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Accounting for spatial and temporal variation in targeting is a concern in many CPUE
standardization exercises. In this study we standardized southern bluefin tuna (Thunnus
maccoyii, SBT) CPUE from the Korean tuna longline fishery (1996-2018) using Generalized
Linear Models (GLMs) with operational set by set data. Data were first explored to
investigate the operational characteristics of Korean tuna longline vessels fishing for SBT,
such as the spatial and temporal distributions of effort, and changes in the nominal catch
rates among major species and species composition. Then we estimated SBT CPUE by area
used for the stock assessment in the CCSBT ( Commission for the Conservation of
Southern Bluefin Tuna ) and identified two separate areas in which Korean tuna longline
vessels have targeted SBT and albacore tuna (T. alalunga), with targeting patterns varying
spatially, seasonally and longer term. We applied two approaches, data selection and
cluster analysis of species composition, and compared their ability to address concerns
about the changing patterns of targeting through time. Explanatory variables for the GLM
analyses were year, month, vessel identifier, fishing location (5° cell), number of hooks,
moon phase, and cluster. GLM results for each area suggested that location, year,
targeting, and month effects were the principal factors affecting the nominal CPUE. The
standardized CPUEs for both areas decreased until the mid-2000s and have shown an
increasing trend since that time.
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20 Abstract

21 Accounting for spatial and temporal variation in targeting is a concern in many CPUE 

22 standardization exercises. In this study we standardized southern bluefin tuna (Thunnus 

23 maccoyii, SBT) CPUE from the Korean tuna longline fishery (1996-2018) using Generalized 

24 Linear Models (GLMs) with operational set by set data. Data were first explored to investigate 

25 the operational characteristics of Korean tuna longline vessels fishing for SBT, such as the 

26 spatial and temporal distributions of effort, and changes in the nominal catch rates among major 

27 species and species composition. Then we estimated SBT CPUE by area used for the stock 

28 assessment in the CCSBT (Commission for the Conservation of Southern Bluefin Tuna) and 
29 identified two separate areas in which Korean tuna longline vessels have targeted SBT and 

30 albacore tuna (T. alalunga), with targeting patterns varying spatially, seasonally and longer term. 

31 We applied two approaches, data selection and cluster analysis of species composition, and 

32 compared their ability to address concerns about the changing patterns of targeting through time. 

33 Explanatory variables for the GLM analyses were year, month, vessel identifier, fishing location 

34 (5° cell), number of hooks, moon phase, and cluster. GLM results for each area suggested that 

35 location, year, targeting, and month effects were the principal factors affecting the nominal 

36 CPUE. The standardized CPUEs for both areas decreased until the mid-2000s and have shown 

37 an increasing trend since that time.

38

39
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40 Introduction

41 The abundance index is one of the most important sources of information for fish stock 

42 assessments and stock monitoring (Maunder & Punt, 2004; Francis, 2011). Catch per unit effort 

43 (CPUE) data are widely used to develop indices of abundance, particularly for fisheries where 

44 survey data are unavailable. Developing reliable indices of abundance requires decisions based 

45 on understanding of both the fishery and the population dynamics of the species. This is 

46 particularly the case in a multi-species fishery in which targeting behaviours change seasonally, 

47 spatially, and from year to year (Okamura et al., 2018). 

48 Understanding changes in targeting behaviour requires careful data exploration, and methods to 

49 differentiate fishing practices. Available sources of fishing information such as vessel logbooks 

50 report vessel identification, set dates and locations, effort characteristics such as the number of 

51 hooks and floats per set, and catch characteristics such as the number of fish caught by species. 

52 Unreported details may include factors such as bait types, hook type, the number of light sticks, 

53 line tension, set time, and the oceanographic features being targeted.  Differentiation of targeting 

54 strategies is difficult because fishing methodologies are multi-faceted, may change gradually 

55 over long periods, and vary by season and area. Logbook reporting of target species can be 

56 unreliable since it may be based on the catch taken. 

57 Various methods are used to distinguish fishing practices when estimating an abundance index 

58 and to account for their effects on the catchability of the species of interest. Methods range from 

59 data subsetting/selection based on knowledge of the fishery to statistical methods such as cluster 

60 analysis of species composition (He, Bigelow & Boggs, 1997), directed principal component 

61 analysis (Winker, Kerwath & Attwood, 2013; Winker, Kerwath & Attwood, 2014), finite 

62 mixture modelling (Cosgrove et al., 2014), spatial dynamic factor analysis (Thorson et al., 2017), 

63 and directed residual mixture modelling (Okamura et al., 2018). 

64 Data selection is infrequently discussed except as �data cleaning� but is usually a component of 

65 preparing data for analysis. In a well-understood fishery, the analyst may be able to clearly 

66 identify the effort using the fishing practice of interest based on details reported in the logbook, 

67 such as set time, hooks per set, hooks between floats, light-sticks or bait type, or simply based on 

68 the fishing location or the time of year. This understanding may also be used as an adjunct to 

69 statistical analysis, as a heuristic to check the plausibility of results. Where the required 

70 information is not reported, statistical approaches such as cluster analysis of species composition 

71 become necessary. 

72 Southern bluefin tuna (Thunnus maccoyii, SBT) is the target of a high-value international 

73 fishery, managed by the Commission for the Conservation of Southern Bluefin Tuna (CCSBT). 

