Genome-wide identification of the trehalose-6phosphate synthase gene family in sweet orange (*Citrus sinensis*) and expression analysis in response to phytohormones and abiotic stresses (#72433)

First submission

Guidance from your Editor

Please submit by 7 Jun 2022 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

8 Figure file(s)

6 Table file(s)

2 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Genome-wide identification of the trehalose-6-phosphate synthase gene family in sweet orange (*Citrus sinensis*) and expression analysis in response to phytohormones and abiotic stresses

Kehong Liu Corresp., 1, 2, Yan Zhou Corresp., 1, 2

Corresponding Author: Kehong Liu Email address: liukehong@cric.cn

Background: Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing trehalose and is a significant regulator of plant development and stress response. Sweet orange (*Citrus sinensis*) is an economically important fruit tree crop and a common transgenic material. At present, little information is available about the *TPS* gene family in sweet orange.

Methods: The *TPS* gene family were identified from sweet orange genome by bioinformatics analysis. Additionally, the expression of *CisTPS* genes was analyzed under phytohormones and abiotic stresses by quantitative real-time PCR (qRT-PCR).

Results: Here, eight *TPS* genes were identified and were found to be randomly distributed in five sweet orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were observed in all CisTPS proteins. The phylogenetic tree showed that *CisTPS* genes were divided into two subfamilies, and genes in each subfamily had conserved intron structures and motif compositions. The *cis*-acting elements of *CisTPS* genes suggested their roles in phytohormone and stress responses. All *CisTPS* genes were ubiquitously expressed in roots, leaves, and stems, and six members were highly expressed in roots. Expression profiles showed that *CisTPS* genes exhibited tissue specificity and were differentially expressed in response to phytohormones and abiotic stresses. This study lays a foundation for revealing the functions of the *TPS* gene family in trehalose regulation in sweet orange, and provides a valuable reference for this gene family in other plants.

 $^{^{}m 1}$ Citrus Research Institute, Southwest University, Chongqing, China

² National Citrus Engineering Research Center, Chongqing, China

- 1 Genome-wide identification of the trehalose-6-phosphate
- 2 synthase gene family in sweet orange (Citrus sinensis) and
- 3 expression analysis in response to phytohormones and abiotic
- 4 stresses
- 5 Kehong Liu¹, Yan Zhou¹
- 6 ¹ National Citrus Engineering Research Center, Citrus Research Institute, Southwest University,
- 7 Chongqing, China

9 Corresponding Author:

10 Kehong Liu¹

8

- 11 #15 Citrus Village, Xiema Town, Beibei District, Chongqing, 400712, P. R. China
- 12 Email address: liukehong@cric.cn

Genome-wide identification of the trehalose-6-phosphate synthase gene family in 13 sweet orange (Citrus sinensis) and expression analysis in response to 14 phytohormones and abiotic stresses 15 16 17 Kehong Liu¹, Yan Zhou¹ 18 ¹ National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, 19 Chongqing, China 20 21 Corresponding Author: 22 Kehong Liu¹ 23 #15 Citrus Village, Xiema Town, Beibei District, Chongqing, 400712, P. R. China 24 25 Email address: liukehong@cric.cn 26 **Abstract** 27 **Background:** Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing 28 trehalose and is a significant regulator of plant development and stress response. Sweet orange 29 30 (Citrus sinensis) is an economically important fruit tree crop and a common transgenic material. At present, little information is available about the *TPS* gene family in sweet orange. 31 32 **Methods:** The *TPS* gene family were identified from sweet orange genome by bioinformatics analysis. Additionally, the expression of CisTPS genes was analyzed under phytohormones and 33 abiotic stresses by quantitative real-time PCR (qRT-PCR). 34 **Results:** Here, eight *TPS* genes were identified and were found to be randomly distributed in five 35 sweet orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were 36 observed in all CisTPS proteins. The phylogenetic tree showed that CisTPS genes were divided 37 into two subfamilies, and genes in each subfamily had conserved intron structures and motif 38 compositions. The *cis*-acting elements of *CisTPS* genes suggested their roles in phytohormone 39 40 and stress responses. All CisTPS genes were ubiquitously expressed in roots, leaves, and stems, and six members were highly expressed in roots. Expression profiles showed that CisTPS genes 41 exhibited tissue specificity and were differentially expressed in response to phytohormones and 42 abiotic stresses. This study lays a foundation for revealing the functions of the TPS gene family 43 44 in trehalose regulation in sweet orange, and provides a valuable reference for this gene family in other plants. 45

