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Background: Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing trehalose
and is a significant regulator of plant development and stress response. Sweet orange (Citrus sinensis) is
an economically important fruit tree crop and a common transgenic material. At present, little
information is available about the TPS gene family in sweet orange.

Methods: The TPS gene family were identified from sweet orange genome by bioinformatics analysis.
Additionally, the expression of CisTPS genes was analyzed under phytohormones and abiotic stresses by
quantitative real-time PCR (qRT-PCR).

Results: Here, eight TPS genes were identified and were found to be randomly distributed in five sweet
orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were observed in all
CisTPS proteins. The phylogenetic tree showed that CisTPS genes were divided into two subfamilies, and
genes in each subfamily had conserved intron structures and motif compositions. The cis-acting elements
of CisTPS genes suggested their roles in phytohormone and stress responses. All CisTPS genes were
ubiquitously expressed in roots, leaves, and stems, and six members were highly expressed in roots.
Expression profiles showed that CisTPS genes exhibited tissue specificity and were differentially
expressed in response to phytohormones and abiotic stresses. This study lays a foundation for revealing
the functions of the TPS gene family in trehalose regulation in sweet orange, and provides a valuable
reference for this gene family in other plants.
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Abstract

Background: Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing
trehalose and is a significant regulator of plant development and stress response. Sweet orange
(Citrus sinensis) is an economically important fruit tree crop and a common transgenic material.
At present, little information is available about the 7PS gene family in sweet orange.

Methods: The TPS gene family were identified from sweet orange genome by bioinformatics
analysis. Additionally, the expression of CisTPS genes was analyzed under phytohormones and
abiotic stresses by quantitative real-time PCR (qQRT-PCR).

Results: Here, eight 7PS genes were identified and were found to be randomly distributed in five
sweet orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were
observed in all CisTPS proteins. The phylogenetic tree showed that CisTPS genes were divided
into two subfamilies, and genes in each subfamily had conserved intron structures and motif
compositions. The cis-acting elements of CisTPS genes suggested their roles in phytohormone
and stress responses. All CisTPS genes were ubiquitously expressed in roots, leaves, and stems,
and six members were highly expressed in roots. Expression profiles showed that CisTPS genes
exhibited tissue specificity and were differentially expressed in response to phytohormones and
abiotic stresses. This study lays a foundation for revealing the functions of the 7PS gene family
in trehalose regulation in sweet orange, and provides a valuable reference for this gene family in

other plants.

Introduction
Trehalose is a non-reducing disaccharide composed of two glucose units connected by an
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alpha,alpha-1,1-glycosidic linkage (Elbein et al., 2003; Bansal et al., 2013), and widely found in
bacteria, fungi, slime molds, protozoa, invertebrates, and higher plants (Becker et al., 1996;
Bansal et al., 2013; Lunn et al., 2014; Tang et al., 2018). Trehalose abolism is involved in
growth, development, and abiotic stress response in higher plants (Elbein et al., 2003; Jang et al.,
2003; Pampurova et al., 2014).

Thus far, five trehalose biosynthetic pathways have been identified, including trehalose-6-
phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP), TreY/TreZ, TreS, TreP, and
TreT pathways; however, only the TPS/TPP pathway is found in higher plants (Avonce et al.,
2006; Paul et al., 2008; Lunn et al., 2014). The TPS/TPP pathway involves a two-step reaction.
First, catalyzed by TPS, trehalose-6-phosphate (T6P) is produced from UDP glucose and
glucose-6-phosphate. Second, catalyzed by TPP, T6P is converted to trehalose (Cabib & Leloir,
1958; Goddijn & van Dun, 1999). Thus, TPS is an essential enzyme for trehalose synthesis in the
TPS/TPP pathway.

