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Genome-wide identiûcation of the trehalose-6-phosphate
synthase gene family in sweet orange (Citrus sinensis) and
expression analysis in response to phytohormones and abiotic
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Background: Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing trehalose
and is a signiûcant regulator of plant development and stress response. Sweet orange (Citrus sinensis) is
an economically important fruit tree crop and a common transgenic material. At present, little
information is available about the TPS gene family in sweet orange.

Methods: The TPS gene family were identiûed from sweet orange genome by bioinformatics analysis.
Additionally, the expression of CisTPS genes was analyzed under phytohormones and abiotic stresses by
quantitative real-time PCR (qRT-PCR).

Results: Here, eight TPS genes were identiûed and were found to be randomly distributed in ûve sweet
orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were observed in all
CisTPS proteins. The phylogenetic tree showed that CisTPS genes were divided into two subfamilies, and
genes in each subfamily had conserved intron structures and motif compositions. The cis-acting elements
of CisTPS genes suggested their roles in phytohormone and stress responses. All CisTPS genes were
ubiquitously expressed in roots, leaves, and stems, and six members were highly expressed in roots.
Expression proûles showed that CisTPS genes exhibited tissue speciûcity and were diûerentially
expressed in response to phytohormones and abiotic stresses. This study lays a foundation for revealing
the functions of the TPS gene family in trehalose regulation in sweet orange, and provides a valuable
reference for this gene family in other plants.
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27 Abstract

28 Background: Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing 

29 trehalose and is a significant regulator of plant development and stress response. Sweet orange 

30 (Citrus sinensis) is an economically important fruit tree crop and a common transgenic material. 

31 At present, little information is available about the TPS gene family in sweet orange. 

32 Methods: The TPS gene family were identified from sweet orange genome by bioinformatics 

33 analysis. Additionally, the expression of CisTPS genes was analyzed under phytohormones and 

34 abiotic stresses by quantitative real-time PCR (qRT-PCR).

35 Results: Here, eight TPS genes were identified and were found to be randomly distributed in five 

36 sweet orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were 

37 observed in all CisTPS proteins. The phylogenetic tree showed that CisTPS genes were divided 

38 into two subfamilies, and genes in each subfamily had conserved intron structures and motif 

39 compositions. The cis-acting elements of CisTPS genes suggested their roles in phytohormone 

40 and stress responses. All CisTPS genes were ubiquitously expressed in roots, leaves, and stems, 

41 and six members were highly expressed in roots. Expression profiles showed that CisTPS genes 

42 exhibited tissue specificity and were differentially expressed in response to phytohormones and 

43 abiotic stresses. This study lays a foundation for revealing the functions of the TPS gene family 

44 in trehalose regulation in sweet orange, and provides a valuable reference for this gene family in 

45 other plants.

46

47 Introduction

48 Trehalose is a non-reducing disaccharide composed of two glucose units connected by an 
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49 alpha,alpha-1,1-glycosidic linkage (Elbein et al., 2003; Bansal et al., 2013), and widely found in 

50 bacteria, fungi, slime molds, protozoa, invertebrates, and higher plants (Becker et al., 1996; 

51 Bansal et al., 2013; Lunn et al., 2014; Tang et al., 2018). Trehalose metabolism is involved in 

52 growth, development, and abiotic stress response in higher plants (Elbein et al., 2003; Jang et al., 

53 2003; Pampurova et al., 2014).

54 Thus far, five trehalose biosynthetic pathways have been identified, including trehalose-6-

55 phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP), TreY/TreZ, TreS, TreP, and 

56 TreT pathways; however, only the TPS/TPP pathway is found in higher plants (Avonce et al., 

57 2006; Paul et al., 2008; Lunn et al., 2014). The TPS/TPP pathway involves a two-step reaction. 

58 First, catalyzed by TPS, trehalose-6-phosphate (T6P) is produced from UDP glucose and 

59 glucose-6-phosphate. Second, catalyzed by TPP, T6P is converted to trehalose (Cabib & Leloir, 

60 1958; Goddijn & van Dun, 1999). Thus, TPS is an essential enzyme for trehalose synthesis in the 

61 TPS/TPP pathway.

62 In higher plants, the TPS gene family is divided into two distinct classes4Class I and II (Lunn, 

63 2007), which differ in gene expression pattern, enzyme activity, and physiological function (Ping 

64 et al., 2019). Only Class I members encoding catalytically active enzymes have TPS activity 

65 (Blázquez et al., 1998; Vandesteene et al., 2010), whereas Class II members lack TPS and TPP 

