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The high diversity of gametogenic pathways in amphispermic
water frog hybrids from Eastern Ukraine
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Interspeciûc hybridization can disrupt canonical gametogenic pathways, leading to the
emergence of clonal and hemiclonal organisms. Such gametogenic alterations usually
include genome endoreplication and/or premeiotic elimination of one of the parental
genomes. The hybrid frog Pelophylax esculentus exploits genome endoreplication and
genome elimination to produce haploid gametes with chromosomes of only one parental
species. To reproduce, hybrids coexist with one of the parental species and form speciûc
population systems. Here, we investigated the mechanism of spermatogenesis in diploid P.
esculentus from sympatric populations of P. ridibundus using ûuorescent in situ
hybridization. We found that the genome composition and ploidy of germ cells, meiotic
cells, and spermatids vary among P. esculentus individuals. The spermatogenic patterns
observed in various hybrid males suggest the occurrence of at least six diverse germ cell
populations, each with a speciûc premeiotic genome elimination and endoreplication
pathway. Besides co-occurring aberrant cells detected during meiosis and gamete
aneuploidy, alterations in genome duplication and endoreplication have led to either
haploid or diploid sperm production. Diploid P. esculentus males from mixed populations of
P. ridibundus rarely follow classical hybridogenesis. Instead, hybrid males simultaneously
produce gametes with diûerent genome compositions and ploidy levels. The persistence of
the studied mixed populations highly relies on gametes containing a genome of the other
parental species, P. lessonae.
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18 Introduction
19 Meiosis is a conserved process for all eukaryotic organisms and represents a hallmark of sexual 

20 reproduction (Lenormand et al., 2016). Chromosome conjugation during meiosis relies on 

21 sufficient homology between chromosomes (McKee, 2004), whereas insufficient pairing may 

22 lead to meiotic abruption and formation of aneuploid gametes. These mechanisms keep taxa 

23 prezygotically reproductively isolated (Zong & Fan, 1989; Borodin et al., 1998; Ishishita et al., 

24 2015; Torgasheva et al., 2016; Dedukh et al., 2020). Interspecific hybridization has both positive 

25 (Mallet, 2010; Abbott et al., 2013) and negative impacts (Arnold & Hodges, 1995; Rieseberg, 

26 2001; Coyne et al., 2004) and plays a key role in evolution. One of the outcomes of hybridization 

27 is the creation of individuals with clonal and hemiclonal reproductive modes (Dawley & Bogart, 

28 1989; Schön et al., 2009; Neaves & Baumann, 2011; Stöck et al., 2021). Hybrid clonal animals 

29 form gametes with a chromosomal composition identical to that of their somatic cells (Dawley & 

30 Bogart, 1989; Schön et al., 2009; Neaves & Baumann, 2011; Stöck et al., 2021). Hybrid 

31 hemiclonal animals produce unrecombined haploid gametes that require fertilization to restore 

32 diploid chromosomal sets in their offspring (Dawley & Bogart, 1989; Schön et al., 2009; Stöck et 

33 al., 2021; Dedukh & Krasikova, 2021). A switch to asexual reproduction requires significant 

34 modifications to gametogenesis, rescuing hybrids from sterility, and the creation of alternative 

35 pathways for successful reproduction. Thus, our understanding of reproductive ability and 

36 evolutionary potential of hybridization lies in our understanding of hybrid gametogenesis.

37 Hemiclonal reproduction, also known as hybridogenesis, has been found in European water frogs 

38 of the genus Pelophylax (Tunner, 1973). This animal system includes two parental species: P. 

39 lessonae (Camerano, 1882) (LL genotype) and P. ridibundus (Pallas, 1771) (RR genotype), and 

40 their hybrid P. esculentus (Linnaeus, 1758). Hybrids can be represented in diploid (RL) and 

41 triploid (LLR, LRR) forms (Berger, 1968, 1971; Tunner, 1973; Graf & Polls-Pelaz, 1989). The 

42 classical model of hybridogenetic reproduction states that one parental genome is eliminated 

43 during gametogenesis while the other is duplicated and transmitted to gametes, which appear to 

44 be clonal (Tunner, 1973; Graf & Polls-Pelaz, 1989; Plötner, 2005; Dole�álková-Ka�tánková et 

45 al., 2021). Triploid hybrids usually eliminate a genome present in one copy, whereas the genome 

46 present in two copies enters meiosis and forms recombinant gametes (Günther et al., 1979; Graf 

47 & Polls-Pelaz, 1989; Plötner, 2005; Christiansen & Reyer, 2009; Dedukh et al., 2015). However, 

48 the detailed principles of genome elimination and duplication during hybrid gametogenesis 

49 remain unknown. 