In higher plants, the 7PS gene family is divided into two distinct classes—Class I and II (Lunn,
2007), which differ in gene expression pattern, enzyme activity, and physiological function (Ping
et al., 2019). Only Class I members encoding catalytically active enzymes have TPS activity
(Blazquez et al., 1998; Vandesteene et al., 2010), whereas Class II members lack TPS and TPP
activity and their functions remain unclear (Ramon et al., 2009; Lunn et al., 2014). The 7PS gene
family is a small gene family, where the number of members varies among species (Wei et al.,
2016). For example, there are 11 members in Arabidopsis thaliana, rice, and pepper (Leyman,
Dijck & Thevelein, 2001; Zang et al., 2011; Wei et al., 2016), 12 in winter wheat and poplar
(Yang et al., 2012; Xie et al., 2015), and 7 in grapevine and cucumber (Dan et al., 2021;
Morabito, Secchi & Schubert 2021). Most TPS proteins contain both conserved TPS and TPP
domains, and a few TPS proteins only contain the TPS domain (Yang et al., 2012; Lin et al.,
2018; Sun, Chen & Tao, 2021).

The TPS gene family also plays a vital role in plant embryo development, flower induction,
senescence regulation, seed filling, and biotic and abiotic stress tolerance in plants (Gémez et al.,
2010; Wingler et al., 2012; Wahl et al., 2013; Kumar et al., 2019; Zhao et al., 2019). For
instance, the A¢TPS1 gene is a regulator of glucose, abscisic acid (ABA), and stress signaling
(Avonce et al., 2004). The A¢TPSI null mutant showed arrested embryo development, hindered
vegetative growth, and delayed flowering (Eastmond et al., 2002; Gémez, Baud & Gtaham,
2005; Gomez et al., 2010). A¢TPS1 overexpression can enhance drought resistance in A. thaliane
(Avonce et al., 2004). Overexpressing the gene encoding the bifunctional fusion of 7PS and TPP
genes from Escherichia coli in transgenic tomato plants improved drought and salt resistance and
photosynthetic rates (Lyu et al., 2013).

OsTPS1 overexpression enhanced tolerance to stresses such as salt, drought, and low temperature
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in transgenic rice by increasing the trehalose and proline content and regulating the expression of
stress-related genes. Furthermore, OsTPS-overexpressed transgenic rice did not cause any clear
phenotypic changes (Li et al., 2011). SITPS1 of Selaginella lepidophylla is involved in the
response to heat and salinity by enhancing T6P biosynthesis (Zentella et al., 1999). AtTPS5
participates in the regulation of heat shock response by interacting with MBF1c and is a negative
regulator in ABA signal transduction (Suzuki et al., 2008; Tian et al., 2019). AtTPS6 can control
plant architecture, epidermal pavement cell shape, and trichome branching (Chary et al., 2008).
Sweet orange (Citrus sinensis) is an economically important fruit tree crop and a common
transgenic material. The TPS gene family has been functionally and phylogenetically
characterized in the model plant A. thalian: (' andesteene et al., 2010), important cash crops
(rice, cotton, potato, and soybean) (Zang et al., 2011; Xie, Wang & Huang, 2014; Mu et al.,
2016; Xu et al., 2017), horticultural plants (tree peony and petunia) (Dong et al., 2019; Sun,
Chen & Tao, 2021), and woody plants (poplar and apple) (Yang et al., 2012; Du et al., 2017).
However, information about the 7PS gene family in sweet orange is scarce. In this study, we
predicted the TPS genes in sweet orange based on sweet orange genomic sequences, and
analyzed the gene structure, chromosomal location, motif distribution, phylogenetic relationship,
and expression patterns by bioinformatics methods. These findings lay a foundation for future

research on the functions of 7PS genes in sweet orange.

Materials & Methods

Identification of 7PS gene family in sweet orange

The candidate TPS protein sequences in sweet orange (C. sinensis) were downloaded from
Phytozome v13 (https://phytozome-next.jgi.doe.gov' - Then, the TPS (Glyco-transf-20, PF00982)
and TPP (Trehalose PPase, PF02358) domains were predicted using the SMART website
(http://smart.embl-heidelberg.de) and the National Center for Biotechnology Information
Conserved Domain Database (NCBI-CDD; https://www.ncbi.nlm.nih.gov/cdd) (Lu et al., 2020;
Letunic, Khedkar & Bork, 2021), and proteins lacking the TPS domain were removed.