66 activity and their functions remain unclear (Ramon et al., 2009; Lunn et al., 2014). The TPS gene 

67 family is a small gene family, where the number of members varies among species (Wei et al., 

68 2016). For example, there are 11 members in Arabidopsis thaliana, rice, and pepper (Leyman, 

69 Dijck & Thevelein, 2001; Zang et al., 2011; Wei et al., 2016), 12 in winter wheat and poplar 

70 (Yang et al., 2012; Xie et al., 2015), and 7 in grapevine and cucumber (Dan et al., 2021; 

71 Morabito, Secchi & Schubert 2021). Most TPS proteins contain both conserved TPS and TPP 

72 domains, and a few TPS proteins only contain the TPS domain (Yang et al., 2012; Lin et al., 

73 2018; Sun, Chen & Tao, 2021).

74 The TPS gene family also plays a vital role in plant embryo development, flower induction, 

75 senescence regulation, seed filling, and biotic and abiotic stress tolerance in plants (Gómez et al., 

76 2010; Wingler et al., 2012; Wahl et al., 2013; Kumar et al., 2019; Zhao et al., 2019). For 

77 instance, the AtTPS1 gene is a regulator of glucose, abscisic acid (ABA), and stress signaling 

78 (Avonce et al., 2004). The AtTPS1 null mutant showed arrested embryo development, hindered 

79 vegetative growth, and delayed flowering (Eastmond et al., 2002; Gómez, Baud & Gtaham, 

80 2005; Gómez et al., 2010). AtTPS1 overexpression can enhance drought resistance in A. thaliana 

81 (Avonce et al., 2004). Overexpressing the gene encoding the bifunctional fusion of TPS and TPP 

82 genes from Escherichia coli in transgenic tomato plants improved drought and salt resistance and 

83 photosynthetic rates (Lyu et al., 2013).

84 OsTPS1 overexpression enhanced tolerance to stresses such as salt, drought, and low temperature 
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85 in transgenic rice by increasing the trehalose and proline content and regulating the expression of 

86 stress-related genes. Furthermore, OsTPS1-overexpressed transgenic rice did not cause any clear 

87 phenotypic changes (Li et al., 2011). SlTPS1 of Selaginella lepidophylla is involved in the 

88 response to heat and salinity by enhancing T6P biosynthesis (Zentella et al., 1999). AtTPS5 

89 participates in the regulation of heat shock response by interacting with MBF1c and is a negative 

90 regulator in ABA signal transduction (Suzuki et al., 2008; Tian et al., 2019). AtTPS6 can control 

91 plant architecture, epidermal pavement cell shape, and trichome branching (Chary et al., 2008).

92 Sweet orange (Citrus sinensis) is an economically important fruit tree crop and a common 

93 transgenic material. The TPS gene family has been functionally and phylogenetically 

94 characterized in the model plant A. thaliana (Vandesteene et al., 2010), important cash crops 

95 (rice, cotton, potato, and soybean) (Zang et al., 2011; Xie, Wang & Huang, 2014; Mu et al., 

96 2016; Xu et al., 2017), horticultural plants (tree peony and petunia) (Dong et al., 2019; Sun, 

97 Chen & Tao, 2021), and woody plants (poplar and apple) (Yang et al., 2012; Du et al., 2017). 

98 However, information about the TPS gene family in sweet orange is scarce. In this study, we 

99 predicted the TPS genes in sweet orange based on sweet orange genomic sequences, and 

100 analyzed the gene structure, chromosomal location, motif distribution, phylogenetic relationship, 

101 and expression patterns by bioinformatics methods. These findings lay a foundation for future 

102 research on the functions of TPS genes in sweet orange.

103

104 Materials & Methods

105 Identification of TPS gene family in sweet orange

106 The candidate TPS protein sequences in sweet orange (C. sinensis) were downloaded from 

107 Phytozome v13 (https://phytozome-next.jgi.doe.gov). Then, the TPS (Glyco-transf-20, PF00982) 

108 and TPP (Trehalose_PPase, PF02358) domains were predicted using the SMART website 

109 (http://smart.embl-heidelberg.de) and the National Center for Biotechnology Information 

110 Conserved Domain Database (NCBI-CDD; https://www.ncbi.nlm.nih.gov/cdd) (Lu et al., 2020; 

111 Letunic, Khedkar & Bork, 2021), and proteins lacking the TPS domain were removed.

112 The TPS cDNA sequences were used as queries to search the C. sinensis genome database at 

113 NCBI to confirm the chromosome localization of TPS genes. The TPS genes were named based 

114 on their location on C. sinensis chromosomes, and their physical locations were visualized using 