50 Hybridogenetic gametogenesis makes hybrids dependent on parental species and leads to the 

51 formation of population systems where hybrids coexist with one or both parental species, or for 

52 all-hybrid populations with various ploidy and genomic compositions (Graf & Polls-Pelaz, 1989; 

53 Plötner, 2005; Christiansen & Reyer, 2009). In most of the distribution range, P. esculentus 

54 coexists with P. lessonae, creating the L-E system (Graf & Polls-Pelaz, 1989; Plötner, 2005; 

55 Pruvost et al., 2013; Svinin et al., 2013; 2021; Hoffman et al., 2015). Here, hybrids have a 

56 typical hemiclonal gametogenesis with preferential elimination of the P. lessonae genome, 

57 followed by the transmission of P. ridibundus genome to gametes (Günther, 1983; Bucci et al., 
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58 1990; Pruvost et al., 2013; Dedukh et al., 2019; Svinin et al., 2021). The R-E system forms 

59 hybrids mixed in populations with P. ridibundus. P. esculentus from this system is specific to 

60 significant alterations in gametogenic pathways, resulting in decreased fertility and increased 

61 numbers of aneuploid gametes (Uzzell et al., 1976; Günther, 1983; Vinogradov et al., 1991; 

62 Borkin et al., 2004; Ragghianti et al., 2007; Dole�álková et al., 2016; Dedukh et al., 2015, 2017; 

63 Biriuk et al., 2016). Studies of geographic variation showed that in Central Europe (Dole�álková 

64 et al., 2016; Dole�álková-Ka�tánková et al., 2018; 2021), P. esculentus is present only in a male 

65 sex, and both sexes of P. ridibundus coexist in Eastern Europe. P. esculentus syntopic with P. 

66 ridibundus is present in both sexes and at two ploidy levels (RL, RRL, and LLR) (Borkin et al., 

67 2004; Shabanov et al., 2020). 

68 Previous studies from Eastern Ukraine have shown that hybrid females frequently produce 

69 haploid gametes with the R genome and diploid gametes with the RL genome, whereas gametes 

70 with L genomes have never been detected. Additionally, diploid hybrid males usually 

71 simultaneously produce a mixture of gametes with the L and R genomes. This phenomenon, 

72 called hybrid amphispermy (Vinogradov et al., 1991), includes the simultaneous formation of L 

73 and R sperms, and was first observed in Central Europe (Vinogradov et al., 1991; Dole�álková et 

74 al., 2016). Vinogradov and colleagues (1991) suggested the existence of at least two germ cell 

75 populations that can eliminate either P. ridibundus or P. lessonae genome during amphispermic 

76 reproduction. An alternative hypothesis proposed the absence of premeiotic genome elimination 

77 and a different separation of the L and R genomes in the first meiotic division (Dole�álková et 

78 al., 2016). 

79 In the current study, we analyzed hybridogenetic gametogenesis in Eastern Europe. Using 

80 fluorescent in situ hybridization (FISH) with probe RrS1 specific to centromeric regions of P. 

81 ridibundus chromosomes, we identified the genomes of P. ridibundus during metaphase of 

82 meiosis I, spermatids, and mitotic spreads on chromosomal spreads from hybrid male gonads. 

83 Combining these data allowed us to test hypothetical pathways as alternatives to canonical 

84 gametogenesis.

85 Materials and methods
86 Samples

87 Sampling was conducted in Kharkiv Oblast, Eastern Ukraine, during 2016�2019. We collected 

88 six adult P. esculentus males from the Mozh River (49°44'57''N; 36°09'46''E), five males from 

89 the Iskiv water body (49°37'40''N; 36°16'58''E), and one male from the Udy River (49°58'06''N; 

90 36°08'13''E) (Fig. S1). These geographically isolated population systems are characterized by the 

91 coexistence of di- and triploid hybrids of both sexes, represented by LR, LLR, and LRR 

92 genotypes, and P. ridibundus of both sexes. Animals were caught at night using a torch. All 

93 specimens were collected outside of the protected areas within Eastern Ukraine and therefore, no 

94 specific permissions were required. All animal manipulations were performed according to 

95 national and international guidelines. Standard techniques for capture, tissue sampling, and 

96 euthanasia were used to minimize animal suffering. Before euthanasia, each individual was 

97 anesthetized by submersion in ethyl ethanoate (ETAC). All procedures were approved by the 
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98 Committee on Bioethics of the V. N. Karazin Kharkiv National University (minutes 74, 
99 21.04.2016). The previous species and ploidy were determined by a complex of morphological 

100 features and Ag-staining (Birstain, 1984) with some modification and further confirmed within 

101 the preparation of somatic tissue chromosomes followed by fluorescent in situ hybridization 

102 (FISH) with species-specificity (Ragghianti et al., 1995; Dedukh et al. 2015, 2017). 

103 Preparation of mitotic and meiotic chromosomes

104 Before euthanasia in ETAC, each frog was injected with s0.05% colchicine for 12 h. The 

105 intestines and testes were dissected, cleaned, and treated hypothonically (0.07M KCl) for 20 min. 

106 The tissues were transferred to Carnoy�s fixative (3:1 methanol: glacial acetic acid), and the 

107 solution was changed thrice. To prepare chromosomal spreads, the tissue fragments were 

108 transferred to 70% acetic acid solution for maceration in a suspension of cells and dropped onto 

109 slides pre-heated to 60 °C (Biriuk et al., 2016). The chromosomal and cell nuclei spreads were 

110 dried on a heating table at 60 °C for 1 h.