74 The fishery is managed through quotas, which have constrained catch to varying degrees through 

75 time, and affected targeting behaviour. The stock has been assessed as highly depleted, but has 

76 recently shown signs of recovery (CCSBT, 2019a). As the stock has increased, fishing effort has 

77 tended to concentrate spatially, leading to uncertainty about the reliability of CPUE indices, and 

78 a need for alternative datasets and modelling approaches. 
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79 The Korean tuna longline fishery began targeting SBT in the CCSBT convention area in 1991 

80 (Kim et al., 2015). The catch of SBT was initially low but increased to 1,320 tonnes in 1996, 

81 peaked at 1,796 tonnes in 1998, and thereafter decreased to below 200 tonnes in the mid-2000s. 

82 In 2008, the catch increased again to 1,134 tonnes and thereafter fluctuated in a range of 705-

83 1,268 tonnes due to the national catch limit (Fig. 1). 

84 Trends in CPUE indices are very influential in determining estimates of SBT stock status, and 

85 therefore catch quotas. The primary index of abundance used to monitor the adult component of 

86 the SBT stock (CCSBT, 2019a) is based on Japanese longline catch and effort data. This index 

87 uses a dataset restricted to CCSBT statistical areas 4 to 9 (see Fig. 2 for the area definition), 

88 between April and September, and for vessels that have caught a large number of SBT (Itoh, 

89 Sakai & Takahashi, 2013; Itoh & Takahashi, 2019). The Japanese dataset comprises much more 

90 annual fishing effort and SBT catch, a longer time series, and wider spatial distribution than the 

91 Korean dataset. However, as Japanese SBT catches have declined since 1986 (Itoh & Morita, 

92 2021) and, more recently, CPUE has increased (Itoh & Takahashi, 2021), their areas of operation 

93 have reduced (Itoh, 2021). Therefore, the need to monitor the indices of other longline fisheries 

94 such as Korean and Taiwanese fleets, and the development of joint indices of major longline 

95 fleets for the stock assessment has been emphasized.

96 The abundance index described in this paper has been used by the CCSBT as an independent 

97 comparison index with the primary index of abundance (CCSBT, 2019a). As well as the 

98 independent dataset, this analysis uses different methods for differentiating targeting from the 

99 primary CPUE index, in which targeting behaviour is accounted for by including catch rates of 

100 bigeye (T. obesus, BET) and yellowfin (T. albacares, YFT) tuna as covariates in the model. 

101 The cluster analysis methods used here are very similar to those used for joint analysis of bigeye, 

102 yellowfin, and albacore tuna CPUE in the Indian and Atlantic Oceans (Hoyle et al., 2015; Hoyle 

103 et al., 2016; Hoyle et al., 2017; Hoyle et al., 2018; Hoyle et al., 2019a; Hoyle et al., 2019b; 

104 Hoyle et al., 2019c; Hoyle et al., 2019d). 

105 In this study, we compare two methods for differentiating targeting practices in the Korean tuna 

106 longline data and developing an index of relative abundance. First, we explore the operational set 

107 by set data and identify data-based indicators, based on the number of hooks between floats 

108 (HBF) and the month, and then use these indicators to subset the data. Secondly, we use cluster 

109 analysis to group the effort into fishing strategies based on the species composition of the catch. 

110 Then, SBT CPUE is standardized using two methods based on the lognormal constant model and 

111 the delta lognormal approach.

112

113

114 Data & Methods

115 Data
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116 Set by set catch and effort data were compiled by the Korean National Institute of Fisheries 

117 Science (NIFS). Data were selected with the criterion that when a vessel reported the capture of 

118 at least one SBT in a month, all effort for the vessel-month was included. 

119 The fields reported in the operational set by set data were vessel identifier (call sign), fishing 

120 location to 1° cell of latitude and longitude, date, effort (number of hooks and floats), and catch 

121 in numbers of southern bluefin tuna (SBT), bigeye (BET), yellowfin (YFT), albacore (ALB), 

122 skipjack (SKJ), swordfish (SWO), black marlin (BLM), blue marlin (BUM), striped marlin 

123 (MLS), sailfish (SFA), sharks (SHA), and other species (OTH). 

124 Data used in this study were from 1996 to 2018. Data prior to 1996 were not available due to 

125 insufficient information for CPUE standardization. Dates were converted to months and quarters. 

126 Since Korean longliners set at night or at dawn, moon phase was used to calculate the relative 

127 lunar illumination for each date, using the R package lunar (Lazaridis, 2014). Spatial positions 

128 were classified into 5° cells, and CCSBT statistical areas (CCSBT, 2019b). The numbers of 

129 hooks between floats (HBF) were calculated by dividing hooks by floats and rounding to the 

130 nearest whole number.  

131 For CPUE standardization, data were cleaned by removing sets in which there were fewer than 

132 1,000 hooks and more than 5,000 hooks. Korean tuna longline vessels fishing for SBT in the 

133 CCSBT convention area have individual annual quotas. The fishing season is from April to 

134 March of the following year. They have mainly operated in two locations to the south of 35°S, 

135 either between 10°W-50°E (within CCSBT statistical area 9) or between 90°E-120°E (within 

136 CCSBT statistical area 8) (Fig. 2). Effort has focused on the western area (statistical area 9) from 

137 March to September/October and shifted to the eastern area (statistical area 8) from July/August 

138 until December (Fig. 3). For that reason, we defined two separate core SBT fishing areas: with 

139 statistical areas 9 from March to October and statistical area 8 from July to December.

140

141 Data exploration

142 Data were plotted to explore the spatial and temporal distributions of effort, and patterns in 

143 operational characteristics such as the hooks per set and HBF. Operational characteristics were 

144 compared with catch rates to identify possible gear-based criteria for targeting. We examined 

145 patterns through time and among major species in the nominal catch rates by year-quarter and 

146 area and compared them with patterns in the proportions of sets with no catch of each species. 