115 MG2C_v2.1 (http://mg2c.iask.in/mg2c_v2.1). The basic information on CisTPS proteins, 

116 including molecular weight (MW), isoelectric point (pI), grand average of hydropathicity 

117 (GRAVY), and subcellular locations were predicted using the Expasy 

118 (https://web.expasy.org/protparam/) and GenScript (https://www.genscript.com/wolf-psort.html) 

119 websites. The secondary structures of CisTPS proteins were predicted using the PRABI website 

120 (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html). The collinearity and 
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121 selective evolutionary pressure of TPS genes were analyzed using the TBtools software (Chen et 

122 al., 2020). 

123

124 Phylogenetic analyses

125 Based on previous studies, 22 protein sequences, including 11 AtTPS and 11 OsTPS protein 

126 sequences, were downloaded from the NCBI database (http://www.ncbi.nlm.nih.gov) (Blazquez 

127 et al., 1998; Vogel et al., 2001; Zang et al., 2011). Multiple alignments of CisTPS, AtTPS, and 

128 OsTPS protein sequences were performed using ClustalW, and the neighbor-joining (NJ) 

129 phylogenetic tree was constructed using MEGA-X with a 1000 bootstrap test.

130

131 Gene structure and motif analyses

132 The gene structure of CisTPS genes was analyzed and visualized using GSDS v2.0 

133 (http://gsds.gao-lab.org/) (Hu et al., 2015). The conserved motifs in the CisTPS proteins were 

134 identified using MEME Suite v5.4.1 (https://meme-suite.org/meme/tools/meme) with the 

135 parameter settings: number of repetitions = any and maximum number of motifs = 20 (Timothy 

136 et al., 2009).

137

138 Prediction of cis-acting elements

139 Using Phytozome v13 (https://phytozome-next.jgi.doe.gov), upstream sequences (2000)bp) of 

140 CisTPS genes were extracted from the sweet orange genome as promoter sequences. PlantCARE 

141 (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to predict the cis-acting 

142 elements in the promoter sequences, and the results were illustrated with the TBtools software 

143 (Lescot et al., 2002; Chen et al., 2020).

144

145 Plant materials and treatment conditions

146 The outer and inner seed coats of the sweet orange seeds were removed, and sterilized seeds 

147 were cultured in Murashige and Skoog (MS) solid medium in a light incubator (27 °C, 16 h 

148 light/8 h dark) for 30 d. The culture seedlings were used as test materials. Roots, leaves, and 

149 stems of seedlings were collected and stored at 280 °C to calculate the CisTPS gene expression 

150 in different tissues.

151 Seedlings were transferred to an MS liquid medium and placed at 27 °C as control. For 

152 temperature stress treatments, the seedlings in the MS liquid medium were placed at a high 

153 temperature (40 °C) or a low temperature (4 °C). For phytohormone and abiotic stress 

154 treatments, seedlings were transferred to an MS liquid medium containing 100 ¿M ABA, 50 ¿M 

155 indole-3-acetic acid (IAA), 10% (w/v) polyethylene glycol (PEG-6000), and 150 mM NaCl, and 

156 placed at 27 °C. Leaves were immediately frozen in liquid nitrogen and stored at 280 °C after 
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157 each treatment at 0, 6, 12, and 24 h. Three independent biological replicates were performed, and 

158 the leaves of each sample were collected from a single seedling.

159

160 Expression profile analysis

161 The specific primers for detecting CisTPS genes were designed by Primer Premier v6.0, and 

162 FBOX was the housekeeping gene used as an internal reference (Mafra et al., 2012). The primer 

163 sequences are listed in Table 1.

164 The total RNA was extracted with TRIzol Reagent (Invitrogen, USA), and first-strand cDNA 

165 was synthesized with 1 ¿g of total RNA using All-In-One 5×RT MasterMix (Applied Biological 

166 Materials Inc., Canada). Total RNA extraction and cDNA synthesis were performed according to 

167 the manufacturers9 instructions. The synthesized cDNA solution was diluted 10 times with 

168 distilled water, and the diluted cDNA was used as a template for quantitative polymerase chain 

169 reaction (qPCR). qPCR was performed with TB Green® Premix Ex Taq# II kit (TaKaRa, China). 