111 Fluorescent in situ hybridization

112 Male gametogenesis was further analyzed using the FISH method on mitotic and meiotic 

113 chromosomes, following Dedukh et al. (2015, 2017). The slides were treated with RNAse (100�

114 200 ¿g/ml) for 1 h and pepsin D (0.005%, diluted in 0.01 N HCl) for 3 min. The probe was 

115 labelled with biotin l from the genomic DNA of P. ridibundus by PCR using the following 

116 primers to RrS1 centromeric repeat:5`-AAGCCGATTTTAGACAAGATTGC-3`; 5`-

117 GGCCTTTGGTTACCAAATGC-3`. The probe was added to the hybridization mixture (50% 

118 formamide, 1 ¿l 2xSSC and tRNA, 10% dextran sulphate, 1.5 ¿l labelled probe). Slides 

119 containing mitotic and meiotic chromosomes were denatured at 77 °C for 3 min and incubated at 

120 room temperature for 12�18 h. The slides were then washed thrice in 0.2xSSC at 60 °C. Biotin 

121 was detected using avidin conjugated with the fluorochrome Alexa 488 or Cy3. After washing in 

122 4xSSC slides, they were dehydrated in an ethanol series, air-dried, and mounted in DABCO 

123 antifade solution containing 1 ¿g/ml DAPI.

124 Image Processing

125 Mitotic and meiotic chromosomes were inspected after FISH using Provis AX70 Olympus 

126 microscopes and Leica DM 2000 equipped with standard fluorescence filter sets. 

127 Microphotographs of chromosomes were captured with a CCD camera (DP30W Olympus) using 

128 Olympus Acquisition Software and a Leica DFC3000 G camera using Leica LASX Software. 

129 Microphotographs were adjusted and arranged in the Adobe Photoshop CS6 software. FISH-

130 based mapping of RrS1 pericentromeric repeats visualizes the centromeric regions of P. 

131 ridibundus chromosomes (Ragghianti et al., 1995), but cannot identify P. lessonae genome 

132 during interphase. The analysis allowed us to discriminate different gametogenic stages, as we 

133 identified the presence of P. ridibundus genome in mitotic (from both somatic and germ cells) 

134 and meiotic chromosome plates as well as in the nuclei of somatic and germ cells and spermatids 

135 (Table S1). Interphase cells and spermatids with 5�13 signals were discriminated as cells with P. 

136 ridibundus genome. Nevertheless, in contrast to Dedukh et al. (2019, 2020), who observed 26 

137 signals on P. ridibundus chromosomes, our numbers for P. ridibundus chromosomes varied from 
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138 12 to 26 for diploid chromosomal plates. This difference can be explained by methodological 

139 differences or interspecies polymorphism.

140 Results

141 The two geographically isolated populations of P. esculentus were characterized by the 

142 coexistence of diploid and polyploid hybrids. Here, we used FISH with the RrS1 probe to 

143 identify the genome composition of interphase nuclei, spermatids, and meiotic and mitotic 

144 chromosomal plates obtained from the testes of 11 diploid P. esculentus males. The hybrid testes 

145 were round in shape without any visible anomalies. In nine males, the left testis was larger than 

146 the right (left mean 5.8 mm; right mean 4.1 mm) and two males had testes of equal sizes (frogs� 

147 ID: 19I-60, 19I-62) (Table S2). Testes size difference is common in P. esculentus and might be 

148 accompanied by decreased fertility (Berger, 1970; Ogielska & BartmaEska, 1999).

149 Gametogenesis in diploid hybrid males in Mozh River

150 Analysis of 436 interphase nuclei from four diploid hybrid males (17T-5, 17T-10, 18T-8, 18T-7) 

151 showed the presence of interphase nuclei with 3�18 signals (Fig. 1D, E, G, H, J) alongwith 

152 interphase nuclei without signals (Fig. 1H). Interphase nuclei without signals were those with 

153 exclusive content of P. lessonae chromosomes. Nuclei with 5�13 signals contained at least a 

154 haploid set of P. ridibundus chromosomes, whereas nuclei with more than 13 signals contained 

155 an aneuploid or diploid chromosomal set of P. ridibundus. The analysis of 79 metaphase plates 

156 during mitosis showed 0�24 signals, among which most metaphase plates had 12�13 signals 

157 (Fig. 1E). These results fit well with the interphase nuclei analysis, suggesting at least three cell 

158 populations: cells with 26 P. lessonae chromosomes, cells with 13 P. ridibundus and 13 P. 