147 We plotted maps of the species composition through time, to identify possible spatial and 

148 temporal variation in fishing behaviour or population composition. 

149 To further explore changes in the fishery and identify periods of change, we plotted the 

150 participation of vessels in the fleet, sorted first by the start date and then by the end date of 

151 participation in the fishery. To explore changes in effort distribution and concentration through 

152 time, we plotted the numbers of 5°×5° and 1°×1° cells fished and the average number of 

153 operations per fished cell for each year and area.
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154  

155 Target change

156 Target change can be a significant problem for CPUE standardization since it can bias CPUE 

157 trends. Analyses were carried out using two alternative approaches to differentiate targeting 

158 practices.

159

160 Data selection

161 Gear depth and gear configuration are considered important factors in CPUE standardization, 

162 and HBF has often been used as an indicator of fishing depth and target species for tuna 

163 longliners (e.g., Okamoto, Yokawa & Chang, 2005). Therefore, based on results of the data 

164 exploration analysis, we included only effort that met gear criteria based on HBF, and was within 

165 the core periods of SBT targeting in each area. This approach removed effort considered unlikely 

166 to have targeted SBT and allowed the analysis to focus on effort targeting SBT.

167

168 Cluster analysis

169 Species compositions were analysed to identify groups potentially using different targeting 

170 strategies, and cluster IDs used as categorical variables in the standardization model.

171 All data for the statistical areas 8 and 9 were clustered following Hoyle et al. (2015). Sets with 

172 no catch of any species were removed, and remaining data aggregated by vessel-month. Species 

173 composition varies among sets due to the randomness of chance encounters between fishing gear 

174 and schools of fish, which can lead clustering to misallocate some sets. Aggregating the data 

175 reduces this variability and the rate of misallocation, if individual vessels follow a consistent 

176 fishing strategy through time. However, misallocation can occur when vessels change their 

177 fishing strategy within the aggregation period. We aggregated the data by vessel-month, based 

178 on the understanding that the Korean fleet mostly operate with consistent strategies over a long 

179 period. 

180 We calculated proportional species composition by dividing the catch-in-numbers of each 

181 species by catch-in-numbers of all species in the vessel-month. Thus, the species composition 

182 values of each vessel-month summed to 1, ensuring that large and small catches were given 

183 equivalent weight. The data were transformed by centring and scaling, to reduce the dominance 

184 of species with higher average catches. Centring was performed by subtracting the column 

185 (species) mean from each column, and scaling was performed by dividing the centred columns 

186 by their standard deviations. 

187 Data were clustered using the hierarchical Ward hclust method, implemented with function 

188 hclust in R, option �Ward.D�, after generating a Euclidean dissimilarity structure with function 

189 dist. This approach differs from the standard Ward D method which can be implemented by 

190 either taking the square of the dissimilarity matrix or using method �ward.D2� (Murtagh & 
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191 Legendre, 2014). However in practice the method gives patterns of clusters that are more 

192 consistent with expert understanding of fishing behaviour than �ward.D2� (Hoyle et al., 2015). 

193 Data were also clustered using the kmeans method, which minimizes the sum of squares from 

194 points to the cluster centres, using the algorithm of Hartigan & Wong (1979). It was 

195 implemented using function kmeans in the R stats package (R Core Team, 2016).  

196 Approaches used to select the appropriate number of clusters suggested similar numbers of 

197 groups. First, we considered the number of major targeting strategies likely to appear in the 

198 dataset, based on understanding and exploration of the data. Second, we applied hclust to 

199 transformed vessel-month level data and examined the hierarchical trees, subjectively estimating 

200 the number of distinct branches. Third, we ran kmeans analyses on untransformed vessel-month 

201 level data with number of groups k ranging from 2 to 25, and plotted the deviance against k. The 

202 optimal group number was the lowest value of k after which the rate of decline of deviance 

203 became slower and smoother. Finally, following Winker, Kerwath & Attwood (2014) we applied 

204 the nScree function from the R nFactors package (Raiche & Magis, 2010), which uses various 

205 approaches (Scree test, Kaiser rule, parallel analysis, optimal coordinates, acceleration factor) to 

206 estimate the number of components to retain in an exploratory Principal Component Analysis 

207 (PCA). 

208 We plotted the hclust clusters to explore the relationships between them and the species 

209 composition and other variables, such as HBF, number of hooks, year, and fishing location. Plots 

210 include beanplots of the distributions of variables by cluster and the proportion of each species in 

211 the catch by cluster, and maps of the spatial distribution for each cluster.

212  

213 GLM analyses

214 SBT CPUE was standardized using the set by set data and generalized linear models (GLMs) in 

215 Microsoft R Open 3.3.2 (R Core Team, 2016), and the methods generally followed the 

216 approaches used by Hoyle & Okamoto (2011) and Hoyle et al. (2015). Analyses were conducted 

217 separately for each of the two core areas, and for each of the two target change methods. 

218 Data were prepared by selecting data for vessels that had made at least 100 sets, for years in 

219 which there had been at least 100 sets, and for 5° cells in which there had been at least 200 sets. 

220 Categories with too few sets provide estimates with high uncertainty and low reliability, so this 

221 approach removes a few cells, vessels, and time periods that lack much usable information. 