The TPS cDNA sequences were used as queries to search the C. sinensis genome database at
NCBI to confirm the chromosome localization of 7PS genes. The TPS genes were named based
on their location on C. sinensis chromosomes, and their physical locations were visualized using
MG2C v2.1 (http://mg2c.iask.in/mg2c_v2.1). The basic information on CisTPS proteins,
including molecular weight (MW), isoelectric point (pl), grand average of hydropathicity
(GRAVY), and subcellular locations were predicted using the Expasy
(https://web.expasy.org/protparam/) and GenScript (https://www.genscript.com/wolf-psort.html)
websites. The secondary structures of CisTPS proteins were predicted using the PRABI website
(https://npsa-prabi.ibep.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html). The collinearity and
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selective evolutionary pressure of 7PS genes were analyzed using the TBtools software (Chen et
al., 2020).

Phylogenetic analyses

Based on previous studies, 22 protein sequences, including 11 AtTPS and 11 OsTPS protein
sequences, were downloaded from the NCBI database (http://www.ncbi.nlm.nih.gov) (Blazquez
et al., 1998; Vogel et al., 2001; Zang et al., 2011). Multiple alignments of CisTPS, AtTPS, and
OsTPS protein sequences were performed using ClustalW, and the neighbor-joining ([J)

phylogenetic tree was constructed using MEGA-X with a 1000 bootstrap test.

Gene structure and motif analyses

The gene structure of CisTPS genes was analyzed and visualized using GSDS v2.0
(http://gsds.gao-lab.org/) (Hu et al., 2015). The conserved motifs in the CisTPS proteins were
identified using MEME Suite v5.4.1 (https://meme-suite.org/meme/tools/meme) with the
parameter settings: number of repetitions = any and maximum number of motifs = 20 (Timothy
et al., 2009).

Prediction of cis-acting elements

Using Phytozome v13 (https://phytozome-next.jgi.doe.gov), upstream sequences (2000 bp) of
CisTPS genes were extracted from the sweet orange genome as promoter sequences. PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to predict the cis-acting
elements in the promoter sequences, and the results were illustrated with the TBtools software
(Lescot et al., 2002; Chen et al., 2020).

Plant materials and treatment conditions

The outer and inner seed coats of the sweet orange seeds were removed, and sterilized seeds
were cultured in Murashige and Skoog (MS) solid medium in a light incubator (27 °C, 16 h
light/8 h dark) for 30 d. The culture seedlings were used as test materials. Roots, leaves, and
stems of seedlings were collected and stored at —80 °C to calculate the CisTPS gene expression
in different tissues.

Seedlings were transferred to an MS liquid medium and placed at 27 °C as control. For
temperature stress treatments, the seedlings in the MS liquid medium were placed at a high
temperature (40 °C) or a low temperature (4 °C). For phytohormone and abiotic stress
treatments, seedlings were transferred to an MS liquid medium containing 100 uM ABA, 50 uM
indole-3-acetic acid (IAA), 10% (w/v) polyethylene glycol (PEG-6000), and 150 mM NacCl, and
placed at 27 °C. Leaves were immediately frozen in liquid nitrogen and stored at —80 °C after
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each treatment at 0, 6, 12, and 24 h. Three independent biological replicates were performed, and

the leaves of each sample were collected from a single seedling.

Expression profile analysis

The specific primers for detecting CisTPS genes were designed by Primer Premier v6.0, and
FBOX was the housekeeping gene used as an internal reference (Mafra et al., 2012). The primer
sequences are listed in Table 1.

The total RNA was extracted with TRIzol Reagent (Invitrogen, USA), and first-strand cDNA
was synthesized with 1 pg of total RNA using All-In-One 5xRT MasterMix (Applied Biological
Materials Inc., Canada). Total RNA extraction and cDNA synthesis were performed according to
the manufacturers’ instructions. The synthesized cDNA solution was diluted 10 times with
distilled water, and the diluted cDNA was used as a template for quantitative polymerase chain
reaction (QPCR). gPCR was performed with TB Green® Premix Ex Taq™ II kit (TaKaRa, China).
The qPCR reaction mixture consisted of 9 pL template cDNA, 0.5 pL each of 10 uM primers,
and 10 uL SYBR Green Supermix. qPCR was performed for 3 min at 95 °C (1 cycle), followed
by 10 s at 95 °C, 60 s at 60 °C (40 cycles). Each reaction was performed in technical triplicates.
Relative gene expression was calculated by the 2724Ct method (Livak & Schmittgen, 2001).
Standard error bars represent standard error of the mean (SEM). The expression of CisTPS genes
in different tissues was normalized by that in roots (Dan et al., 2021). Statistical differences were

analyzed with Student’s #-test.