159 lessonae chromosomes, and cells with 26 P. ridibundus chromosomes. Distinguishing germ cells 

160 from somatic cells is difficult. However, as genome elimination and endoreplication occur only 

161 in germ cells, we considered cells with P. lessonae chromosomes as germ cells. During meiosis 

162 I, we observed spermatocytes with 13 bivalents of P. ridibundus and spermatocytes with 13 

163 bivalents of P. lessonae in all four males analyzed (Fig. 1F, G). In two of these males (18T-7, 

164 17T-10), bivalents with P. ridibundus chromosomes dominated (87% and 77%). During meiosis 

165 II, we detected spermatocytes with 13 univalents of P. ridibundus chromosomes (Fig. 1H) and 

166 13 univalents of P. lessonae chromosomes (Fig. 1I). Additionally, we observed many cells with 

167 aberrant pairing in all analyzed males. The observed hybrids potentially eliminated different 

168 genomes in different cells premeiotically, or had some problems with selective elimination. We 

169 detected spermatids in which the signal of P. ridibundus probe varied from 0 to 12, suggesting 

170 the presence of spermatids in P. lessonae and P. ridibundus genomes (Fig. 1D, J). These males 

171 transmitted two parental genomes in their cells simultaneously, i.e., they were amphigametic.

172 Fifty-four examined interphase cells (n=54) of one male (18-T6) had at least five signals, 

173 indicating the presence of the haploid P. ridibundus genome (Fig. 1C). The analysis of 14 mitotic 

174 chromosomal plates showed 8 plates with 26 chromosomes, of which 13 belonged to P. 

175 ridibundus and 13 to P. lessonae. During the analysis of 32 metaphases of meiosis I, we detected 

176 13 bivalents of P. ridibundus (Fig. 1A). We also detected five metaphases of meiosis II with 13 

177 univalents of P. ridibundus (Fig. 1B). In addition, 24 aneuploid chromosomal plates (Fig. 1C) 
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178 were observed. The analyzed spermatids (n=48) exclusively exhibited the presence of P. 

179 ridibundus chromosomes. We suggest that during gametogenesis in this male, the genome of P. 

180 lessonae was premeiotically eliminated, followed by endoreplication of the P. ridibundus 

181 genome.

182 In one individual (17T-8), we observed interphase nuclei with 3�26 signals (Fig. 2A, B, D) 

183 suggesting the presence of haploid P. ridibundus and diploid P. ridibundus genomes in different 

184 germ cell populations. The analysis of 14 mitotic chromosomes from this individual showed 3 

185 mitotic chromosomal plates with approximately 52 chromosomes, including chromosomes 

186 exclusive to P. ridibundus (Fig. 2B) and chromosomes exclusive to P. lessonae (Fig. 2C). In 8 

187 metaphase plates, we observed 26 chromosomes exclusive to P. ridibundus (Fig. 2D) as well as 

188 both P. ridibundus and P. lessonae chromosomes (not shown). In meiosis I, we detected 

189 chromosomal plates with 13 tetravalents of P. ridibundus and metaphase plates with 13 

190 tetravalents of P. lessonae (Fig. 2G) (23% of the total amount). One of the genomes was 

191 eliminated to form spermatocytes with genome-specific tetravalents, whereas the other 

192 underwent two rounds of genome endoreplication. We also found metaphase plates of meiosis I 

193 with approximately 13 tetravalents, including 26 chromosomes of P. ridibundus and 26 

194 chromosomes of P. lessonae (Fig. 2C, F). Spermatids of this male had 3�19 signals, suggesting 

195 the presence of two P. ridibundus genomes at least in some spermatids (Fig. 2F-H). This pattern 

196 also supports the amphigametic production.

197 Gametogenesis in diploid hybrid males in Iskiv pond

198 Analysis of interphase nuclei of one male (19I-60) revealed both interphase cells without signals 

199 and those with RrS1 signals (Fig. S2J). Some cells had, therefore, chromosomes exclusive to P. 

200 lessonae, and some cells had at least one haploid genome of P. ridibundus. Mitotic metaphase 

201 plates of this individual were represented by 26 chromosomes, with 13 P. ridibundus 

202 chromosomes, 13 P. lessonae chromosomes, and 26 chromosomes exclusive to P. ridibundus 

203 (Fig. S2J). Our metaphase inspection of meiosis I clearly distinguished 13 P. ridibundus 

204 bivalents (Fig. S2K-L). To form such spermatocytes, P. lessonae genome must have been 

205 premeiotically eliminated, whereas P. ridibundus genome was endoreplicated. Additional 

206 aneuploid cells (n=30) suggest aberrant genome elimination and endoreplication. The analysis of 

207 spermatids (n=29) revealed that most spermatids had P. lessonae genome, and only a few 

208 spermatids had P. ridibundus genome (Fig. S2L). Though we observed both interphase nuclei 

209 and spermatids exclusively in the P. lessonae genome, we did not detect meiotic plates with P. 

210 lessonae bivalents. Therefore, we suggest that spermatocytes with P. lessonae must be present in 

211 this individual.

212 The analysis of interphase nuclei (n=307) from two males (19I-62 and 18I-90) showed some 

213 interphase nuclei only in P. lessonae chromosomes and others in P. ridibundus chromosomes 

214 (Fig. S2A-C). During the analysis of mitotic metaphases (n=44), we detected metaphase plates 

215 with 26 chromosomes, including 13 P. ridibundus and 13 P. lessonae chromosomes (Fig. S2B). 