170 The qPCR reaction mixture consisted of 9 ¿L template cDNA, 0.5 ¿L each of 10 µM primers, 

171 and 10 ¿L SYBR Green Supermix. qPCR was performed for 3 min at 95 °C (1 cycle), followed 

172 by 10 s at 95 °C, 60 s at 60 °C (40 cycles). Each reaction was performed in technical triplicates.

173 Relative gene expression was calculated by the 22��Ct method (Livak & Schmittgen, 2001). 

174 Standard error bars represent standard error of the mean (SEM). The expression of CisTPS genes 

175 in different tissues was normalized by that in roots (Dan et al., 2021). Statistical differences were 

176 analyzed with Student9s t-test.

177

178 Results

179 Genome-wide identification of TPS genes in sweet orange

180 Eight TPS genes were identified in the sweet orange genome by bioinformatics analysis. Based 

181 on the assessment of Pfam and CDD, these eight TPS proteins contained two conserved 

182 domains4an N-terminal TPS domain (Glyco_transf_20; Pfam: PF00982) and a C-terminal TPP 

183 domain (Trehalose_PPase; Pfam: PF02358) (Table 2). These results confirmed that the eight 

184 genes belonged to the TPS gene family. The TPS genes were named CisTPS13CisTPS8 

185 according to chromosome position (Fig. 1). Furthermore, CisTPS23CisTPS5 proteins contained 

186 an extra Hydrolase_3 domain (Pfam: PF08282).

187 CisTPS genes were distributed on five chromosomes, i.e., three on chromosome 2, two on 

188 chromosome 5, and one on chromosomes 3, 4, and 7 (Fig. 1). The genes were mostly located at 

189 the proximal ends of chromosomes. No obvious correlation was observed between chromosome 

190 length and number of CisTPS genes based on their distribution on chromosomes.

191 Physicochemical properties analysis revealed that the size of CisTPS proteins was highly 

192 variable from 831 (CisTPS3) to 942 amino acids (CisTPS1), and MW was between 94.24 KDa 

193 and 106.78 KDa. pI ranged from 5.59 (CisTPS3) to 6.38 (CisTPS7). GRAVY was predicted 
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194 from 20.392 (CisTPS7) to 20.132 (CisTPS4). Subcellular prediction of these CisTPS genes 

195 indicated their localization in the chloroplast and cytoplasm (Table 2).

196 Analysis of the secondary structure content in CisTPS proteins showed that these proteins 

197 consisted of alpha helix, beta turn, random coil, and extended strand (Table 3).

198 To better understand the evolutionary mechanism of sweet orange TPS family, a collinear 

199 relationship diagram of sweet orange, A. thaliana and rice was constructed. Ten pairs of 

200 orthologous genes were found between sweet orange and A. thaliana, and six between sweet 

201 orange and rice (Fig. 2). Furthermore, the orthologous genes of CisTPS2, CisTPS5 and CisTPS6 

202 were detected in both dicotyledon (A. thaliana) and monocotyledon (rice) (Fig. 2), indicating the 

203 three genes may be highly conserved. The Ka /Ks ratios of all orthologous genes between 

204 watermelon and A. thaliana were less than 1(Table S1), suggesting purifying selection had acted 

205 upon these orthologous genes.

206

207 Phylogenetic analysis of CisTPS gene family

208 To determine the evolutionary relationship of TPS genes among various species, a phylogenetic 

209 tree was constructed by the NJ method based on the TPS protein amino acid sequences from A. 

210 thaliana, rice, and sweet orange. CisTPS genes were classified into two subfamilies, Class I and 

211 Class II, as shown in the previous studies in A. thaliana and rice (Fig. 3) (Blázquez et al., 1998; 

212 Vogel et al., 2001; Zang et al., 2011). CisTPS1 and CisTPS7 belonged to Class I, and the other 

213 genes belonged to Class II.

214 Most CisTPS and AtTPS genes clustered together, suggesting that CisTPS genes were closely 

215 related to AtTPS genes. For example, CisTPS7 and AtTPS1, CisTPS4 and AtTPS5, CisTPS3 and 

216 AtTPS6, and CisTPS5 and AtTPS11 clustered together.

217

218 Structure analysis of CisTPS genes

219 To better understand the molecular characteristics of CisTPS genes, the gene structures such as 

220 exons, introns, and conserved motifs were analyzed. In Class I, CisTPS1 and CisTPS7 contained 

221 18 and 17 exons, and 17 and 16 introns, respectively. However, in Class II, CisTPS3 and 

222 CisTPS6 possessed 4 exons and 3 introns, whereas all other genes contained 3 exons and 2 

223 introns (Fig. 4, B). The results indicated that functional diversity of closely related TPS genes 

224 might be caused by the gain and loss of exons in the course of evolution of the TPS gene family. 