222 The CPUE standardization was carried out using generalized linear models (GLMs) with both a 

223 lognormal constant model and a delta lognormal approach. The lognormal constant GLM was 

224 used to summarize the effects of covariates on the index (via the package influ, Bentley et al., 

225 2011) across the whole dataset, but was not used for inferences about the abundance trend, since 

226 this approach has been superseded by methods that model zeroes more directly (Maunder & Punt, 

227 2004). The preferred abundance indices were obtained using the delta lognormal approach. 
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228 Covariates for all models were specified as ���� + ������ + ������� + �(ℎ����) + �(����ℎ)
229 . The functions λ, g and h were cubic splines with 5, 3, and 4 degrees of freedom, + ℎ(����)
230 respectively, with sufficient flexibility to explain variability while avoiding overfitting. Higher 

231 order terms are inadvisable for conventional polynomials but perform relatively well with 

232 regression splines (Harrell, 2001). The number of hooks (hooks) was included in the model to 

233 allow for possible hook saturation and potential targeting changes associated with hooks per set. 

234 The variable moon was the lunar illumination on the date of the set, which was included to find 

235 out whether SBT catch rate is related to moon phase. The variables year, vessid, and latlong (5° 

236 latitude-longitude cell) were fitted as categorical variables. For the clustering-based approach, 

237 the cluster was also included as a categorical variable. 

238 The models did not include HBF directly. The data selection method had already addressed HBF 

239 by including only a narrow range of HBF values in the range 9-12. The cluster analysis method 

240 addresses targeting independently of HBF, and in any case, less than 1% of sets included HBF 

241 outside the 9-12 range. 

242 The following lognormal model was used.

243

244 ln (���� + �)~ ���������� + �
245

246 The units of the input CPUE is catch-in-number of SBT per 100 hooks, and the constant k, added 

247 to allow for modelling sets with zero catches of the species of interest, is 10% of the mean CPUE 

248 for all sets (Campbell, 2004). 

249 The delta lognormal approach (Lo, Jacobson & Squire, 1992; Maunder & Punt, 2004) used a 

250 binomial distribution for the probability w of catch rate being zero and a probability distribution 

251 f(y), where y was log (catch/hooks per set), for non-zero (positive) catch rates. 

252

253 Pr (� = �) = { � � = 0,
(1 ‒ �)�(�) ��ℎ������ �

254 � (�) = (���� = 0)~ ���������� + �
255 � (�) = ����~ ���������� + �
256

257 where g is the logistic function. 

258 Data in the models were �area-weighted�, with the statistical weights of the sets adjusted so that 

259 the total weight per year in each 5° cell would sum to 1. This method was based on the approach 

260 identified using simulation by Punsly (1987) and Campbell (2004), that for set j in area i and 

261 year t with hooks hijt, the weighting function that gave the least average bias was: ���� =
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262 . Given the relatively low variation in number of hooks between sets in a stratum, 
���(ℎ��� + 1)∑�� = 1log (ℎ��� + 1)

263 we simplified this to . ���� = ℎ���∑�� = 1ℎ���
264 The models had no interactions between year effects and other covariates, so relative annual 

265 expected responses for the lognormal constant index and the lognormal component of the delta 

266 lognormal index were invariant with different values of other covariates. We generated an index 

267 for each of these models by predicting the response for each year with covariate values held 

268 constant. 

269 For the delta model, however, the annual trend is affected by the values chosen for the other 

270 covariates, which are held constant when predicting annual catch rates. Choosing covariate 

271 values that give a higher rate of nonzero catch will reduce the variability among years in the 

272 delta index, and hence in combined index. To avoid subjectivity, the constant used to predict 

273 from the delta regression was adjusted so that the mean of the annual proportions of positive 

274 catches was the same in the predictions as in the observed data. 

275 The combined index estimated for each year was the product of the year effects for the two 

276 model components, . This index was normalized to average 1, so the final (1 ‒ �).�(�│� ≠ 0)

277 index represents relative catch rate.

278 Model fits were examined by plotting the residual densities and using Q-Q plots. 

279

280

281 Results

282 Data exploration

283 Almost all Korean tuna longline vessels fishing for SBT used between 9 and 12 HBF (Fig. 4), 

284 with the majority of HBF outside this range coming from north of 35°S, outside the main SBT 

285 targeting area. The number of hooks per set has been relatively consistent since 1996, averaging 

286 a little over 3,000.

287 Mean nominal catch rates in statistical areas 8 and 9 were higher for SBT than for other species 

288 until the mid-2000s (Fig. S1). After this time in the areas 8 and 9 the SBT catch rates decreased 

289 and other species, particularly albacore tuna (ALB), increased. However, in the most recent years 

290 the SBT catch rates were again higher than other species. Similarly, the proportion of sets 

291 reported with zero SBT catches was low through most of the time series in the areas 8 and 9, but 

292 increased from 2004 to 2010 in area 9 and in some years during the early 2010s in area 8 (Fig. 

293 S2). 

294 Statistical areas 2 and 14 in the Indian Ocean are at temperate latitudes between 20oS and 35oS. 

295 Highest catch rates were for YFT and more recently ALB in area 14, and BET and ALB in area 2 

296 (Fig. S1). Since the mid-2000s ALB catch rates have increased markedly and particularly in the 
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297 area 2, suggesting a trend towards targeting this species. Catch rates of SBT have been relatively 

298 low throughout the period, consistent with a high proportion of zero catches of SBT (Fig. S2), 

299 suggesting little or no targeting of SBT by Korean tuna longline vessels in these areas. 

300 Figure 5 shows spatial patterns of SBT and ALB as proportions total catch south of 30oS by 5-

301 year period. The SBT proportion was high in all periods, increasing further south, but declined in 

302 all areas after 2005. In the 2010s, particularly, there was little SBT taken in statistical area 8 

303 north of about 37oS, whereas a high proportion of the catch in this area was ALB. This appears to 

304 reflect spatially and temporally differentiated targeting in area 8.