Introduction

46

47

48 Trehalose is a non-reducing disaccharide composed of two glucose units connected by an

- alpha, alpha-1,1-glycosidic linkage (Elbein et al., 2003; Bansal et al., 2013), and widely found in
- 50 bacteria, fungi, slime molds, protozoa, invertebrates, and higher plants (Becker et al., 1996;
- Bansal et al., 2013; Lunn et al., 2014; Tang et al., 2018). Trehalose per abolism is involved in
- 52 growth, development, and abiotic stress response in higher plants (Elbein et al., 2003; Jang et al.,
- 53 2003; Pampurova et al., 2014).
- Thus far, five trehalose biosynthetic pathways have been identified, including trehalose-6-
- 55 phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP), TreY/TreZ, TreS, TreP, and
- 56 TreT pathways; however, only the TPS/TPP pathway is found in higher plants (Avonce et al.,
- 57 2006; Paul et al., 2008; Lunn et al., 2014). The TPS/TPP pathway involves a two-step reaction.
- First, catalyzed by TPS, trehalose-6-phosphate (T6P) is produced from UDP glucose and
- 59 glucose-6-phosphate. Second, catalyzed by TPP, T6P is converted to trehalose (Cabib & Leloir,
- 60 1958; Goddijn & van Dun, 1999). Thus, TPS is an essential enzyme for trehalose synthesis in the
- 61 TPS/TPP pathway.
- 62 In higher plants, the TPS gene family is divided into two distinct classes—Class I and II (Lunn,
- 63 2007), which differ in gene expression pattern, enzyme activity, and physiological function (Ping
- et al., 2019). Only Class I members encoding catalytically active enzymes have TPS activity
- 65 (Blázquez et al., 1998; Vandesteene et al., 2010), whereas Class II members lack TPS and TPP
- activity and their functions remain unclear (Ramon et al., 2009; Lunn et al., 2014). The TPS gene
- family is a small gene family, where the number of members varies among species (Wei et al.,
- 68 2016). For example, there are 11 members in *Arabidopsis thaliana*, rice, and pepper (Leyman,
- 69 Dijck & Thevelein, 2001; Zang et al., 2011; Wei et al., 2016), 12 in winter wheat and poplar
- 70 (Yang et al., 2012; Xie et al., 2015), and 7 in grapevine and cucumber (Dan et al., 2021;
- 71 Morabito, Secchi & Schubert 2021). Most TPS proteins contain both conserved TPS and TPP
- domains, and a few TPS proteins only contain the TPS domain (Yang et al., 2012; Lin et al.,
- 73 2018; Sun, Chen & Tao, 2021).
- 74 The TPS gene family also plays a vital role in plant embryo development, flower induction,
- 75 senescence regulation, seed filling, and biotic and abiotic stress tolerance in plants (Gómez et al.,
- 76 2010; Wingler et al., 2012; Wahl et al., 2013; Kumar et al., 2019; Zhao et al., 2019). For
- 77 instance, the AtTPS1 gene is a regulator of glucose, abscisic acid (ABA), and stress signaling
- 78 (Avonce et al., 2004). The AtTPS1 null mutant showed arrested embryo development, hindered
- vegetative growth, and delayed flowering (Eastmond et al., 2002; Gómez, Baud & Gtaham,
- 80 2005; Gómez et al., 2010). AtTPSI overexpression can enhance drought resistance in A. thaliana
- 81 (Avonce et al., 2004). Overexpressing the gene encoding the bifunctional fusion of TPS and TPP
- 82 genes from Escherichia coli in transgenic tomato plants improved drought and salt resistance and
- photosynthetic rates (Lyu et al., 2013).
- 84 OsTPS1 overexpression enhanced tolerance to stresses such as salt, drought, and low temperature

- in transgenic rice by increasing the trehalose and proline content and regulating the expression of
- stress-related genes. Furthermore, *OsTPS1*-overexpressed transgenic rice did not cause any clear
- phenotypic changes (Li et al., 2011). SITPSI of Selaginella lepidophylla is involved in the
- response to heat and salinity by enhancing T6P biosynthesis (Zentella et al., 1999). AtTPS5
- participates in the regulation of heat shock response by interacting with MBF1c and is a negative
- 90 regulator in ABA signal transduction (Suzuki et al., 2008; Tian et al., 2019). AtTPS6 can control
- 91 plant architecture, epidermal pavement cell shape, and trichome branching (Chary et al., 2008).
- 92 Sweet orange (Citrus sinensis) is an economically important fruit tree crop and a common
- 93 transgenic material. The TPS gene family has been functionally and phylogenetically
- 95 (rice, cotton, potato, and soybean) (Zang et al., 2011; Xie, Wang & Huang, 2014; Mu et al.,
- 2016; Xu et al., 2017), horticultural plants (tree peony and petunia) (Dong et al., 2019; Sun,
- 97 Chen & Tao, 2021), and woody plants (poplar and apple) (Yang et al., 2012; Du et al., 2017).
- However, information about the TPS gene family in sweet orange is scarce. In this study, we
- 99 predicted the TPS genes in sweet orange based on sweet orange genomic sequences, and
- analyzed the gene structure, chromosomal location, motif distribution, phylogenetic relationship,
- and expression patterns by bioinformatics methods. These findings lay a foundation for future
- research on the functions of *TPS* genes in sweet orange.

Materials & Methods

103

104

105

Identification of *TPS* gene family in sweet orange

- The candidate TPS protein sequences in sweet orange (C. sinensis) were downloaded from
- Phytozome v13 (https://phytozome-next.jgi.doe.gov) Then, the TPS (Glyco-transf-20, PF00982)
- and TPP (Trehalose PPase, PF02358) domains were predicted using the SMART website
- 109 (http://smart.embl-heidelberg.de) and the National Center for Biotechnology Information
- 110 Conserved Domain Database (NCBI-CDD; https://www.ncbi.nlm.nih.gov/cdd) (Lu et al., 2020;
- Letunic, Khedkar & Bork, 2021), and proteins lacking the TPS domain were removed.
- The TPS cDNA sequences were used as queries to search the C. sinensis genome database at
- NCBI to confirm the chromosome localization of TPS genes. The TPS genes were named based
- on their location on C. sinensis chromosomes, and their physical locations were visualized using
- MG2C v2.1 (http://mg2c.iask.in/mg2c v2.1). The basic information on CisTPS proteins,
- including molecular weight (MW), isoelectric point (pI), grand average of hydropathicity
- 117 (GRAVY), and subcellular locations were predicted using the Expasy
- (https://web.expasy.org/protparam/) and GenScript (https://www.genscript.com/wolf-psort.html)
- websites. The secondary structures of CisTPS proteins were predicted using the PRABI website
- 120 (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html). The collinearity and