225 In addition, 20 distinct conserved motifs were searched using the MEME website. The lengths of 

226 these conserved motifs ranged from 15 to 50 amino acids (Table S2). Members (CisTPS1 and 

227 CisTPS7) of Class I all harbored 15 motifs, which lacked motif 8, 10, 15, 19, and 20. Members 

228 of Class II contained all 20 motifs, except for CisTPS5, which contained 19 motifs but lacked 

229 motif 20 (Fig. 4, C). The results of the structure analysis confirmed the reliability of the 

230 phylogenetic tree (Fig. 4, A), suggesting functional differences between Class I and II.

231

232 Cis-acting elements of CisTPS genes

233 By analyzing the 2000-bp region upstream of the transcription start site, 70 types of cis-acting 

234 elements were discovered in the promoter regions of CisTPS genes (Table S3). Among these, 7 
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235 types of cis-acting elements were related to abiotic stress and 9 types of cis-acting elements were 

236 related to phytohormone responses. In abiotic stress-related elements, ARE (an anaerobic 

237 induction element) and MBS (a drought-inducible element) were mainly found in the promoter 

238 regions of CisTPS genes. Phytohormone-responsive elements, including ABRE (ABA-

239 responsive element), CGTCA-motif (methyl jasmonic acid [MeJA]-responsive element), 

240 TGACG-motif (MeJA-responsive element), and TGA-element (auxin-responsive element), were 

241 observed in most CisTPS genes. A total of 126 cis-elements related to light were recognized on 

242 the promoters, and each promoter harbored at least 9 light-responsive elements (Fig. 5). In 

243 addition, the CAAT-box and TATA-box, which are considered the core and common promoter 

244 elements, were found in the promoter regions of all CisTPS genes. CisTPS genes played essential 

245 roles in response to abiotic stresses, phytohormones, and light. 

246

247 Expression analysis of CisTPS genes in different tissues

248 To determine the specificity of TPS gene expression in sweet orange, CisTPS gene expression in 

249 roots, stems, and leaves was quantified using qRT-PCR. All CisTPS genes were expressed in 

250 roots, stems, and leaves, and the expression levels of most CisTPS genes were lower in leaves 

251 than in other tissues. CisTPS2, CisTPS3, CisTPS4, CisTPS6, CisTPS7 and CisTPS8 were highly 

252 expressed in roots, whereas CisTPS1 and CisTPS5 were highly expressed in stems (Fig. 6). 

253

254 Expression analysis of CisTPS genes under phytohormone treatment

255 TPS proteins are involved in the differential regulation of gene expression. To understand the 

256 potential roles of CisTPS genes, we measured their expression characteristics in sweet orange 

257 seedlings after phytohormone treatment. Under ABA treatment, the expression of CisTPS3 and 

258 CisTPS7 was slightly upregulated at 24 and 6 h, respectively. CisTPS4 was upregulated and 

259 peaked at 6 h, declined to its lowest expression level at 12 h, and recovered to an intermediate 

260 level at 24 h. CisTPS5 and CisTPS8 were slightly downregulated, with the lowest expression at 

261 12 and 24 h, respectively. Under IAA treatment, CisTPS2 and CisTPS7 were upregulated at 6 

262 and 12 h, respectively, CisTPS3 at 12 h, and CisTPS8 at 6 h, whereas CisTPS4 was slightly 

263 inhibited at 24 h (Fig. 7).

264

265 Expression analysis of CisTPS genes under abiotic treatment

266 We also examined the expression of CisTPS genes in response to various abiotic stresses, and 

267 qRT-PCR was used to calculate the expression patterns under different treatment conditions. 

268 Under NaCl treatment, CisTPS2 and CisTPS3 were significantly induced at 12 h. However, 

269 CisTPS7 was significantly upregulated at 12 h and slightly repressed at 24 h. Under PEG-6000, 

270 CisTPS1 showed strong expression at 6 h, and returned to normal levels after 6 h. At 24 h, 

271 CisTPS2 expression was slightly suppressed, whereas CisTPS3 and CisTPS7 expression was 

272 slightly increased. CisTPS2, CisTPS3, CisTPS4, and CisTPS7 were upregulated at low 

273 temperature; CisTPS2 and CisTPS7 were strongly expressed at both 12 and 24 h. CisTPS1 and 

274 CisTPS4 were significantly upregulated at 12 and 6 h at 40 °C treatment conditions, respectively. 
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275 CisTPS7 was slightly induced by high temperature at 6 h (Fig. 8).