216 Most spermatocytes had 13 bivalents of P. ridibundus (Fig. S2C) while only a few spermatocytes 

217 had 13 P. lessonae bivalents. We detected 58 aneuploid chromosome plates in both males (Fig. 
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218 S2D). In meiosis II, we observed spermatocytes with 13 univalent P. ridibundus and 13 

219 univalent P. lessonae (Fig. S2A). In spermatids (n=114), we found those with P. ridibundus 

220 chromosomes and exclusive P. lessonae chromosomes (Fig. S2B), supporting the pattern of 

221 amphigametic production. 

222 Analysis of interphase nuclei (n=110) in two other males (18I-91 and 19I-61) revealed nuclei 

223 exclusively with P. lessonae chromosomes and nuclei with P. ridibundus chromosomes (Fig. 

224 S2E-G, I). During the analysis of mitotic metaphases (n=13) obtained from the other male (19I-

225 61), we found metaphase plates with 26 chromosomes, among which 13 chromosomes were 

226 from P. lessonae and 13 were from P. ridibundus (Fig. S2E), while mitotic chromosomal plates 

227 were not detected in one of the males (18I-91). Both males simultaneously produced 

228 spermatocytes with 13 P. ridibundus bivalents (Fig. S2F) and 13 P. lessonae bivalents. During 

229 meiosis II, we detected spermatocytes with 13 P. lessonae univalents (Fig. S2H, I) and with 13 

230 P. ridibundus univalents (Fig. S2G). Variable signals, from 0 to 14, observed in spermatids 

231 suggest that some spermatids have P. lessonae genome (Fig. S2I) and some spermatids have P. 

232 ridibundus genome (Fig. S2F-H). These two males (18I-91, 19I-61) potentially eliminated 

233 different genomes in different cells premeiotically and transmitted the two genomes in their cells, 

234 thus being amphigametic.

235 Discussion
236 Diverse spermatogenesis in diploid hybrids

237 Our study of hybrid P. esculentus males from Eastern Ukrainian populations revealed diverse 

238 gamete formation (Fig. 3, Fig. S3, Table S1). Nine out of eleven males simultaneously produced 

239 two types of haploid gametes with parental chromosomes (amphispermic male, Fig. 4, Pathway 

240 III), one with P. lessonae genome and one with P. ridibundus genome, free of recombination and 

241 crossover between the genomes of parental species. A single male represented the second type of 

242 spermatogenesis-producing spermatid with P. ridibundus genome only (Fig. 3B, Table S1). We 

243 also found a male suspected to form diploid sperm based on sperm analysis and tetravalent 

244 observations during meiosis, which corresponded to the third type of spermatogenesis (Fig. 3B, 

245 D). The simultaneous production of fertile gametes with P. lessonae and P. ridibundus genomes 

246 (amphispermy) was determined using DNA flow cytometry in the Iskiv pond population (Biriuk 

247 et al., 2016) and from artificial crosses in the Mozh River (Mazepa et al., 2018). By analyzing 

248 the process of gametogenesis in detail, we provide clear pathways on the mechanisms of the 

249 origins of diverse gametes in these tetrapod animals. 

250 Inspecting meiosis, we revealed spermatocytes with 13 univalents or bivalents of P. ridibundus 

251 (39% for Mozh, 47% for Iskiv, 43% for both) as well as 13 univalents or bivalents of P. lessonae 

252 (32% for Mozh, 20% for Iskiv, 26% for both) (Fig. S3A). Interphase nuclei and mitotic 

253 chromosomes from testis cell suspensions often bear either P. ridibundus or P. lessonae 

254 chromosomes (Fig. 3A, C). The methodology used cannot distinguish whether interphase nuclei 

255 and metaphase chromosomes belong to germ cells or somatic cells. However, as genome 

256 elimination and endoreplication occur only in the germ cells, we considered the observed cells as 

257 germ cells. As we detected germ cells and spermatocytes bearing only P. ridibundus or P. 
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258 lessonae chromosomes, we suggest that genome elimination and endoreplication occurred in 

259 germ cells before meiosis (Fig. 4, Way III). A phenomenon of premeiotic genome elimination 

260 has been described earlier in water frog hybrids during tadpole development and causes the 

261 classical formation of a single gamete type (Ogielska, 1994; Dedukh et al., 2017; 2019; 2020; 

262 Chmielewska et al., 2018). The presence of cells with only P. ridibundus and P. lessonae 

263 genomes indicated the existence of at least two cell population types eliminating different 

264 parental genomes, even in a single individual, as proposed by Vinogradov et al. (1991). 

265 Comparative genomic hybridization on Central-European amphispermic males has revealed 

266 meiotic metaphase I with univalent and bivalent-like configurations, including bivalent-like 

267 configurations between the two parental genomes (Dole�álková et al., 2016). Based on these 

268 observations, Dole�álková et al. proposed a hypothesis in which premeiotic elimination would be 

269 absent in these cases, followed by segregation of P. ridibundus and P. lessonae chromosomes 

270 during meiosis I. Diploid hybrid males from Eastern Europe likely do not use this hypothetical 

271 strategy, as evidenced by our observation of premeiotic genome elimination followed by genome 

272 duplication in different germ cell populations (Fig. 4). However, it should be noted that bivalent-

273 like configurations between the two different parental genomes were not observed in our males. 