305 Sixty-five Korean tuna longline vessels have participated in statistical areas 8 and 9 since 1996 

306 (Fig. S3), with over half of the total reporting their first participation before 2000. New vessels 

307 have arrived slowly but regularly. Vessel turnover was initially high, with over 20 vessels having 

308 stopped participating by 1998. In 2010, many vessels stopped participating because the SBT 

309 stock was at a critical stage, about 5% or less of the unfished spawning biomass level, and the 

310 quota was greatly reduced (CCSBT, 2009a; CCSBT, 2009b), and since then eight more have 

311 stopped but seven others have joined the fishery. 

312 The total number of major cells (5°×5°×month) fished has varied annually but declined 

313 considerably since the peak in 2009 (Fig. 6A). Over the same period, effort has become more 

314 concentrated with more operations per cell. This increasing concentration is also apparent at the 

315 minor cell (1°×1°×month) level (Fig. 6B). The distribution of effort within major cells was more 

316 stable until recently, with similar numbers of minor cells per major cell on average, but in 2017-

317 2018 increased to the highest level yet seen (Fig. 6C). Since 2008 the timing of effort in 

318 statistical areas 8 and 9 has changed, gradually moving earlier in the year, though with different 

319 timing peaks in each area. 

320

321 Target change 

322 Data selection

323 Based on data exploration, the data selection method firstly removed sets in which HBF was less 

324 than 9 or greater than 12 that were mainly used in the non-main SBT fishing grounds (Fig. 4). 

325 Secondly, data for each area were selected for the periods in which most SBT were caught (Fig. 

326 S4), so as to avoid periods when other species were targeted. Data for statistical area 8 were 

327 included for the months July to December, and data for statistical area 9 were included for 

328 March to October (Fig. 3).  

329

330 Clustering

331 Applying Ward�s D hierarchical cluster analysis at the vessel-month level identified strong 

332 separation among 2 to 3 groups in statistical areas 8 and 9 (Fig. 7), so three clusters were chosen 
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333 in each area to consider major targeting strategies. We preferred to use more clusters where 

334 there was uncertainty because unresolved target change can cause bias in indices.

335 In statistical area 8 (Figs. 8-10), the species composition of cluster 2 was dominated by SBT, 

336 with small amounts of other species groups. Cluster 3 included similar amount of SBT, SHA 

337 and OTH, while cluster 1 included more ALB than SBT, with some OTH, YFT and BET. The 

338 SBT cluster 2 dominated the early part of the time series, with clusters 1 and 3 more apparent 

339 after 2005. Cluster 1 was represented during March to June, while clusters 2 and 3 occurred 

340 mostly in the second half of the year. Cluster 2 was fewer HBF than the average, while the 

341 hooks per set were similar for all clusters. Cluster 2 was well represented across most of the 

342 fished area, while cluster 3 occurred at middle latitudes from about 38oS-42oS, and cluster 1 

343 occurred almost entirely in the far north of the area. 

344 In statistical area 9 (Figs. 8-10), cluster 1 comprised almost entirely SBT, with small amounts of 

345 ALB and BET. Cluster 2 included significant SBT along with ALB, and some BET and YFT. 

346 Cluster 3 included similar amounts of SBT and OTH, with some SHA and ALB. Clusters 1, 2, 

347 and 3 were more strongly represented in the early, middle, and later parts of the time series, 

348 respectively. Clusters 1 and 3 occurred mostly in the period before August, while cluster 2 

349 extended into October. The mean number of hooks was higher in cluster 3 and lower in cluster 2, 

350 and cluster 3 also had slightly more HBF. Cluster 2 dominated the northeast of area 9, while 

351 clusters 1 and 3 dominated the southeast and the southwest, respectively. 

352 In summary, results show that effort in clusters 1 and 2 targeted ALB in area 8 and area 9, 

353 respectively. ALB targeting clusters operated further north than those targeting SBT. The main 

354 fishing periods for the ALB clusters were before June in area 8 and after June in area 9, whereas 

355 SBT targeting occurred after and before June, respectively. 

356

357 CPUE standardization

358 All explanatory variables in the lognormal constant models and the lognormal components of 

359 the delta lognormal were statistically significant based on AIC (Table 1), with the year, location 

360 (latlong), vessel (vessid), and month effects the most important. The cluster effect was also 

361 important in statistical area 8, but less so in area 9. Several variables in the binomial component 

362 with weak support were retained in the model for consistency with the lognormal component, 

363 and because they had little effect on the results given the high rates of nonzero catches. 

364 Nominal and standardized CPUE indices were developed for SBT in statistical areas 8 and 9, 

365 based on lognormal constant and delta lognormal models using data selection and cluster 

366 analysis (Fig. 11). The two methods to address targeting led to very similar standardized indices, 

367 with small differences from the nominal CPUE trend. Diagnostic frequency distributions and 

368 QQ-plots suggest that the data fitted the GLMs adequately (Figs. S5 and S6).

369 Differences between the targeting analysis methods were similar for both the lognormal constant 

370 and delta lognormal indices, though slightly larger for the lognormal constant method. The main 
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371 differences between the methods occurred in the late 2000s for area 9 and in the 2013-2014 

372 period for area 8, when indices were lower for the clustered data than the selected data. This 

373 may be because delta lognormal models are better than lognormal constant models at dealing 

374 with zero catches.

375 In addition, the area 9 delta lognormal indices differed from the lognormal constant indices. 

376 They were markedly lower before 2005 and were considerably higher in 2015 and 2018 but had 

377 similar trends to the nominal CPUEs in the recent years. 