276

277 Discussion

278 TPS genes play important roles in plant growth, development, and response to biotic and abiotic 

279 stresses (Eastmond et al., 2002; vanDijken, Schluepmann & Smeekens, 2004; Gómez, Baud & 

280 Gtaham, 2005; Li et al., 2011). Therefore, the TPS gene family has received more attention and 

281 has been identified in many plants. In this study, eight TPS genes were identified from the sweet 

282 orange genome. All the CisTPS proteins contained both a TPS domain at the N-terminus and a 

283 TPP domain at the C-terminus, indicating that the structures of the two domains might be formed 

284 before the differentiation of these members and is essential for TPS functions. Our results were 

285 consistent with research in A. thaliana, pepper, and apple (Yang et al., 2012; Wei et al., 2016; Du 

286 et al., 2017). While the TPP domain is missing in cotton GrTPS6, GhTPS4, and GhTPS9 genes 

287 (Mu et al., 2016), perhaps due to evolution. The number of TPS genes varies greatly among 

288 species. For example, there are 53 TPS genes in cotton, 31 in Brassica napus, 15 in cabbage, 14 

289 in Chinese cabbage, 12 in winter wheat, 11 in A. thaliana, and 7 in grapevine (Leyman, Dijck & 

290 Thevelein, 2001; Xie et al., 2015; Mu et al., 2016; Morabito, Secchi & Schubert 2021; Zhou et 

291 al., 2021). These results indicated that the TPS gene family was not conserved in different 

292 species.

293 Eight TPS genes from sweet orange were divided into two subfamilies based on the amino acid 

294 sequences, as previously observed in A. thaliana and rice (Leyman, Dijck & Thevelein, 2001; 

295 Zang et al., 2011). CisTPS1 and CisTPS7 belonged to Class I, whereas the remaining six genes 

296 (CisTPS2, CisTPS3, CisTPS4, CisTPS5, CisTPS6, and CisTPS8) belonged to Class II. AtTPS 

297 proteins of Class I encoding catalytically active enzymes showed TPS activity (Blázquez et al., 

298 1998; Vandesteene et al., 2010), indicating the TPS activity of CisTPS1 and CisTPS7. 

299 Furthermore, CisTPS7 and AtTPS1 clustered together, implying that CisTPS7 might have 

300 functions similar to AtTPS1 and plays a crucial role in sweet orange growth, development, and 

301 stress response. Although the AtTPS genes of Class II lacked TPS and TPP activities, they were 

302 preserved under evolutionary selection pressure and differed in tissue and expression rate, 

303 suggesting that they had particular functions (Zang et al., 2011). However, the activities and 

304 functions of most Class II members remain uncertain.

305 Exon3intron diversification plays a major role in diverse gene family evolution (Qi et al., 2020). 

306 Past studies have shown that the TPS genes in Class I mainly contained 16 introns and those in 

307 Class II mostly harbored 2 introns (Yang et al., 2012). Class I genes in sweet orange contained 

308 16317 introns, and Class II genes had 2 introns except for CisTPS3 and CisTPS6. Based on the 

309 analysis of the CisTPS gene structure, the number of exons and introns of Class I genes was 

310 pronouncedly higher than that of Class II, and almost the same number of exons and introns was 

311 present in the same class. Class I and II genes experienced distinct selection pressures and 

312 evolutionary processes, and Class II genes lost some introns because of strong selective pressure 

313 during evolution (Zhaxybayeva & Gogarten, 2003). Moreover, the results showed that gene 

314 evolution was consistent with conservation in gene family structure, as it did for A. thaliana, 

315 rice, and winter wheat (Lunn, 2007; Zang et al., 2011; Xie et al., 2015).
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316 Motif analysis showed that 20 dissimilar conserved motifs were obtained in the CisTPS gene 

317 family. In Class I, both CisTPS1 and CisTPS7 had 15 motifs and lacked motif 8, 10, 15, 18, 19, 

318 and 20. In Class II, four CisTPS genes contained all 20 motifs, but CisTPS5 was deficient in 

319 motif 18 and 20, and CisTPS6 lacked motif 18. Thus, 15 motifs were observed in all CisTPS 

320 genes. Therefore, the 15 motifs may be crucial for CisTPS genes to maintain their structure and 

321 function. In addition, gene sequences closer in the phylogenetic tree showed highly similar 

322 motifs.