Results

Genome-wide identification of 7PS genes in sweet orange

Eight TPS genes were identified in the sweet orange genome by bioinformatics analysis. Based
on the assessment of Pfam and CDD, these eight TPS proteins contained two conserved
domains—an N-terminal TPS domain (Glyco_transf 20; Pfam: PF00982) and a C-terminal TPP
domain (Trehalose PPase; Pfam: PF02358) (Table 2). These results confirmed that the eight
genes belonged to the 7PS gene family. The 7PS genes were named CisTPSI-CisTPS8
according to chromosome position (Fig. 1). Furthermore, CisTPS2—CisTPS5 proteins contained
an extra Hydrolase 3 domain (Pfam: PF08282).

CisTPS genes were distributed on five chromosomes, i.e., three on chromosome 2, two on
chromosome 5, and one on chromosomes 3, 4, and 7 (Fig. 1). The genes were mostly located at
the proximal ends of chromosomes. No obvious correlation was observed between chromosome
length and number of CisTPS genes based on their distribution on chromosomes.
Physicochemical properties analysis revealed that the size of CisTPS proteins was highly
variable from 831 (CisTPS3) to 942 amino acids (CisTPS1), and MW was between 94.24 KDa
and 106.78 KDa. pl ranged from 5.59 (CisTPS3) to 6.38 (CisTPS7). GRAVY was predicted
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from —0.392 (CisTPS7) to —0.132 (CisTPS4). Subcellular prediction of these CisTPS genes
indicated their localization in the chloroplast and cytoplasm (Table 2).

Analysis of the secondary structure content in CisTPS proteins showed that these proteins
consisted of alpha helix, beta turn, random coil, and extended strand (Table 3).

To better understand the evolutionary mechanism of sweet orange 7PS family, a collinear
relationship diagram of sweet orange, A. thaliana and rice was constructed. Ten pairs of
orthologous genes were found between sweet orange and A4. thaliana, and six between sweet
orange and rice (Fig. 2). Furthermore, the orthologous genes of CisTPS2, CisTPS5 and CisTPS6
were detected in both dicotyledon (4. thaliana) and monocotyledon (rice) (Fig. 2), indicating the
three genes may be highly conserved. The Ka /Ks ratios of all orthologous genes between
watermelon and A. thaliana were less than 1(Table S1), suggesting purifying selection had acted
upon these orthologous genes.

Phylogenetic analysis of CisTPS gene family

To determine the evolutionary relationship of 7PS genes among various species, a phylogenetic
tree was constructed by the NJ method based on the TPS protein amino acid sequences from 4.
thaliana, rice, and sweet orange. CisTPS genes were classified into two subfamilies, Class I and
Class II, as shown in the previous studies in A. thaliana and rice (Fig. 3) (Blazquez et al., 1998;
Vogel et al., 2001; Zang et al., 2011). CisTPS1 and CisTPS7 belonged to Class I, and the other
genes belonged to Class II.

Most CisTPS and AtTPS genes clustered together, suggesting that CisTPS genes were closely
related to AtTPS genes. For example, CisTPS7 and A¢tTPS1, CisTPS4 and AtTPSS5, CisTPS3 and
AtTPS6, and CisTPS5 and AtTPS11 clustered together.

Structure analysis of CisTPS genes

To better understand the molecular characteristics of CisTPS genes, the gene structures such as
exons, introns, and conserved motifs were analyzed. In Class I, CisTPSI and CisTPS7 contained
18 and 17 exons, and 17 and 16 introns, respectively. However, in Class II, CisTPS3 and
CisTPS6 possessed 4 exons and 3 introns, whereas all other genes contained 3 exons and 2
introns (Fig. 4, B). The results indicated that functional diversity of closely related 7PS genes
might be caused by the gain and loss of exons in the course of evolution of the 7PS gene family.
In addition, 20 distinct conserved motifs were searched using the MEME website. The lengths of
these conserved motifs ranged from 15 to 50 amino acids (Table S2). Members (CisTPS! and
CisTPS?7) of Class I all harbored 15 motifs, which lacked motif 8, 10, 15, 19, and 20. Members
of Class II contained all 20 motifs, except for CisTPS5, which contained 19 motifs but lacked
motif 20 (Fig. 4, C). The results of the structure analysis confirmed the reliability of the
phylogenetic tree (Fig. 4, A), suggesting functional differences between Class I and II.