378 Hence the indices provided by the delta lognormal indices using the clustered data were chosen 

379 as the representative indices for SBT caught by the Korean tuna longline fishery. In summary, 

380 patterns in the indices differ somewhat between the statistical area 8 and 9 (Fig. 11B). Both sets 

381 of indices decreased until the mid-2000s, and subsequently increased, particularly in the last few 

382 years. However, lack of data prevents estimation for area 8 in the periods 2003-2007 and since 

383 2017. Recent effort in area 8 is too low and concentrated to provide reliable estimates.

384 Influence plots for each covariate in the lognormal constant model using the clustered data are 

385 presented in Fig. 12, and those for the binomial and lognormal positive components in the delta 

386 lognormal model are presented in Figs. S7 and S8. Each subplot has three components, with the 

387 parameter estimates for each covariate level at the top, the effort by time interval and covariate 

388 level indicated by circle areas in the lower left component, and the cumulative influence of the 

389 covariate on the year effect on the right. Each subplot reports influence on a different scale, so 

390 the scales must be considered when comparing the relative importance of each covariate. 

391 Vessel effects (Fig. 12A) were quite variable, with a few vessels having significantly lower or 

392 higher SBT catch rates. The influence changed through the time series, with the low number of 

393 vessels causing significant variability. 

394 Spatial effects (Fig. 12B) showed significant variation in catch rates, with more variation in the 

395 statistical area 9 than area 8. In area 9 there was a trend towards fishing in areas with lower 

396 average catch rates. It would be useful to explore whether the areas of highest catch rate have 

397 moved through time. However, this would be difficult to determine from Korean data alone, 

398 since fishing activity is currently very concentrated spatially (Fig. 2). Given the behaviour of the 

399 species, areas of highest catch rate are also likely to move during the year, and we do not 

400 account for this in the model. 

401 The effects of the number of hooks per set on catch rates (Fig. 12C) were difficult to interpret. In 

402 area 8 there were small differences by hook number across the range of data with most hooks, 

403 and minimal influence on year effects, apart from 2016 when effort was low and localized with 

404 only one vessel fishing. In area 9 there were relatively larger differences, and apparent influence 

405 on the year effects, with catchability averaging about 3% above the mean in 2010-16 (Fig. 12C). 

406 Sets with more than about 3,250 hooks tended to catch more SBT than sets with fewer hooks. In 

407 area 9 there were more sets with fewer hooks between 2004 and 2007, a period during which 

408 there were more zero SBT sets than at most other times (Fig. S2). These may reflect a mixture of 

409 targeting methods in area 9, with different fishing methods using different numbers of hooks. 
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410 Month effects (Fig. 12D) were strong in both areas 8 and 9, and relatively influential. In both 

411 areas, the highest catch rates were obtained in July and August, but slightly later in area 9. The 

412 seasonality of fishing effort changed through time, with the model suggesting that fishery timing 

413 increased mean catchability in the area 8 by over 10% higher than the average in 2015, and 

414 reduced it almost 5% below average in the area 9 in 2010-15. 

415 Moon effects (Fig. 12E) showed that catch rates appeared to vary moderately with lunar 

416 illumination in area 8. In the area 9 delta lognormal models a similar effect was apparent in the 

417 lognormal positive component, but diminished overall by an inconclusive pattern in the 

418 binomial component (Fig. S8E). 

419 The distribution of the cluster variable (Fig. 12F) changed considerably though time, as the 

420 behaviour of the fleet changed with the abundance of the target species. There were also 

421 relatively large differences in catch rate between the clusters, so this variable was quite 

422 influential on the indices, particularly in area 8. 

423

424

425 Discussion

426 CPUE standardization in a multi-target fishery is more difficult than in a single target fishery, 

427 and various methods have been applied to differentiate fishing strategies through time (He, 

428 Bigelow & Boggs, 1997; Winker, Kerwath & Attwood, 2013; Winker, Kerwath & Attwood, 

429 2014; Cosgrove et al., 2014; Thorson et al., 2017; Okamura et al., 2018). 

430 In this study, abundance indices were derived from two alternative commonly used methods, 

431 data selection and cluster analysis, to explore how these approaches address target change 

432 through time. 

433 The data selection method aims to identify effort targeted mostly at the target species, by 

434 selecting data based on fishing season, gear configuration, etc. This approach appeared to give 

435 reasonable results but was not entirely successful in accounting for the difference from nominal 

436 CPUE, as indicated by the high proportions of zero catches in the statistical area 8 in the early 

437 2010s (Fig. S2).

438 Cluster analysis identifies target change through time based on species composition. In this study, 

439 cluster analysis appeared to be more useful than the data selection method, accounting better for 

440 the switch towards targeting ALB during the late 2000s in the area 9 and the early 2010s in the 

441 area 8 (Figs. S1 and S2). That is, the presence of more zero catches of SBT in the area 9 during 

442 the late 2000s and in area 8 during the early 2010s suggests that the data during those periods 

443 may include more effort targeted at other species, such as ALB. Since such �contamination� of 

444 the effort would tend to bias the indices, it is useful to separate sets with different fishing 

445 strategies. Applying cluster analysis to differentiate the fishing strategies may be the best 

446 approach for these periods. The clustering approach identified patterns that are consistent with 
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447 our understanding of the fishery and changed the indices during those periods in a way that 

448 seems likely to better track the abundance.

449 Although we prefer the clustered data indices, the data selection method performed adequately. 

450 Thorough data exploration is needed to develop the selection criteria, and this process is perhaps 

451 the most useful part of the analysis. Data exploration provides the analyst with a good 

452 understanding of the structure of the fishery and how it has changed through time, and this 

453 understanding helps to shape the approaches used in the cluster analysis and generalized linear 

454 modelling.