121	selective evolutionary pressure of TPS genes were analyzed using the TBtools software (Chen et
122	al., 2020).
123	
124	Phylogenetic analyses
125	Based on previous studies, 22 protein sequences, including 11 AtTPS and 11 OsTPS protein
126	sequences, were downloaded from the NCBI database (http://www.ncbi.nlm.nih.gov) (Blazquez
127	et al., 1998; Vogel et al., 2001; Zang et al., 2011). Multiple alignments of CisTPS, AtTPS, and
128	OsTPS protein sequences were performed using ClustalW, and the neighbor-joining 7 IJ)
129	phylogenetic tree was constructed using MEGA-X with a 1000 bootstrap test.
130	
131	Gene structure and motif analyses
132	The gene structure of CisTPS genes was analyzed and visualized using GSDS v2.0
133	(http://gsds.gao-lab.org/) (Hu et al., 2015). The conserved motifs in the CisTPS proteins were
134	identified using MEME Suite v5.4.1 (https://meme-suite.org/meme/tools/meme) with the
135	parameter settings: number of repetitions = any and maximum number of motifs = 20 (Timothy
136	et al., 2009).
137	
138	Prediction of cis-acting elements
139	Using Phytozome v13 (https://phytozome-next.jgi.doe.gov), upstream sequences (2000 bp) of
140	CisTPS genes were extracted from the sweet orange genome as promoter sequences. PlantCARE
141	(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to predict the <i>cis</i> -acting
142	elements in the promoter sequences, and the results were illustrated with the TBtools software
143	(Lescot et al., 2002; Chen et al., 2020).
144	
145	Plant materials and treatment conditions
146	The outer and inner seed coats of the sweet orange seeds were removed, and sterilized seeds
147	were cultured in Murashige and Skoog (MS) solid medium in a light incubator (27 °C, 16 h
148	light/8 h dark) for 30 d. The culture seedlings were used as test materials. Roots, leaves, and
149	stems of seedlings were collected and stored at -80 °C to calculate the CisTPS gene expression
150	in different tissues.
151	Seedlings were transferred to an MS liquid medium and placed at 27 °C as control. For
152	temperature stress treatments, the seedlings in the MS liquid medium were placed at a high
153	temperature (40 °C) or a low temperature (4 °C). For phytohormone and abiotic stress
154	treatments, seedlings were transferred to an MS liquid medium containing 100 μM ABA, 50 μM
155	indole-3-acetic acid (IAA), 10% (w/v) polyethylene glycol (PEG-6000), and 150 mM NaCl, and
156	placed at 27 °C. Leaves were immediately frozen in liquid nitrogen and stored at -80 °C after

- each treatment at 0, 6, 12, and 24 h. Three independent biological replicates were performed, and
- the leaves of each sample were collected from a single seedling.

- Expression profile analysis
- The specific primers for detecting *CisTPS* genes were designed by Primer Premier v6.0, and
- 162 FBOX was the housekeeping gene used as an internal reference (Mafra et al., 2012). The primer
- sequences are listed in Table 1.
- The total RNA was extracted with TRIzol Reagent (Invitrogen, USA), and first-strand cDNA
- was synthesized with 1 µg of total RNA using All-In-One 5×RT MasterMix (Applied Biological
- Materials Inc., Canada). Total RNA extraction and cDNA synthesis were performed according to
- the manufacturers' instructions. The synthesized cDNA solution was diluted 10 times with
- distilled water, and the diluted cDNA was used as a template for quantitative polymerase chain
- reaction (qPCR). qPCR was performed with TB Green® Premix Ex Taq™ II kit (TaKaRa, China).
- 170 The qPCR reaction mixture consisted of 9 μL template cDNA, 0.5 μL each of 10 μM primers,
- and 10 μL SYBR Green Supermix. qPCR was performed for 3 min at 95 °C (1 cycle), followed
- by 10 s at 95 °C, 60 s at 60 °C (40 cycles). Each reaction was performed in technical triplicates.
- 173 Relative gene expression was calculated by the $2^{-\Delta\Delta Ct}$ method (Livak & Schmittgen, 2001).
- Standard error bars represent standard error of the mean (SEM). The expression of *CisTPS* genes
- in different tissues was normalized by that in roots (Dan et al., 2021). Statistical differences were
- analyzed with Student's *t*-test.

177178

Results

- 179 Genome-wide identification of *TPS* genes in sweet orange
- 180 Eight *TPS* genes were identified in the sweet orange genome by bioinformatics analysis. Based
- on the assessment of Pfam and CDD, these eight TPS proteins contained two conserved
- domains—an N-terminal TPS domain (Glyco transf 20; Pfam: PF00982) and a C-terminal TPP
- domain (Trehalose PPase; Pfam: PF02358) (Table 2). These results confirmed that the eight
- genes belonged to the *TPS* gene family. The *TPS* genes were named *CisTPS1–CisTPS8*
- according to chromosome position (Fig. 1). Furthermore, CisTPS2–CisTPS5 proteins contained
- an extra Hydrolase 3 domain (Pfam: PF08282).
- 187 CisTPS genes were distributed on five chromosomes, i.e., three on chromosome 2, two on
- chromosome 5, and one on chromosomes 3, 4, and 7 (Fig. 1). The genes were mostly located at
- the proximal ends of chromosomes. No obvious correlation was observed between chromosome
- length and number of *CisTPS* genes based on their distribution on chromosomes.
- 191 Physicochemical properties analysis revealed that the size of CisTPS proteins was highly
- variable from 831 (CisTPS3) to 942 amino acids (CisTPS1), and MW was between 94.24 KDa
- and 106.78 KDa. pI ranged from 5.59 (CisTPS3) to 6.38 (CisTPS7). GRAVY was predicted