Cis-acting elements of CisTPS genes

By analyzing the 2000-bp region upstream of the transcription start site, 70 types of cis-acting
elements were discovered in the promoter regions of CisTPS genes (Table S3). Among these, 7
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types of cis-acting elements were related to abiotic stress and 9 types of cis-acting elements were
related to phytohormone responses. In abiotic stress-related elements, ARE (an anaerobic
induction element) and MBS (a drought-inducible element) were mainly found in the promoter
regions of CisTPS genes. Phytohormone-responsive elements, including ABRE (ABA-
responsive element), CGTCA-motif (methyl jasmonic acid [MeJA]-responsive element),
TGACG-motif (MeJA-responsive element), and TGA-element (auxin-responsive element), were
observed in most CisTPS genes. A total of 126 cis-elements related to light were recognized on
the promoters, and each promoter harbored at least 9 light-responsive elements (Fig. 5). In
addition, the CAAT-box and TATA-box, which are considered the core and common promoter
elements, were found in the promoter regions of all CisTPS genes. CisTPS genes played essential
roles in response to abiotic stresses, phytohormones, and light.

Expression analysis of CisTPS genes in different tissues

To determine the specificity of TPS gene expression in sweet orange, CisTPS gene expression in
roots, stems, and leaves was quantified using qRT-PCR. All CisTPS genes were expressed in
roots, stems, and leaves, and the expression levels of most CisTPS genes were lower in leaves
than in other tissues. CisTPS2, CisTPS3, CisTPS4, CisTPS6, CisTPS7 and CisTPS8 were highly
expressed in roots, whereas CisTPSI and CisTPS5 were highly expressed in stems (Fig. 6).

Expression analysis of CisTPS genes under phytohormone treatment

TPS proteins are involved in the differential regulation of gene expression. To understand the
potential roles of CisTPS genes, we measured their expression characteristics in sweet orange
seedlings after phytohormone treatment. Under ABA treatment, the expression of Cis7PS3 and
CisTPS7 was slightly upregulated at 24 and 6 h, respectively. CisTPS4 was upregulated and
peaked at 6 h, declined to its lowest expression level at 12 h, and recovered to an intermediate
level at 24 h. CisTPS5 and CisTPSS were slightly downregulated, with the lowest expression at
12 and 24 h, respectively. Under IAA treatment, CisTPS2 and CisTPS7 were upregulated at 6
and 12 h, respectively, CisTPS3 at 12 h, and CisTPS8 at 6 h, whereas CisTPS4 was slightly
inhibited at 24 h (Fig. 7).

Expression analysis of CisTPS genes under abiotic treatment

We also examined the expression of CisTPS genes in response to various abiotic stresses, and
qRT-PCR was used to calculate the expression patterns under different treatment conditions.
Under NaCl treatment, CisTPS2 and CisTPS3 were significantly induced at 12 h. However,
CisTPS7 was significantly upregulated at 12 h and slightly repressed at 24 h. Under PEG-6000,
CisTPS1 showed strong expression at 6 h, and returned to normal levels after 6 h. At 24 h,
CisTPS?2 expression was slightly suppressed, whereas CisTPS3 and CisTPS7 expression was
slightly increased. CisTPS2, CisTPS3, CisTPS4, and CisTPS7 were upregulated at low
temperature; CisTPS2 and CisTPS7 were strongly expressed at both 12 and 24 h. CisTPS!I and
CisTPS4 were significantly upregulated at 12 and 6 h at 40 °C treatment conditions, respectively.
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CisTPS7 was slightly induced by high temperature at 6 h (Fig. 8).