323 Cis-acting elements control gene expression by combining with activated transcription factors 

324 when plants were under stress (Hadiarto & Tran, 2011). In the promoter regions of CisTPS 

325 genes, the cis-acting elements were related to environmental stress (light, oxygen concentration, 

326 temperature, drought, and wounding) and exogenous phytohormones (salicylic acid, ABA, 

327 MeJA, auxin, and gibberellin). These elements were found in Populus and cucumber (Gao et al., 

328 2021; Dan et al., 2021), suggesting that TPS genes regulate stress, phytohormone, and light 

329 responses.

330 The gene expression difference in different tissues may explain their vital roles in specific 

331 tissues. CisTPS genes were detected in roots, leaves, and stems, and these results were in 

332 agreement with the results of cucumber and Medicago truncatula (Dan et al., 2021, Song et al., 

333 2021). The expression of CisTPS2, CisTPS3, CisTPS4, CisTPS6, and CisTPS7 was the highest in 

334 roots and that of CisTPS1 and CisTPS5 was the highest in stems. Based on the results, CisTPS2, 

335 CisTPS3, CisTPS4, CisTPS6, and CisTPS7 may be involved in root development, whereas 

336 CisTPS1 and CisTPS5 may mediate stem development.

337 Trehalose is important for higher plants to preserve bioactive substances and cell structures when 

338 faced with damaging environmental stresses (Garg et al., 2002; Jang et al., 2003). Consequently, 

339 the expression level of TPS genes from some plants has been tested under different stress 

340 conditions (Iordachescu & Imai, 2008; Xie et al., 2015; Mu et al., 2016; Morabito, Secchi & 

341 Schubert 2021; Song et al., 2021). In this research, CisTPS7 responded to every treatment, 

342 especially to IAA, salt, and low temperature treatment. Based on the phylogenetic analysis, we 

343 have found that the CisTPS7 gene corresponds to the AtTPS1 gene. A. thaliana seedlings 

344 overexpressing AtTPS1 displayed dehydration tolerance and ABA-insensitive phenotypes 

345 (Avonce et al., 2004). OsTPS1 overexpression in rice conferred seedling tolerance to cold, salt, 

346 and drought stresses (Li et al. 2011). Transgenic potato plants of the TPS1 gene from 

347 Saccharomyces cerevisiae clearly increased drought resistance (Yeo et al., 2000). For that 

348 reason, we assert that CisTPS7 plays a valuable role in sweet orange stress resistance. In 

349 addition, the Class I members in red algae were significantly upregulated under high temperature 

350 and desiccation (Sun et al., 2019). In agreement with the results, the expression of Class I genes 

351 (CisTPS1 and CisTPS7) increased in response to drought and high temperature stresses.

352 The Class II members reveal different expression patterns under various stresses. Overexpression 

353 of Class II OsTPS genes enhanced rice tolerance to abiotic stress (Li et al., 2011). The transcript 

354 level of AtTPS5, a negative regulator in ABA signal transduction, was elevated during heat stress 

355 (Suzuki et al., 2008; Tian et al., 2019). CisTPS4 corresponding to AtTPS5 responded to ABA, 
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356 IAA, and cold and heat stresses. AtTPS7 expression increased under salt stress (Renault et al., 

357 2013). CisTPS2, homologous with AtTPS7, was strongly induced by salt stress and low 

358 temperature. AtTPS9 was significantly upregulated by treatment conditions such as ABA, salt, 

359 drought, and high temperature (Suzuki et al., 2008). However, CisTPS8 in sweet orange was the 

360 most homologous to AtTPS9, and it was only slightly induced by phytohormone (ABA and IAA) 

361 stresses. Furthermore, CisTPS3 was observed to be induced by multiple stresses, such as ABA, 

362 IAA, salt, drought and cold, whereas CisTPS5 was only repressed by ABA. In sweet orange, 

363 CisTPS6 showed no response to various treatment conditions, which also existed in the soybean 

364 TPS gene family (Xie, Wang & Huang, 2014).

365

366 Conclusions

367 To understand more about the TPS gene family in C. sinensis, eight CisTPS genes were 

368 identified from the sweet orange genome in this study. The CisTPS genes were located on five 

369 chromosomes and were divided into two subfamilies4Class I and II. CisTPS genes were similar 

370 to AtTPS genes in their conserved domain and gene structure. In addition, most CisTPS genes 

371 responded to phytohormones and abiotic stresses, and six CisTPS genes were even controlled by 

372 multiple stresses. The results indicated that CisTPS genes were required for the response to 