274 The presence of aneuploid cells during meiosis (on average 25% for Mozh, 33% for Iskiv, 29% 

275 for both) indicates problems with genome elimination and/or endoreplication (Fig. 4, Way V). 

276 Aneuploid meiocytes and meiocytes with unusual pairings were detected earlier in both hybrid 

277 females (Dedukh et al., 2015, 2017) and males (Biriuk et al., 2016) from the same locality and 

278 generally in various population types (Heppich et al., 1982; Bucci et al., 1990; Christiansen et 

279 al., 2005; Christiansen, 2009; Christiansen & Reyer, 2009; Dedukh et al., 2019). It should be 

280 noted that aberrations were highly numerous in hybrid frogs from a mixed population of P. 

281 ridibundus, suggesting difficulties in genome elimination and duplication during hybrid 

282 gametogenesis (Uzzell et al., 1976; Ragghianti et al., 2007; Dole�álková et al., 2016; Dedukh et 

283 al., 2015; 2017; Biriuk et al., 2016).

284 A single hybrid male produced spermatocytes with 13 tetravalents of P. ridibundus and 13 

285 tetravalents of P. lessonae, indicating that it underwent an additional round of genome 

286 duplication (Fig. 3B). To form spermatocytes with 13 tetravalents of P. ridibundus, the cells 

287 must first eliminate P. lessonae chromosomes, followed by two rounds of duplication of P. 

288 ridibundus chromosomes, and vice versa for P. lessonae tetravalents (Fig. 4, Way IV). 

289 Additional detection of spermatocytes with 13 tetravalents during meiosis I with both genomes 

290 of the parental species suggests the absence of genome elimination and two rounds of genome 

291 endoreplication. Interphase cells with 26 P. ridibundus chromosomes (Fig. 2A) resembled the 

292 results obtained for the diploid hybrid males with metaphase plates and tetravalents (Ragghianti 

293 et al., 2007). Similar observations were made by Dedukh et al. (2015) during lampbrush 

294 chromosome analysis, where the authors found one hybrid female with 26 P. ridibundus 

295 bivalents. In addition, such a pattern supports the presence of two rounds of genome 

296 endoreplication preceding meiosis after the elimination of one of the parental genomes. 

297 Chromosomal plates with tetravalents are typically formed in autopolyploid frogs of the 
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298 Pleuroderma genus (Salas et al., 2014). Nevertheless, in these species, bi-, tetra-, and octavalents 

299 were also detected among metaphase plates, suggesting some pairing inaccuracies (Salas et al., 

300 2014). Bi and Bogart (2010) showed the presence of quadrivalents (the same as tetravalents) in 

301 Ambystoma hybrid females by investigating lampbrush chromosomes, suggesting occasional 

302 synapses between homologous chromosomal regions. Nevertheless, such oocytes are a rare 

303 phenomenon in Ambystoma (Bi & Bogart, 2010), while in water frogs, we provide frequent 

304 observations with numbers of spermatocytes with tetravalents varying in their genome 

305 composition. We hypothesized that these cells could proceed through meiosis and form diploid 

306 sperm with the LL, RL, and RR genomes (Fig. 4, Way IV). Such gametes may lead to the 

307 emergence of triploid frogs (approximately 5%) observed in the Mozh Basin (Drohvalenko et al., 

308 2022). However, the fertilization success of diploid sperms to compete with haploid sperms 

309 requires further investigation.

310 As not only hybrid males but hybrid females (Dedukh et al., 2015, 2017; Christiansen et al., 

311 2009; Christiansen and Reyer, 2009; Pruvost et al., 2013) can also produce gametes of both 

312 parental species, Dubey et al. (2019) called this phenomenon as �amphigamy.� However, this 

313 term has following interpretations according to Rieger et al. (1991): (1) the fusion of two sex 

314 cells and the formation of conjugated pairs of nuclei (dikaryophase). If a. immediately follows 

315 karyogamy, the process is referred to as amphimixis (Renner, 1916); and (2) the normal 

316 fertilization process (Battaglia, 1947). Therefore, we considered correcting the term to 

317 �amphigameticity� to indicate the ability of interspecific hybrid males and females to produce 

318 gametes of both parental species. 

319 The gain and loss during diverse gamete formation

320 To establish successful hemiclonal genome propagation, hybrid organisms must modify 

321 gametogenesis accordingly. The F1 hybrids of P. ridibundus and P. lessonae showed premeiotic 

322 genome elimination and endoreplication, rescuing their fertility (Tunner & Heppich-Tunner, 

323 1991; Dedukh et al., 2019). However, premeiotic genome elimination and endoreplication do not 

324 occur in all populations of germ cells, causing unusual pairing in meiosis and abruption of 

325 gamete formation, thereby decreasing fertility in otherwise vital individuals (Vorburger et al., 

326 1991; Dedukh et al., 2015, 2019, 2020; Dole�álková et al., 2016). Reported cases of genome 

327 elimination and/or endoreplication failure cause the formation of aneuploid cells during mitosis 

328 and meiosis (Fig. 3, Fig. S3). However, not all changes in genome elimination and 

329 endoreplication machinery have a negative impact on the reproduction of hybrid frogs. At least 

330 one hybrid male from Eastern Ukraine potentially produced diploid spermatozoa with LL, RL, 

331 and RR genomes. The formation of diploid gametes is crucial for the emergence of triploid 

332 hybrids in certain population systems (Tunner & Heppich-Tunner, 1992; Brychta & Tunner, 

333 1994; Rybacki, 1994; Mikulí
ek & Kotlík, 2001; Pruvost et al., 2015).