- from -0.392 (CisTPS7) to -0.132 (CisTPS4). Subcellular prediction of these *CisTPS* genes
- indicated their localization in the chloroplast and cytoplasm (Table 2).
- Analysis of the secondary structure content in CisTPS proteins showed that these proteins
- consisted of alpha helix, beta turn, random coil, and extended strand (Table 3).
- To better understand the evolutionary mechanism of sweet orange TPS family, a collinear
- relationship diagram of sweet orange, A. thaliana and rice was constructed. Ten pairs of
- orthologous genes were found between sweet orange and A. thaliana, and six between sweet
- orange and rice (Fig. 2). Furthermore, the orthologous genes of CisTPS2, CisTPS5 and CisTPS6
- were detected in both dicotyledon (A. thaliana) and monocotyledon (rice) (Fig. 2), indicating the
- three genes may be highly conserved. The Ka /Ks ratios of all orthologous genes between
- watermelon and A. thaliana were less than 1(Table S1), suggesting purifying selection had acted
- 205 upon these orthologous genes.

Phylogenetic analysis of CisTPS gene family

- To determine the evolutionary relationship of *TPS* genes among various species, a phylogenetic
- tree was constructed by the NJ method based on the TPS protein amino acid sequences from A.
- 210 thaliana, rice, and sweet orange. CisTPS genes were classified into two subfamilies, Class I and
- Class II, as shown in the previous studies in A. thaliana and rice (Fig. 3) (Blázquez et al., 1998;
- Vogel et al., 2001; Zang et al., 2011). CisTPS1 and CisTPS7 belonged to Class I, and the other
- 213 genes belonged to Class II.
- 214 Most CisTPS and AtTPS genes clustered together, suggesting that CisTPS genes were closely
- related to AtTPS genes. For example, CisTPS7 and AtTPS1, CisTPS4 and AtTPS5, CisTPS3 and
- 216 AtTPS6, and CisTPS5 and AtTPS11 clustered together.

217218

Structure analysis of *CisTPS* genes

- To better understand the molecular characteristics of *CisTPS* genes, the gene structures such as
- exons, introns, and conserved motifs were analyzed. In Class I, CisTPS1 and CisTPS7 contained
- 221 18 and 17 exons, and 17 and 16 introns, respectively. However, in Class II, CisTPS3 and
- 222 CisTPS6 possessed 4 exons and 3 introns, whereas all other genes contained 3 exons and 2
- introns (Fig. 4, B). The results indicated that functional diversity of closely related *TPS* genes
- 224 might be caused by the gain and loss of exons in the course of evolution of the *TPS* gene family.
- 225 In addition, 20 distinct conserved motifs were searched using the MEME website. The lengths of
- 226 these conserved motifs ranged from 15 to 50 amino acids (Table S2). Members (CisTPS1 and
- 227 CisTPS7) of Class I all harbored 15 motifs, which lacked motif 8, 10, 15, 19, and 20. Members
- of Class II contained all 20 motifs, except for CisTPS5, which contained 19 motifs but lacked
- 229 motif 20 (Fig. 4, C). The results of the structure analysis confirmed the reliability of the
- phylogenetic tree (Fig. 4, A), suggesting functional differences between Class I and II.

231232

Cis-acting elements of CisTPS genes

- By analyzing the 2000-bp region upstream of the transcription start site, 70 types of *cis*-acting
- elements were discovered in the promoter regions of CisTPS genes (Table S3). Among these, 7

- 235 types of *cis*-acting elements were related to abiotic stress and 9 types of *cis*-acting elements were
- related to phytohormone responses. In abiotic stress-related elements, ARE (an anaerobic
- induction element) and MBS (a drought-inducible element) were mainly found in the promoter
- 238 regions of CisTPS genes. Phytohormone-responsive elements, including ABRE (ABA-
- responsive element), CGTCA-motif (methyl jasmonic acid [MeJA]-responsive element),
- 240 TGACG-motif (MeJA-responsive element), and TGA-element (auxin-responsive element), were
- observed in most CisTPS genes. A total of 126 cis-elements related to light were recognized on
- 242 the promoters, and each promoter harbored at least 9 light-responsive elements (Fig. 5). In
- 243 addition, the CAAT-box and TATA-box, which are considered the core and common promoter
- elements, were found in the promoter regions of all CisTPS genes. CisTPS genes played essential
- roles in response to abiotic stresses, phytohormones, and light.

Expression analysis of CisTPS genes in different tissues

- To determine the specificity of *TPS* gene expression in sweet orange, *CisTPS* gene expression in
- roots, stems, and leaves was quantified using qRT-PCR. All CisTPS genes were expressed in
- roots, stems, and leaves, and the expression levels of most CisTPS genes were lower in leaves
- 251 than in other tissues. CisTPS2, CisTPS3, CisTPS4, CisTPS6, CisTPS7 and CisTPS8 were highly
- expressed in roots, whereas *CisTPS1* and *CisTPS5* were highly expressed in stems (Fig. 6).