Discussion

TPS genes play important roles in plant growth, development, and response to biotic and abiotic
stresses (Eastmond et al., 2002; vanDijken, Schluepmann & Smeekens, 2004; Gomez, Baud &
Gtaham, 2005; Li et al., 2011). Therefore, the 7PS gene family has received more attention and
has been identified in many plants. In this study, eight 7PS genes were identified from the sweet
orange genome. All the CisTPS proteins contained both a TPS domain at the N-terminus and a
TPP domain at the C-terminus, indicating that the structures of the two domains might be formed
before the differentiation of these members and is essential for 7PS functions. Our results were
consistent with research in 4. thaliana, pepper, and apple (Yang et al., 2012; Wei et al., 2016; Du
et al., 2017). While the TPP domain is missing in cotton GrTPS6, GhTPS4, and GhTPS9Y genes
(Mu et al., 2016), perhaps due to evolution. The number of 7PS genes varies greatly among
species. For example, there are 53 TPS genes in cotton, 31 in Brassica napus, 15 in cabbage, 14
in Chinese cabbage, 12 in winter wheat, 11 in 4. thaliana, and 7 in grapevine (Leyman, Dijck &
Thevelein, 2001; Xie et al., 2015; Mu et al., 2016; Morabito, Secchi & Schubert 2021; Zhou et
al., 2021). These results indicated that the 7PS gene family was not conserved in different
species.

Eight TPS genes from sweet orange were divided into two subfamilies based on the amino acid
sequences, as previously observed in 4. thaliana and rice (Leyman, Dijck & Thevelein, 2001;
Zang et al., 2011). CisTPS1 and CisTPS7 belonged to Class I, whereas the remaining six genes
(CisTPS2, CisTPS3, CisTPS4, CisTPS5, CisTPS6, and CisTPS8) belonged to Class II. AtTPS
proteins of Class I encoding catalytically active enzymes showed TPS activity (Blazquez et al.,
1998; Vandesteene et al., 2010), indicating the TPS activity of CisTPS1 and CisTPS7.
Furthermore, CisTPS7 and A¢tTPSI clustered together, implying that Cis7TPS7 might have
functions similar to A¢TPS! and plays a crucial role in sweet orange growth, development, and
stress response. Although the A¢TPS genes of Class Il lacked TPS and TPP activities, they were
preserved under evolutionary selection pressure and differed in tissue and expression rate,
suggesting that they had particular functions (Zang et al., 2011). However, the activities and
functions of most Class II members remain uncertain.

Exon—intron diversification plays a major role in diverse gene family evolution (Qi et al., 2020).
Past studies have shown that the 7PS genes in Class I mainly contained 16 introns and those in
Class II mostly harbored 2 introns (Yang et al., 2012). Class I genes in sweet orange contained
16—17 introns, and Class II genes had 2 introns except for CisTPS3 and CisTPS6. Based on the
analysis of the CisTPS gene structure, the number of exons and introns of Class I genes was
pronouncedly higher than that of Class II, and almost the same number of exons and introns was
present in the same class. Class I and II genes experienced distinct selection pressures and
evolutionary processes, and Class II genes lost some introns because of strong selective pressure
during evolution (Zhaxybayeva & Gogarten, 2003). Moreover, the results showed that gene
evolution was consistent with conservation in gene family structure, as it did for A. thaliana,
rice, and winter wheat (Lunn, 2007; Zang et al., 2011; Xie et al., 2015).
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Motif analysis showed that 20 dissimilar conserved motifs were obtained in the CisTPS gene
family. In Class I, both CisTPS1 and CisTPS7 had 15 motifs and lacked motif 8, 10, 15, 18, 19,
and 20. In Class I, four CisTPS genes contained all 20 motifs, but CisTPS5 was deficient in
motif 18 and 20, and CisTPS6 lacked motif 18. Thus, 15 motifs were observed in all CisTPS
genes. Therefore, the 15 motifs may be crucial for Cis // S genes to maintain their structure and
function. In addition, gene sequences closer in the phylogenetic tree showed highly similar
motifs.

Cis-acting elements control gene expression by combining with activated transcription factors
when plants were under stress (Hadiarto & Tran, 2011). In the promoter regions of CisTPS
genes, the cis-acting elements were related to environmental stress (light, oxygen concentration,
temperature, drought, and wounding) and exogenous phytohormones (salicylic acid, ABA,
MelJA, auxin, and gibberellin). These elements were found in Populus and cucumber (Gao et al.,
2021; Dan et al., 2021), suggesting that 7PS genes regulate stress, phytohormone, and light
responses.