455 A striking pattern emerging in the Korean tuna longline fishery is that the fleet has greatly 

456 concentrated its effort during the last 5 years. As SBT catch rates have increased, the fleet has 

457 significantly reduced the area fished to catch its quota, and in 2017 and 2018 its effort was more 

458 concentrated than ever before, with no effort in area 8. The Japanese longline fishery has also 

459 concentrated and reduced its effort in recent years (Itoh, 2019; Itoh & Takahashi, 2019), during 

460 which period the �Base� abundance indices used as the primary indices for SBT in CCSBT have 

461 increased substantially. As such, similar recent trends of substantially increasing CPUE since the 

462 mid-2000s have been seen in both the Japanese and Korean longline fisheries (CCSBT, 2019a).

463 The indices estimated from the lognormal constant and the delta lognormal models were broadly 

464 similar for both approaches to address target change but differed somewhat more with the 

465 lognormal constant approach. The delta lognormal model in area 9 differed between 

466 unstandardized and standardized indices prior to 2005 and in recent years. The standardized 

467 indices were lower before 2005 mostly because of the change in spatial distribution. During that 

468 period, many fishing vessels that did not target SBT left the SBT fishing ground, so that a higher 

469 proportion of the remaining vessels targeted SBT (Fig. S3), and the cluster targeting variable 

470 reduced the level of the index (Fig. 12F). However, these changes were more than compensated 

471 for by the spatial effects, which tended to increase the standardized index prior to 2005. 

472 Similarly, the standardized area 9 indices in recent years were higher than the nominal indices, 

473 compared to the early to mid-2010s, because of increased effort in areas with (on average) lower 

474 catch rates due to slightly increased SBT quota. It is unclear why this has occurred, but it may be 

475 related to vessels avoiding the cost of moving to other areas, given that catch rates in all areas 

476 have risen in comparison to earlier years. 

477 Reasons for the increasing effort concentration are not well understood, but several factors may 

478 be at play. Fishing is more efficient when catch rates are higher, and a vessel can catch its quota 

479 with fewer sets in a shorter period and smaller area. At higher abundance levels there may be 

480 also less requirement to move around and search for fish. Improving technology may also be 

481 having an impact. Increased availability of better information from oceanographic models and 

482 remote sensing data, and satellite communications, would reduce the amount of wasted effort 

483 due to fishing in areas with low SBT catch rates. 

484 One effect of such increased effort concentration is loss of information for CPUE 

485 standardization, because effort occurs in fewer strata. This issue has caused problems in recent 
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486 years for the main index of SBT abundance based on Japanese longline data (Itoh, 2020; Hoyle, 

487 2020). 

488 Catch rates varied with lunar illumination but this had little effect on the SBT index since effort 

489 was stable throughout each month (Fig. 12E). Longline catch rates of other pelagic fish such as 

490 bigeye tuna are known to be affected by moon phase (Poisson et al., 2010), but this has not 

491 previously been recorded for southern bluefin tuna. Southern bluefin tuna tend to swim deeper at 

492 night during the full moon (Bestley, Gunn & Hindell, 2009), and reduce the proportion of time 

493 spent near the surface at night as lunar illumination increases (Eveson et al. 2018), but it is 

494 unclear how this may affect catch rates. Similarly, Atlantic bluefin tuna (T. thynnus) swimming 

495 depth was significantly deeper around full moon (Wilson et al., 2005), although these effects 

496 differed by both location and season. The relationship between SBT catch rate and moon phase 

497 should be further investigated in the future, considering spatial and seasonal variation.  

498 Like the abundance indices, the influence estimates are conditional on the model, which assumes 

499 no interactions between the different effects. Some interactions may be expected, such as 

500 variation between years in the timing and location of higher catch rates due to environmental 

501 variation affecting tuna movements. The small sample sizes limit the potential to model 

502 interaction terms, but there may be value in exploring space-time interactions using smoothing 

503 splines.

504 Fishing power has changed not only due to targeting strategy but also in association with vessel 

505 participation in the fishery through time, and these changes directly affect the catch rates of both 

506 target and bycatch species (Hoyle & Okamoto, 2011). Itoh & Takahashi (2019) took this effect 

507 into account when analyzing the index by selecting core vessels from the dataset. In this study, 

508 we applied all vessel data to the CPUE standardization models, and considered vessel effect 

509 (vessel identifier) as a categorical variable in the models. This effect was not very influential, 

510 apart from the early period when some vessels had significantly lower SBT catch rates. This is 

511 because in the early period there were some vessels that did not target SBT at the fishing grounds 

512 and fishing vessels targeting SBT have been there since around 2010 (Fig. S3). However, trends 

513 in fishing power estimated in this study represent the effects of changes in the fleet composition, 

514 but do not account for the changes caused by vessels that stay in the fishery and change their 

515 equipment or their fishing behaviour.

516 The Korean longline indices for SBT are not included in the stock assessment but intended for 

517 comparison with and corroboration of the primary index of abundance, which is based on the 

518 Japanese longline fishery. Analyses in two area-based components help to provide insight into 

519 spatial variation in the fishery and are also useful because seasonality varies by area. 

520

521 Conclusion

522 The article compares two approaches, data selection and cluster analysis, for differentiating 

523 southern bluefin tuna (Thunnus maccoyii) targeting practices in the Korean tuna longline data 
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524 and developing indices of relative abundance. In the case of Korean data, cluster analysis gave 

525 more reasonable results, but the data exploration required for the data selection method was 

526 invaluable in choosing the most appropriate method, and for understanding the structure of the 

527 fishery and how it has changed over time.