253254

Expression analysis of *CisTPS* genes under phytohormone treatment

- 255 TPS proteins are involved in the differential regulation of gene expression. To understand the
- potential roles of *CisTPS* genes, we measured their expression characteristics in sweet orange
- seedlings after phytohormone treatment. Under ABA treatment, the expression of CisTPS3 and
- 258 CisTPS7 was slightly upregulated at 24 and 6 h, respectively. CisTPS4 was upregulated and
- peaked at 6 h, declined to its lowest expression level at 12 h, and recovered to an intermediate
- level at 24 h. CisTPS5 and CisTPS8 were slightly downregulated, with the lowest expression at
- 12 and 24 h, respectively. Under IAA treatment, CisTPS2 and CisTPS7 were upregulated at 6
- and 12 h, respectively, CisTPS3 at 12 h, and CisTPS8 at 6 h, whereas CisTPS4 was slightly
- inhibited at 24 h (Fig. 7).

264265

Expression analysis of CisTPS genes under abiotic treatment

- We also examined the expression of CisTPS genes in response to various abiotic stresses, and
- qRT-PCR was used to calculate the expression patterns under different treatment conditions.
- Under NaCl treatment, CisTPS2 and CisTPS3 were significantly induced at 12 h. However,
- 269 CisTPS7 was significantly upregulated at 12 h and slightly repressed at 24 h. Under PEG-6000,
- 270 CisTPSI showed strong expression at 6 h, and returned to normal levels after 6 h. At 24 h,
- 271 CisTPS2 expression was slightly suppressed, whereas CisTPS3 and CisTPS7 expression was
- slightly increased. CisTPS2, CisTPS3, CisTPS4, and CisTPS7 were upregulated at low
- temperature; CisTPS2 and CisTPS7 were strongly expressed at both 12 and 24 h. CisTPS1 and
- 274 CisTPS4 were significantly upregulated at 12 and 6 h at 40 °C treatment conditions, respectively.

275 CisTPS7 was slightly induced by high temperature at 6 h (Fig. 8).

276277

Discussion

- 278 TPS genes play important roles in plant growth, development, and response to biotic and abiotic
- stresses (Eastmond et al., 2002; van Dijken, Schluepmann & Smeekens, 2004; Gómez, Baud &
- Gtaham, 2005; Li et al., 2011). Therefore, the TPS gene family has received more attention and
- has been identified in many plants. In this study, eight *TPS* genes were identified from the sweet
- orange genome. All the CisTPS proteins contained both a TPS domain at the N-terminus and a
- TPP domain at the C-terminus, indicating that the structures of the two domains might be formed
- before the differentiation of these members and is essential for TPS functions. Our results were
- consistent with research in A. thaliana, pepper, and apple (Yang et al., 2012; Wei et al., 2016; Du
- et al., 2017). While the TPP domain is missing in cotton *GrTPS6*, *GhTPS4*, and *GhTPS9* genes
- 287 (Mu et al., 2016), perhaps due to evolution. The number of *TPS* genes varies greatly among
- species. For example, there are 53 TPS genes in cotton, 31 in Brassica napus, 15 in cabbage, 14
- in Chinese cabbage, 12 in winter wheat, 11 in A. thaliana, and 7 in grapevine (Leyman, Dijck &
- Thevelein, 2001; Xie et al., 2015; Mu et al., 2016; Morabito, Secchi & Schubert 2021; Zhou et
- al., 2021). These results indicated that the TPS gene family was not conserved in different
- 292 species.
- 293 Eight TPS genes from sweet orange were divided into two subfamilies based on the amino acid
- sequences, as previously observed in A. thaliana and rice (Leyman, Dijck & Thevelein, 2001;
- Zang et al., 2011). CisTPS1 and CisTPS7 belonged to Class I, whereas the remaining six genes
- 296 (CisTPS2, CisTPS3, CisTPS4, CisTPS5, CisTPS6, and CisTPS8) belonged to Class II. AtTPS
- 297 proteins of Class I encoding catalytically active enzymes showed TPS activity (Blázquez et al.,
- 1998; Vandesteene et al., 2010), indicating the TPS activity of CisTPS1 and CisTPS7.
- 299 Furthermore, CisTPS7 and AtTPS1 clustered together, implying that CisTPS7 might have
- functions similar to AtTPS1 and plays a crucial role in sweet orange growth, development, and
- 301 stress response. Although the AtTPS genes of Class II lacked TPS and TPP activities, they were
- 302 preserved under evolutionary selection pressure and differed in tissue and expression rate,
- suggesting that they had particular functions (Zang et al., 2011). However, the activities and
- 304 functions of most Class II members remain uncertain.
- Exon-intron diversification plays a major role in diverse gene family evolution (Qi et al., 2020).
- Past studies have shown that the TPS genes in Class I mainly contained 16 introns and those in
- Class II mostly harbored 2 introns (Yang et al., 2012). Class I genes in sweet orange contained
- 308 16–17 introns, and Class II genes had 2 introns except for CisTPS3 and CisTPS6. Based on the
- analysis of the CisTPS gene structure, the number of exons and introns of Class I genes was
- pronouncedly higher than that of Class II, and almost the same number of exons and introns was
- 311 present in the same class. Class I and II genes experienced distinct selection pressures and
- evolutionary processes, and Class II genes lost some introns because of strong selective pressure
- during evolution (Zhaxybayeva & Gogarten, 2003). Moreover, the results showed that gene
- evolution was consistent with conservation in gene family structure, as it did for A. thaliana,
- 315 rice, and winter wheat (Lunn, 2007; Zang et al., 2011; Xie et al., 2015).