The gene expression difference in different tissues may explain their vital roles in specific
tissues. CisTPS genes were detected in roots, leaves, and stems, and these results were in
agreement with the results of cucumber and Medicago truncatula (Dan et al., 2021, Song et al.,
2021). The expression of CisTPS2, CisTPS3, CisTPS4, CisTPS6, and CisTPS7 was the highest in
roots and that of CisTPS1 and CisTPS5 was the highest in stems. Based on the results, CisTPS2,
CisTPS3, CisTPS4, CisTPS6, and CisTPS7 may be involved in root development, whereas
CisTPS1 and CisTPS5 may mediate stem development.

Trehalose is important for higher plants to preserve bioactive substances and cell structures when
faced with damaging environmental stresses (Garg et al., 2002; Jang et al., 2003). Consequently,
the expression level of 7PS genes from some plants has been tested under different stress
conditions (Iordachescu & Imai, 2008; Xie et al., 2015; Mu et al., 2016; Morabito, Secchi &
Schubert 2021; Song et al., 2021). In this research, CisTPS7 responded to every treatment,
especially to TAA, salt, and low temperature treatment. Based on the phylogenetic analysis, we
have found that the CisTPS7 gene corresponds to the A¢tTPSI gene. A. thaliana seedlings
overexpressing AtTPS1 displayed dehydration tolerance and ABA-insensitive phenotypes
(Avonce et al., 2004). OsTPS1 overexpression in rice conferred seedling tolerance to cold, salt,
and drought stresses (Li et al. 2011). Transgenic potato plants of the 7PS/ gene from
Saccharomyces cerevisiae clearly increased drought resistance (Yeo et al., 2000). For that
reason, we assert that CisTPS7 plays a valuable role in sweet orange stress resistance. In
addition, the Class I members in red algae were significantly upregulated under high temperature
and desiccation (Sun et al., 2019). In agreement with the results, the expression of Class I genes
(CisTPS1 and CisTPS7) increased in response to drought and high temperature stresses.

The Class II members reveal different expression patterns under various stresses. Overexpression
of Class II OsTPS genes enhanced rice tolerance to abiotic stress (Li et al., 2011). The transcript
level of AtTPS5, a negative regulator in ABA signal transduction, was elevated during heat stress

(Suzuki et al., 2008; Tian et al., 2019). CisTPS4 corresponding to AtTPS5 responded to ABA,
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IAA, and cold and heat stresses. AtTPS7 expression increased under salt stress (Renault et al.,
2013). CisTPS2, homologous with A¢TPS7, was strongly induced by salt stress and low
temperature. AtTPS9 was significantly upregulated by treatment conditions such as ABA, salt,
drought, and high temperature (Suzuki et al., 2008). However, CisTPS§ in sweet orange was the
most homologous to AtTPS9, and it was only slightly induced by phytohormone (ABA and [AA)
stresses. Furthermore, CisTPS3 was observed to be induced by multiple stresses, such as ABA,
TAA, salt, drought and cold, whereas CisTPS5 was only repressed by ABA. In sweet orange,
CisTPS6 showed no response to various treatment conditions, which also existed in the soybean
TPS gene family (Xie, Wang & Huang, 2014).

Conclusions

To understand more about the 7PS gene family in C. sinensis, eight CisTPS genes were
identified from the sweet orange genome in this study. The CisTPS genes were located on five
chromosomes and were divided into two subfamilies—Class I and II. CisTPS genes were similar
to A¢tTPS genes in their conserved domain and gene structure. In addition, most CisTPS genes
responded to phytohormones and abiotic stresses, and six CisTPS genes were even controlled by
multiple stresses. The results indicated that CisTPS genes were required for the response to
phytohormones and abiotic stresses in sweet orange. Our findings provide basic resources for
further studies of the functions of the 7PS gene family on stress-resistance, growth, and

development in sweet orange.
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Figure 1

Chromosomal distribution of CisTPS genes.

Chr2 Chr3 Chr4
-0 Mb

) e CisTPSS
L 4 Mb CisTPS1 CisTPS2

I 8 Mb
12 Mb
F 16 Mb  CisTPS3 CisTPS4
=20 Mb
I 24 Mb
[ 28 Mb
32 Mb

I 36 Mb

40 Mb

Peer] reviewing PDF | (2022:04:72433:0:0:NEW 9 May 2022)

Manuscript to be reviewed

Chr5 Chr7

CisTPS6
CisTPS8

CisTPS7


Realce

Nota
Improve the description of the figure.