373 phytohormones and abiotic stresses in sweet orange. Our findings provide basic resources for 

374 further studies of the functions of the TPS gene family on stress-resistance, growth, and 

375 development in sweet orange.
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Figure 1
Chromosomal distribution of CisTPS genes.
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Figure 2
Collinearity analysis of Arabidopsis , sweet orang and rice.
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Figure 3
Phylogenetic analysis of TPS gene family in Arabidopsis, rice and sweet orange.
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Figure 4
Phylogenetic analysis (A), motif compositions (B), and gene structures (C) of TPS genes
in sweet orange.
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Figure 5
Distribution of cis-elements in CisTPS genes.
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Figure 6
Expression levels of CisTPS genes in root, leaf, and stem.

Values are means ± SEM of three biological replicates.
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Figure 7
Expression of CisTPS genes induced by phytohormones.

Values are means ± SEM of three biological replicates. Asterisks indicate statistical
signiûcance determined by Student9s t-test (*P < 0.05, **P < 0.01).
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Figure 8
Expression of CisTPS genes induced by abiotic stresses.

Values are means ± SEM of three biological replicates. Asterisks indicate statistical
signiûcance determined by Student9s t-test (*P < 0.05, **P < 0.01).
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Table 1(on next page)

Primers used for qRT-PCR.
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Gene name Primer name Sequence (52332)

boxF TTGGAAACTCTTTCGCCACTFBOX

boxR CAGCAACAAAATACCCGTCT

1F TTAGGAGGGGTGAGGACTCGCisTPS1

1R CCAGCCCAACCAATCCATCT

2F GACGTTGTTGGGGAATTGGCCisTPS2

2R TGGGGCATGACAGTTCCATC

3F CACGGCATTTCTTGTCCTGCCisTPS3

3R AAACCTTTGCCTCCGTTCCA

4F TGGGGCCATTCGAGTAAACCCisTPS4

4R GCAAAAAGCTACGAGCCCAG

5F GATTGTTGCTTTGGGGCCTGCisTPS5

5R GTGGCATCACAGTCCCATCA

6F GGCATCAGTGTGTCCACGTACisTPS6

6R TGCATCAGCTACGGCATCAA

7F ACATTTGCTGGTCGGAAGGTCisTPS7

7R GCAAAACAACTTTGCCACGC

8F TCTCCTCGGACACTGAGGTTCisTPS8

8R GGTAGAAAGGTCGGCACACA

1

2
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Table 2(on next page)

Summary of CisTPS genes.
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Gene Gene ID Chromosome location TPS domain

location

TPP domain

location

ORF/aa MW/KD PI GRAVY Location

CisTPS1 XM_006467507.3 Chr2: 2018989-2028927 105-572 616-850 942 106.78 6.29 -0.333 Chloroplast

CisTPS2 XM_006467546.3 Chr2: 2235199-2239556 61-546 595-830 856 96.24 5.96 -0.202 Chloroplast

CisTPS3 XM_015527352.2 Chr2: 14383332-14388004 60-528 577-812 831 94.24 5.59 -0.186 Cytoplasm

CisTPS4 XM_006471525.3 Chr3: 13930419-13936240 59-547 596-831 863 96.62 5.60 -0.132 Cytoplasm

CisTPS5 XM_006474056.3 Chr4: 1295233-1298512 51-540 589-824 854 96.54 5.73 -0.238 Cytoplasm

CisTPS6 XM_006476690.3 Chr5: 3082065-3088262 59-546 583-818 832 94.55 6.11 -0.199 Cytoplasm

CisTPS7 XM_006477757.3 Chr5: 10415267-10433927 94-561 605-838 937 105.65 6.38 -0.392 Cytoplasm

CisTPS8 XM_006483756.3 Chr7: 5247964-5251328 59-546 595-830 861 96.81 6.01 -0.208 Cytoplasm

1
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Table 3(on next page)

Secondary structures of CisTPS proteins
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Protein Alpha helix (%) Beta turn (%) Random coil (%) Extended strand (%)

CisTPS1 42.68 6.05 36.94 14.33

CisTPS2 42.21 4.67 36.33 16.59

CisTPS3 45.01 5.05 32.85 17.09

CisTPS4 42.53 4.87 36.04 16.57

CisTPS5 42.39 5.39 35.25 16.98

CisTPS6 42.67 4.93 35.10 17.31

CisTPS7 43.44 5.12 37.78 13.66

CisTPS8 43.09 4.88 34.61 17.42

1
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