, while SOD activity was not sensitive to Pb.
Overall, MT application enhanced the activity of antioxidant enzymes, which is similar to
the findings of Xia et al. (2020). At the same time, metal Pb caused a large accumulation
of ROS and a significant increase of H2O2 and O•−2 in naked oat cells, and MT could
effectively alleviate this phenomenon, lessen the oxidative damage of young leaves (Fig. 5),
and help naked oat seedlings to resist the toxicity of metal Pb.

Heavy metals can damage intracellular soluble proteins (Yadav, 2010). 75 mg L−1 Pb
stress significantly decreased the content of soluble proteins in naked oat seedlings while
MT treatment increased it. It is speculated that MT as an active oxygen scavenger maintains
intracellular homeostasis and alleviates metal-induced protein damage, which is consistent
with the discovery by Namdjoyan et al. (2020). Free proline in plant osmotic regulators
increases under stress, which helps to alleviate the toxic effects caused by abiotic stress
and protect plant cells from the harm of free radicals (Soussana et al., 2004). The proline
content of young leaves of naked oats treated with Pb was higher than that of the control
group, which may be because the infiltration of metal Pb ions induced the change of water
potential in the seedlings and destroyed the equilibrium state. MT under Pb stress can
increase the content of proline, and proline can regulate cell osmotic pressure (Lehmann
et al., 2010). It may regulate cell osmotic pressure balance and enhance the tolerance of
naked oats to Pb by clearing excess ROS in cells. The content of MDA, the product of
membrane lipid peroxidation, indirectly reflects the degree of damage to the membrane
system (Atalay, Gegotek & Skrzydlewska, 2021). This study showed that the application of
melatonin significantly reduced MDA levels, further demonstrating that melatonin can
maintain osmotic balance in naked oat seedlings. In conclusion, the exogenous application
of melatonin maintained the osmotic balance of naked oat seedlings, and we speculate that
the increase in fresh weight of naked oat seedlings may be related to this.

Usually, H2O2, as a signal molecule with low concentration, participates in a variety
of physiological and metabolic regulation in plants (Nazir, Fariduddin & Khan, 2020) and
regulates the expression of transcription factors in bacteria, animals and lower eukaryotes
(Marinho et al., 2014). Exogenous application of melatonin can significantly reduce the
H2O2 content in naked oat seedlings. We speculate that MT may promote the expression
of stress resistance genes by reducing the H2O2 concentration. MAPK cascade reaction
is a common cascade reaction in abiotic stress (Wang, He & Yang, 2012). Asmap1 is an
important gene in MAPK. We found that Asmap1 was significantly up-regulated after
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melatonin was applied. Therefore, MT may enhance plant Pb tolerance by affecting MAPK
pathway. Transcription factor (TFs) regulates the expression of coding genes, especially the
expression of early stress response genes and a series of downstream target genes, which
may enhance plant stress resistance (Hoang et al., 2017). Genes such as NAC and WRKY
are involved in a variety of abiotic stress responses, and the overexpression of NAC and
WRKY genes can regulate the senescence process of Arabidopsis thaliana leaves (Guo, Cai
& Gan, 2004). In this study, exogenous MT significantly increased the expression of NAC
and WRKY1. MT may also promote the growth of naked oat seedlings under Pb stress
by affecting the expression of TFs. In general, MT may affect the MAPK cascade and the
expression of TFs, thus improving the Pb tolerance of naked oat seedlings.

LOX and POX genes in plants are involved in a variety of signal pathways (Santino et
al., 2013), helping the body resist adverse external factors. Under salt stress, the activity
of lipoxygenase in the cells of citrus seedlings increased (Ben-Hayyim et al., 2001), and
the 9-LOX gene expression increased three to six times under osmotic stress (Fedina et
al., 2004). Similarly, naked oat seedlings in this study showed slightly elevated expression
levels of LOX and POX under Pb stress. LOX may help activate antioxidant enzyme system
(Cho et al., 2012), The expression levels of LOX and POX were significantly increased in
naked oat seedlings after exogenous application of different concentrations of MT, and we
speculate that exogenous MT may enhance the resistance of oat seedlings by regulating the
expression levels of LOX and POX. This is similar to the results of the study by Gao et al.
(2018).

This study provides the first evidence that MT may help to alleviate the damage suffered
by naked oat seedlings under Pb stress. In some areas, crops are experiencing heavy metal
contamination (Onakpa, Njan & Kalu, 2018), especially in acidic soils, which tend to
accumulate more heavy metals. It is urgent to reduce the negative impact of heavy metals
in soils on crops. On the one hand, MT can alleviate heavy metal toxicity in plants, while at
the same time improve soil enzyme activity and soil quality by altering the composition of
soil bacterial and fungal communities, thereby promoting plant growth (Acuña Castroviejo
et al., 2014; Li et al., 2018; Madigan et al., 2019; Moustafa-Farag et al., 2020). On the other
hand, MT may also alleviate abiotic stresses to which plants are subjected in other ways
(Chang et al., 2021), such as by affecting circadian rhythms. Soil Pb concentrations in some
vegetable gardens were much higher than those in this experiment (Amorim et al., 2021),
and the therapeutic effect of MT remained stable in the short term (Yan et al., 2021). In
summary, MT has the potential to be applied in future agricultural practices as one of the
substances to improve the growing environment of crops such as naked oats.

CONCLUSIONS
A total of 75 mg L−1 Pb stress severely affected the growth of naked oat seedlings, while
different concentrations of MT all alleviated the damage caused by Pb stress to oat. We
speculated that MT may act on naked oat seedlings under Pb stress in the following ways
(Fig. 6): exogenous MT can increase chlorophyll content and enhance photosynthesis
in oat seedlings. It can also promote changes in osmoregulatory substances such as
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Figure 6 Potential role of MT on the growth and development of naked oat seedlings under lead stress.
The orange line indicates the pathway of action for melatonin (MT) and the blue line indicates the path-
way of action for lead stress. Green arrows indicate an increase, black arrows indicate a decrease.

Full-size DOI: 10.7717/peerj.13978/fig-6

proline to restore the growth and development of Pb-stressed naked oat seedlings. Pb
stress significantly increased the level of reactive oxygen species in oat seedlings, while
exogenous MT was able to significantly reduce the level of reactive oxygen species in oat
seedlings by increasing the activity of antioxidant enzymes. ExogenousMTup-regulated the
expression of genes related to the antioxidant system, activated the MAPK cascade reaction
and promoted the expression of TFs genes, thus improving the resistance of naked oat
seedlings to Pb. The relationship between the mechanism of the function of MT and related
signaling pathways in naked oat seedlings under heavy metal Pb stress needs to be further
explored.
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