- Motif analysis showed that 20 dissimilar conserved motifs were obtained in the CisTPS gene 316
- family. In Class I, both CisTPS1 and CisTPS7 had 15 motifs and lacked motif 8, 10, 15, 18, 19, 317
- and 20. In Class II, four CisTPS genes contained all 20 motifs, but CisTPS5 was deficient in 318
- motif 18 and 20, and CisTPS6 lacked motif 18. Thus, 15 motifs were observed in all CisTPS 319
- 320 genes. Therefore, the 15 motifs may be crucial for Cis E S genes to maintain their structure and
- function. In addition, gene sequences closer in the phylogenetic tree showed highly similar 321
- motifs. 322
- Cis-acting elements control gene expression by combining with activated transcription factors 323
- when plants were under stress (Hadiarto & Tran, 2011). In the promoter regions of CisTPS 324
- genes, the *cis*-acting elements were related to environmental stress (light, oxygen concentration, 325
- 326 temperature, drought, and wounding) and exogenous phytohormones (salicylic acid, ABA,
- MeJA, auxin, and gibberellin). These elements were found in *Populus* and cucumber (Gao et al., 327
- 2021; Dan et al., 2021), suggesting that TPS genes regulate stress, phytohormone, and light 328
- responses. 329
- The gene expression difference in different tissues may explain their vital roles in specific 330
- tissues. CisTPS genes were detected in roots, leaves, and stems, and these results were in 331
- agreement with the results of cucumber and Medicago truncatula (Dan et al., 2021, Song et al., 332
- 333 2021). The expression of CisTPS2, CisTPS3, CisTPS4, CisTPS6, and CisTPS7 was the highest in
- roots and that of CisTPS1 and CisTPS5 was the highest in stems. Based on the results, CisTPS2, 334
- CisTPS4, CisTPS6, and CisTPS7 may be involved in root development, whereas 335
- CisTPS1 and CisTPS5 may mediate stem development. 336
- Trehalose is important for higher plants to preserve bioactive substances and cell structures when 337
- faced with damaging environmental stresses (Garg et al., 2002; Jang et al., 2003). Consequently, 338
- 339 the expression level of TPS genes from some plants has been tested under different stress
- conditions (Iordachescu & Imai, 2008; Xie et al., 2015; Mu et al., 2016; Morabito, Secchi & 340
- Schubert 2021; Song et al., 2021). In this research, CisTPS7 responded to every treatment, 341
- especially to IAA, salt, and low temperature treatment. Based on the phylogenetic analysis, we 342
- have found that the CisTPS7 gene corresponds to the AtTPS1 gene. A. thaliana seedlings 343
- overexpressing AtTPS1 displayed dehydration tolerance and ABA-insensitive phenotypes 344
- 345 (Avonce et al., 2004). OsTPSI overexpression in rice conferred seedling tolerance to cold, salt,
- and drought stresses (Li et al. 2011). Transgenic potato plants of the TPS1 gene from 346
- Saccharomyces cerevisiae clearly increased drought resistance (Yeo et al., 2000). For that 347
- reason, we assert that CisTPS7 plays a valuable role in sweet orange stress resistance. In 348
- addition, the Class I members in red algae were significantly upregulated under high temperature 349
- and desiccation (Sun et al., 2019). In agreement with the results, the expression of Class I genes 350
- 351 (CisTPS1 and CisTPS7) increased in response to drought and high temperature stresses.
- The Class II members reveal different expression patterns under various stresses. Overexpression 352
- of Class II OsTPS genes enhanced rice tolerance to abiotic stress (Li et al., 2011). The transcript 353
- level of AtTPS5, a negative regulator in ABA signal transduction, was elevated during heat stress 354
- (Suzuki et al., 2008; Tian et al., 2019). CisTPS4 corresponding to AtTPS5 responded to ABA, 355

- IAA, and cold and heat stresses. *AtTPS7* expression increased under salt stress (Renault et al., 2013). *CisTPS2*, homologous with *AtTPS7*, was strongly induced by salt stress and low
- 358 temperature. AtTPS9 was significantly upregulated by treatment conditions such as ABA, salt,
- drought, and high temperature (Suzuki et al., 2008). However, CisTPS8 in sweet orange was the
- most homologous to AtTPS9, and it was only slightly induced by phytohormone (ABA and IAA)
- stresses. Furthermore, *CisTPS3* was observed to be induced by multiple stresses, such as ABA,
- 362 IAA, salt, drought and cold, whereas CisTPS5 was only repressed by ABA. In sweet orange,
- 363 CisTPS6 showed no response to various treatment conditions, which also existed in the soybean
- 364 TPS gene family (Xie, Wang & Huang, 2014).

Conclusions

- To understand more about the TPS gene family in C. sinensis, eight CisTPS genes were
- identified from the sweet orange genome in this study. The CisTPS genes were located on five
- chromosomes and were divided into two subfamilies—Class I and II. CisTPS genes were similar
- 370 to AtTPS genes in their conserved domain and gene structure. In addition, most CisTPS genes
- responded to phytohormones and abiotic stresses, and six CisTPS genes were even controlled by
- multiple stresses. The results indicated that CisTPS genes were required for the response to
- 373 phytohormones and abiotic stresses in sweet orange. Our findings provide basic resources for
- further studies of the functions of the TPS gene family on stress-resistance, growth, and
- 375 development in sweet orange.

376377

Acknowledgements

- We would like to thank TopEdit (www.topeditsci.com) for linguistic assistance during the
- 379 preparation of this manuscript.