334 We stress that hybrids have an additional challenge in the selective elimination of P. ridibundus 

335 genome. During the initial crossing of P. ridibundus and P. lessonae, hybrids usually transmit 

336 the P. ridibundus genome and eliminate P. lessonae (Berger et al., 1971; Dedukh et al., 2019). 

337 Subsequent backcrosses of diploid hybrids with P. lessonae individuals ensures the maintenance 

PeerJ reviewing PDF | (2022:06:74429:0:1:NEW 23 Jun 2022)

Manuscript to be reviewed



338 of hybrids and leads to the formation of a mixed population of hybrids and P. lessonae (Berger, 

339 1971; Günther, 1883; Christiansen & Reyer, 2009). Hybridogenetic reproduction of hybrid frogs 

340 in this population type is characterized by stable propagation of P. ridibundus genome with 

341 relatively rare aberrations in genome elimination and endoreplication (Berger, 1971; Graf & 

342 Müller, 1979; Pruvost et al., 2013; Dedukh et al., 2019). On the other hand, we and others (this 

343 study; Uzzell et al., 1976; Graf and Polls-Pelaz, 1989; Vinogradov et al., 1991; Plötner, 2005; 

344 Dedukh et al., 2015, 2017; Biriuk et al., 2016) showed that hybrid frogs in a mixed population 

345 with P. ridibundus mostly produced R gametes despite the L gametes (p = 0.000) being the only 

346 crucial cells for the persistence of the hybrids (Fig. S3C). The exceptions may represent the R-E 

347 system with all-male sex in hybrids (Dole�álková-Ka�tánková et al. 2021). However, hybrid 

348 females produced either haploid gametes with P. ridibundus genome or diploid gametes with 

349 genomes of both parental species (Dedukh et al., 2013, 2015; Biriuk et al., 2016).  As haploid 

350 gametes with P. ridibundus genome would not lead to hybrid progeny when coexisting with P. 

351 ridibundus, these hybrids have to produce not only fertile gametes but also a certain gamete type 

352 with a �correct� genome composition (i.e., lessonae) to perpetuate. Such difficulties in the 

353 formation of gametes with P. lessonae genome may explain why mixed populations of hybrids 

354 and P. ridibundus are rare over continental Europe compared to mixed hybrid populations with 

355 P. lessonae (Uzzell et al., 1976; Graf and Polls-Pelaz, 1989; Plötner, 2005). Moreover, the 

356 evolutionary origin of the Central European P. ridibundus � P. esculentus male populations 

357 seems to be rare, as clonally inherited lessonae genomes share their ancestors (Dole�álková et 

358 al., 2016; Dole�álková-Ka�tánková et al., 2018, 2021).

359 However, the well-documented persistence of diploid hybrid males in high abundance over 

360 decades of observation in mixed populations of P. ridibundus (Borkin et al., 2004; Shabanov et 

361 al., 2020) remains unclear. As hybrid males mainly produce a mixture of R and L genomes (Fig. 

362 3, Fig. S3), and female and co-occurring triploid hybrids with the RRL genotype produce R and 

363 RL gametes, the proportion of hybrids that received the lessonae genome (hybrids) seems to be 

364 low on theoretical expectations. Moreover, long-term clonal propagation of the genome may 

365 theoretically lead to the accumulation of deleterious mutations, thus decreasing the survival of 

366 hybrids (Tunner & Heppich-Tunner, 1991; Christiansen et al., 2005; Christiansen, 2009; Dubey 

367 et al., 2019). We hypothesize that the actual prosperity of hybrids may be explained by the 

368 hybrid heterosis effect over P. ridibundus (Berger, 1977; Hotz et al., 1999).

369 Conclusion
370 We found diverse pathways of hybridogenetic reproduction in diploid hybrid males from Eastern 

371 Ukraine. To investigate gametogenesis, we observed one or another parental genome elimination 

372 followed by endoreplication of the remaining genome in diverse germ cell populations. These 

373 pathways result in the simultaneous formation of gametes with P. ridibundus and P. lessonae 

374 genomes in most males. We found that these males were crucial for the persistence of hybrids in 

375 such a population type for the formation of P. lessonae gametes. However, genome elimination 

376 and endoreplication do not always occur correctly, resulting in aneuploidy and the abruption of 

377 meiosis in some spermatocytes. However, such gametogenic diversity may produce a variety of 
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378 gametes that differ in genome composition and ploidy levels, increasing global vertebrate 