528

529
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Figure 1
The annual catch of southern bluefin tuna (SBT) by Korean tuna longline fishery in the
CCSBT convention area, 1991-2018.
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Figure 2
Distributions of fishing effort (hooks) of Korean tuna longline vessels fishing for SBT,
aggregated by 5-year period.

Red colour indicates higher fishing effort, and the numbers in the figure indicates the number
of CCSBT statistical area used for assessing and managing SBT.
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Figure 3
Mean annual fishing efforts (hooks) by month and CCSBT statistical area (SA).
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Figure 4
Frequency of hooks between floats (HBF) for the main fishing ground with the darker
shade for CCSBT statistical areas (SA) 8 and 9, and the lighter shade for other areas.
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Figure 5
Proportions of SBT and ALB in the total catch in numbers by 1° cell, aggregated over 5
years within the period 1996-2018.

Red colour indicates a higher proportion of the catch. (A) Southern bluefin tuna (SBT). (B)
Albacore tuna (ALB).
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Figure 6
The number of cells fished and the mean annual number of longline operations per cell
in CCSBT statistical areas, 1996-2018.

(A) Bar and the line represent the number of major cells (5x5° by month) fished by CCSBT
statistical area and year, and the mean annual operations per cell, respectively. (B) Bar and
the line represent the number of minor cells (1x1° by month) fished by CCSBT statistical area
and year, and the mean annual operations per cell, respectively. (C) Bar and the line
represent relative distribution of fished major cells as the proportion of the cell fished by
CCSBT statistical area, and the mean number of minor cells fished per major cell by year,
respectively.
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Figure 7
Dendrograms for Ward hierarchical cluster analyses of CCSBT statistical areas 8 and 9,
with the red lines indicating the separation into 3 clusters for each.
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Figure 8
Beanplots showing species composition by cluster for statistical areas 8 and 9.

The horizontal bars indicate the medians.
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Figure 9
Beanplots showing the distributions of sets versus covariate by cluster for CCSBT
statistical areas 8 and 9.

The horizontal bars indicate the medians.
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Figure 10
Maps showing the proportion of each cluster per 1 degree cell in total effort for CCSBT
statistical areas 8 and 9.

Higher proportions are shown in yellow, and white space indicates no reported effort.
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Figure 11
Nominal and standardized CPUE indices based on lognormal constant models and delta
lognormal models for CCSBT statistical areas 8 and 9, addressing target change using
selected data and cluster analysis.

(A) Lognormal constant models. (B) Delta lognormal models.
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Figure 12
Influence plots for each effect for lognormal constant model of CCSBT statistical areas 8
(left) and 9 (right), addressing target change using clustering.

(A) Vessel effects. (B) Spatial (latlong) effects. (C) H ooks effects. (D) Month effects. (E) Moon
effects. (F) Cluster effects.
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Figure 13
Continued.
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Table 1(on next page)

Degrees of freedom (df), deviance (dev), and delta AIC results from lognormal constant
models and delta lognormal models for CCSBT statistical areas 8 and 9, addressing
target change using selected data and cluster analysis.

(A) Lognormal constant models. (B) Delta lognormal models.
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1 (A) 

Data selection Clustering analysis

Statistical area 8 Statistical area 9 Statistical area 8 Statistical area 9Variable

df dev ΔAIC df dev ΔAIC df dev ΔAIC df dev ΔAIC
<none> 35.6 0 148.4 0 43.3 0 147.8 0

year 14 42.0 1397 22 177.1 2742 14 47.7 873 22 171.1 2310

latlong 10 37.0 298 18 160.1 1162 10 44.7 274 18 159.1 1145

hooks 5 35.8 41 5 150.4 198 5 43.4 16 5 149.3 157

vessid 26 37.4 361 35 159.0 1011 26 46.2 549 35 158.0 1009

month 3 36.8 265 3 156.9 869 3 44.5 239 3 156.3 900

moon 4 36.5 192 4 148.6 10 4 44.1 158 4 147.9 9

cluster - - - - - - 2 45.7 505 2 148.7 100

2

3 (B) 

Data selection Clustering analysis

Statistical area 8 Statistical area 9 Statistical area 8 Statistical area 9

Binomial

probability

Lognormal

positive

Binomial

probability

Lognormal

positive

Binomial

probability

Lognormal

positive

Binomial

probability

Lognormal

positive

Variable

df dev ΔAIC dev ΔAIC df dev ΔAIC dev ΔAIC df dev ΔAIC dev ΔAIC df dev ΔAIC dev ΔAIC

<none> 328.9 0 50.0 0 2194.2 0 164.8 0 788.7 0 55.6 0 2222.0 0 165.0 0

year 14 354.3 -3 58.6 1348 22 2548.9 311 197.0 2623 14 865.2 49 61.8 930 22 2500.7 235 190.3 2134

latlong 10 355.7 7 51.7 276 18 3048.7 818 182.3 1470 10 821.8 13 57.3 253 18 3000.7 743 182.7 1524

hooks 5 342.1 3 50.2 32 5 2270.1 66 166.0 99 5 807.6 9 55.7 9 5 2297.8 66 160.0 83

vessid 26 356.9 -24 52.5 369 35 2349.5 85 172.5 607 26 838.1 -3 59.0 494 35 2364.3 72 172.9 644

month 3 336.9 2 51.5 241 3 2327.3 127 169.1 375 3 793.7 -1 57.1 234 3 2351.8 124 169.3 393

moon 4 333.7 -3 51.2 200 4 2196.2 -6 166.1 102 4 793.2 -3 56.8 187 4 2223.5 -7 166.3 116

cluster - - - - - - - - - - 2 874.1 81 57.3 274 2 2239.5 13 166.0 91

4
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