380 381

References

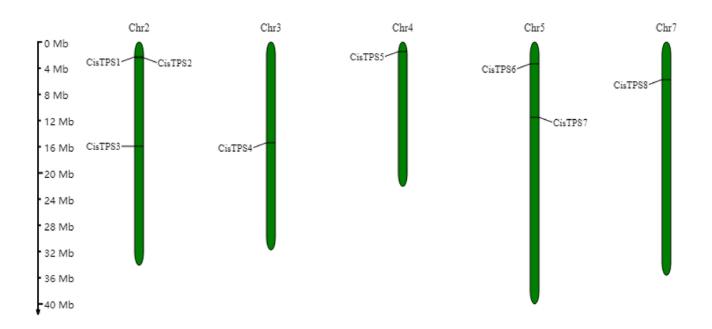
- Avonce N, Leyman B, Mascorro-Gallardo JO, Dijck PV, Thevelein JM, Iturriaga G. 2004. The
- Arabidopsis trehalose-6-P Synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and
- 384 stress signaling. *Plant Physiology* 136: 3649-3659 DOI: 10.1104/pp.104.052084.
- Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G. 2006. Insights on the evolution of
- trehalose biosynthesis. *BMC Evolutionary Biology* 19: 109 DOI: 10.1186/1471-2148-6-109.
- Bansal R, Mian MA, Mittapalli O, Michel AP. 2013. Molecular characterization and expression
- analysis of soluble trehalase gene in *Aphis glycines*, a migratory pest of soybean. *Bulletin of*
- 389 Entomological Research 103: 286-295 DOI: 10.1017/S0007485312000697.

- 390 Becker A, Schlöder P, Steele JE, Wegener C. 1996. The regulation of trehalose metabolism in
- 391 insects. Experientia 52: 433-439 DOI: 10.1007/BF01919312.
- 392 Blázquez MA, Santos E, Flores C, Martínez-Zapater JM, Salinas J, Gancedo C. 1998. Isolation
- and molecular characterization of the *Arabidopsis TPS1* gene, encoding trehalose-6-phosphate
- 394 synthase. *Plant Journal* 13: 685-689 DOI: 10.1046/j.1365-313x.1998.00063.x.
- Cabib E, Leloir LF. 1958. The biosynthesis of trehalose phosphate. *Journal of Biological*
- 396 *Chemistry* 231: 259-275 DOI: 10.1016/S0021-9258(19)77303-7.
- 397 Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV. 2008. Trehalose-6-phosphate
- 398 synthase/phosphatase regulates cell shape and plant architecture in *Arabidopsis*. *Plant*
- 399 *Physiology* 146: 97-107 DOI: 10.1104/pp.107.107441.
- 400 Chen JC, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R. 2020. TBtools: An
- 401 integrative toolkit developed for interactive analyses of big biological data. *Molecular Plant* 13:
- 402 1194-1202 DOI: 10.1016/j.molp.2020.06.009.
- Dan Y, Niu Y, Wang C, Yan M, Liao W. 2021. Genome-wide identification and expression
- analysis of the trehalose-6-phosphate synthase (TPS) gene family in cucumber (*Cucumis sativus*
- 405 *L.*). *PeerJ* 9: e11398 DOI: 10.7717/peerj.11398.
- 406 Dong LL, Liu TR, Wang Q, Liu N, Xiong F, Zhang SM. 2019. Identification of TPS family
- genes and expression analysis of *PhTPS1* in petunia. *Molecular Plant Breeding* 17: 3851-3858
- 408 DOI: 10.13271/j.mpb.017.003851.
- 409 Du LS, Qi DY, Ma JJ, Xing LB, Fan S, Zhang SW., Li YM., Shen YW., Zhang D, Han MY.
- 2017. Identification of *TPS* family members in apple (*Malus* x *domestica* Borkh.) and the effect
- of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry
- 412 120: 10-23 DOI: 10.1016/j.plaphy.2017.09.015.
- 413 Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD,
- Smeekens SC, Graham IA. 2002. Trehalose-6-phosphate synthase 1, which catalyses the first
- step in trehalos synthesis, is essential for *Arabidopsis* embryo maturation. *Plant Journal* 29: 225-
- 416 235 DOI: 10.1046/j.1365-313x.2002.01220.x.
- Elbein AD, Pan YT, Pastuszak I, Carroll D. 2003. New insights on trehalose: a multifunctional
- 418 molecule. *Glycobiology* 13: 17R-27R DOI: 10.1093/glycob/cwg047.
- 419 Gao YH, Yang XY, Yang X, Zhao TY, An XM, Chen Z. 2021. Characterization and expression
- pattern of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase gene