379 diversity.
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Figure 1
Identiûcation of ploidy level and genome composition of gonocytes, spermatocytes, and
spermatids from P. esculentus males collected from the Mozh river basin

FISH with RrS1 probe helps distinguish pericentromeric regions only of P. ridibundus

chromosomes (indicated by thin arrows). (A-C) Somatic cells (C), spermatids (B, C), and
spermatocytes in meiosis I (A) and II (B) had only P. ridibundus chromosomes suggesting the
presence of premeiotic genome elimination of P. lessonae genome and endoreplication of P.

ridibundus genome. (D-J) Germ line cells (gonocytes, spermatocytes, and spermatids) with
diûerent ploidies suggesting the presence of premeiotic elimination and endoreplication of
diûerent genomes in various cell lines. Interphase cells (indicated by thick arrows) with a
haploid set of P. ridibundus chromosomes (D, E, G, H, J) and with P. lessonae chromosomes
(I). Mitotic metaphase cell with 13 P. ridibundus chromosomes and 13 P. lessonae

chromosomes (E). Meiotic metaphase I with 13 bivalents of P. ridibundus (D, F, J) and 13
bivalents of P. lessonae (G). Meiotic metaphase II with 13 univalents of P. ridibundus (H) and
13 univalents of P. lessonae (I). Spermatids (indicated by arrowheads) with haploid set of P.

ridibundus chromosomes (D, J) and P. lessonae (D, J). Scale bar = 10µm.
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Figure 2
Identiûcation of ploidy level and genome composition of gonocytes, spermatocytes and
spermatids from particular P. esculentus male producing diploid spermatids collected
from the Mozh river basin

Interphase cell nuclei (indicated by thick arrows) with diploid P. ridibundus chromosomal set
(A, D). Mitotic metaphases with 26 P. ridibundus chromosomes (D), approximately 47 P.

ridibundus chromosomes (B) and with approximately 40 P. lessonae chromosomes (C).
Meiotic metaphase I with 13 P. ridibudnus bivalents (A, H), approximately 12 tetravalents (or
mixture of bivalents and tetravalents) with chromosomes exclusive to P. ridibundus (E), and
with approximately 11 tetravalents with chromosomes exclusive to P. lessonae (G). Meiotic
metaphase I with a mixture of approximately 9 P. lessonae tetravalents and 4 P. lessonae

bivalents as well as 4 P. ridibundus tetravalents and 4 P. ridibundus bivalents. Spermatids
(shown by arrowheads) with at least 5 P. ridibundus chromosomes (designated as haploid P.

ridibundus genome) (B, H), with only P. lessonae chromosomes (designated as haploid or
diploid P. lessonae genome) and at least 14 P. ridibundus chromosomes and at least 17 P.

ridibundus chromosomes (designated as diploid P. ridibundus genome) (F, H). P. ridibundus

chromosomes identiûed using FISH-based detection of pericentromeric RrS1 repeats
(indicated by thin arrows). Scale bar = 10µm
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Figure 3
Relative number of normal and aneuploid chromosomal plates during mitosis (A, C) and
meiosis (B, D) from hybrid frogs collected from the R-E system of the Mozh river (A, B)
and Iskiv pond (C, D)

R 3 genome of P. ridibundus, L 3 genome of P. lessonae; aneuploidy 3 number of
chromosomes more or less 13 bivalents or univalents.
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Figure 4
Suggested gametogenic pathways in sexual species and hybrid males from studied R-E-
HPSs

Pathway I: Genome elimination and endoreplication (8classical9 hybridogenesis). During
classical genome elimination, one of the parental genomes is eliminated before meiosis,
whereas the other is endoreplicated, allowing the restoration of the diploid chromosome set.
These cells undergo meiotic division with 13 bivalents during meiosis I and 13 bivalents
during meiosis II. Subsequent spermatids bear the genomes of only one parental species (P.

ridibundus or P. lessonae). Pathway II: Genome elimination of one of the parental species (P.

ridibundus or P. lessonae) during meiosis. This type of gamete formation also involves the
elimination of only one parental genome. However, it occurs directly during meiosis. After
meiotic divisions I (13 bivalent stages) and II (13 univalent stages), spermatids bear the
endoreplicated genome. Pathway III: The genomes of diûerent parental species were
eliminated from diûerent germline populations. Therefore, some gonocytes bear only P.

ridibundus chromosomes, whereas some cells have P. lessonae chromosomes only. Germ
cells with both parental genomes duplicated and formed two types of parental species
bivalents (2n = 26). After meiosis II, the spermatids were from both parental species (P.

ridibundus and P. lessonae). Pathway IV: Diploid sperm formation. Two rounds of
endoreduplication of one parental species genome resulted in the formation of tetravalents,
bearing four sets of P. ridibundus or P. lessonae genomes in meiosis I. Such cells, which have
undergone meiosis II, bear a double chromosome set (RR, LL, or even RL). Pathway V:
Abnormal meiosis. Due to disruptions during the elimination of P. ridibundus or P. lessonae

genome, there are no vital spermatids, so the individual is sterile.
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