PeerJ Manuscript to be reviewed

Figure 2

Collinearity analysis of Arabidopsis , sweet orang and rice.
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Phylogenetic analysis of TPS gene family in Arabidopsis, rice and sweet orange.
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Figure 4

Phylogenetic analysis (A), motif compositions (B), and gene structures (C) of TPS genes
in sweet orange.
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Figure 5

Distribution of cis-elements in CisTPS genes.
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Figure 6

Expression levels of CisTPS genes in root, leaf, and stem.

Values are means = SEM of three biological replicates.
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Figure 7

Expression of CisTPS genes induced by phytohormones.

Values are means = SEM of three biological replicates. Asterisks indicate statistical

significance determined by Student’s t-test (*P < 0.05, **P < 0.01).
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Figure 8

Expression of CisTPS genes induced by abiotic stresses.

Values are means = SEM of three biological replicates. Asterisks indicate statistical

significance determined by Student’s t-test (*P < 0.05, **P < 0.01).
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Table 1l(on next page)

Primers used for qRT-PCR.
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Gene name  Primer name Sequence (5'-3")
FBOX boxF TTGGAAACTCTTTCGCCACT
boxR CAGCAACAAAATACCCGTCT
CisTPS1 IF TTAGGAGGGGTGAGGACTCG
IR CCAGCCCAACCAATCCATCT
CisTPS2 2F GACGTTGTTGGGGAATTGGC
2R TGGGGCATGACAGTTCCATC
CisTPS3 3F CACGGCATTTCTTGTCCTGC
3R AAACCTTTGCCTCCGTTCCA
CisTPS4 4F TGGGGCCATTCGAGTAAACC
4R GCAAAAAGCTACGAGCCCAG
CisTPS5 SF GATTGTTGCTTTGGGGCCTG
SR GTGGCATCACAGTCCCATCA
CisTPS6 6F GGCATCAGTGTGTCCACGTA
6R TGCATCAGCTACGGCATCAA
CisTPS7 7F ACATTTGCTGGTCGGAAGGT
7R GCAAAACAACTTTGCCACGC
CisTPSS8 8F TCTCCTCGGACACTGAGGTT
8R GGTAGAAAGGTCGGCACACA
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Table 2(on next page)

Summary of CisTPS genes.
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Gene  Gene ID Chromosome location TPS domain TPP domain ORF/aa MW/KD PI ~GRAVY Location
location location

CisTPS1 XM_006467507.3 Chr2: 2018989-2028927 105-572 616-850 942 106.78 6.29 -0.333  Chloroplast
CisTPS2 XM_006467546.3 Chr2: 2235199-2239556 61-546 595-830 856 96.24 596 -0.202  Chloroplast
CisTPS3 XM _015527352.2 Chr2: 14383332-14388004 60-528 577-812 831 9424 559 -0.186 Cytoplasm
CisTPS4 XM_006471525.3 Chr3: 13930419-13936240 59-547 596-831 863 96.62  5.60 -0.132  Cytoplasm
CisTPS5 XM_006474056.3 Chr4: 1295233-1298512 51-540 589-824 854 96.54  5.73 -0.238 Cytoplasm
CisTPS6 XM_006476690.3 Chr5: 3082065-3088262 59-546 583-818 832 9455  6.11 -0.199 Cytoplasm
CisTPS7 XM_006477757.3 Chr5: 10415267-10433927 94-561 605-838 937 105.65 6.38 -0.392 Cytoplasm
CisTPS8 XM_006483756.3 Chr7: 5247964-5251328 59-546 595-830 861 96.81  6.01 -0.208 Cytoplasm
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Table 3(on next page)

Secondary structures of CisTPS proteins
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Protein Alpha helix (%) Beta turn (%) Random coil (%) Extended strand (%)

CisTPS1 42.68 6.05 36.94 14.33
CisTPS2 42.21 4.67 36.33 16.59
CisTPS3 45.01 5.05 32.85 17.09
CisTPS4 42.53 4.87 36.04 16.57
CisTPSS 42.39 5.39 35.25 16.98
CisTPS6 42.67 4.93 35.10 17.31
CisTPS7 43.44 5.12 37.78 13.66
CisTPS8 43.09 4.88 34.61 17.42
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