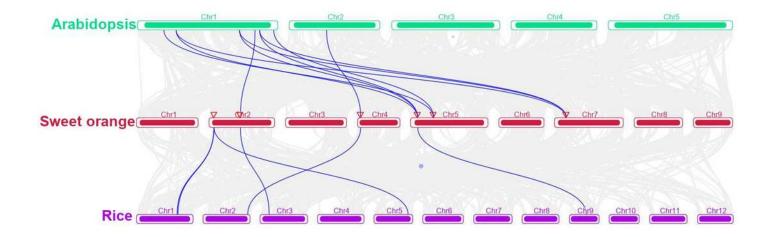
- families in *Populus*. *International Journal of Biological Macromolecules* 187: 9-23 DOI:
- 422 10.1016/j.ijbiomac.2021.07.096.
- 423 Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ. 2002. Trehalose
- accumulation in rice plants confers high tolerance levels to different abiotic stresses.
- 425 Proceedings of the National Academy of Sciences of the United States of America 99: 15898-
- 426 15903 DOI: 10.1073/pnas.252637799.
- Goddijn OJ, van Dun K. 1999. Trehalose metabolism in plants. Trends in Plant Science 4: 315-
- 428 319 DOI: 10.1016/s1360-1385(99)01446-6.
- Gómez LD, Baud S, Graham IA. 2005. The role of trehalose-6-phosphate synthase in
- 430 Arabidopsis embryo evelopment. Biochemical Society Transactions 33: 280-282 DOI:
- 431 10.1042/BST0330280.
- 432 Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA. 2010. AtTPS1-mediated trehalose 6-
- 433 phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to
- ABA in germinating seeds and stomatal guard cells. *Plant Journal* 64: 1-13 DOI:
- 435 10.1111/j.1365-313X.2010.04312.x.
- Hadiarto T, Tran LS. 2011. Progress studies of drought-responsive genes in rice. *Plant Cell*
- 437 Reports 30: 297-310 DOI: 10.1007/s00299-010-0956-z.
- 438 Iordachescu M, Imai R. 2008. Trehalose biosynthesis in response to abiotic stresses. *Journal of*
- 439 *Integrative Plant Biology* 50: 1223-1229 DOI: 10.1111/j.1744-7909.2008.00736.x.
- Hu B, Jin JP, An YG, He Z, Luo JC, Gao G. 2015. GSDS 2.0: an upgraded gene feature
- visualization server. *Bioinformatics* 31: 1296-1297 DOI: 10.1093/bioinformatics/btu817.
- Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH,
- 443 Kim JK. 2003. Expression of a bifunctional fusion of the *Escherichia coli* genes for trehalose-6-
- 444 phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases
- 445 trehalose accumulation and abiotic stress tolerance without stunting growth. *Plant Physiology*
- 446 131: 516-524 DOI: 10.1104/pp.007237.
- Kumar R, Bishop E, Bridges WC, Tharayil N, Sekhon RS. 2019. Sugar partitioning and source-
- sink interaction are key determinants of leaf senescence in maize. Plant Cell and Environment
- 449 42: 2597-2611 DOI: 10.1111/pce.13599.
- 450 Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in
- 451 2020. *Nucleic Acids Research* 49: D458-D460 DOI: 10.1093/nar/gku949.

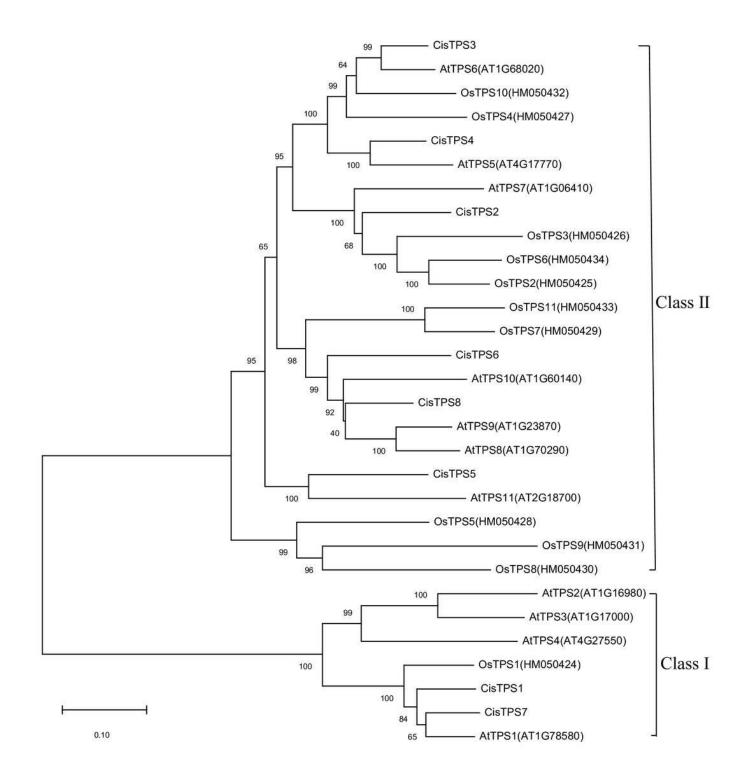
- Lescot M, Déhais P, Thijs G, March K, Moreau Y, Peer YVD, Rouzé P, Rombauts S. 2002.
- PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico
- analysis of promoter sequences. *Nucleic Acids Research* 30: 325-327 DOI:
- 455 10.1093/nar/30.1.325.
- Leyman B, Dijck PV, Thevelein JM. 2001. An unexpected plethora of trehalose biosynthesis
- 457 genes in Arabidopsis thaliana. Trends in Plant Science 6: 510-513 DOI: 10.1016/s1360-
- 458 1385(01)02125-2.
- Li HW, Zang BS, Deng XW, Wang XP. 2011. Overexpression of the trehalose-6-phosphate
- synthase gene *OsTPS1* enhances abiotic stress tolerance in rice. *Planta* 234: 1007-1018 DOI:
- 461 10.1007/s00425-011-1458-0.
- Lin MF, Jia RH, Li JC, Zhang MJ, Chen HB, Zhang D, Zhang JJ, Chen XY. 2018. Evolution and
- expression patterns of the trehalose-6-phosphate synthase gene family in drumstick tree
- 464 (Moringa oleifera Lam.). Planta 248: 999-1015 DOI: 10.1007/s00425-018-2945-3.
- Livak K, Schmittgen TD. 2001. Analysis of relative gene expression data using real time
- quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods* 25: 402-408 DOI: 10.1006/meth.2001.1262.
- Lunn JE. 2007. Gene families and evolution of trehalose metabolism in plants. *Functional Plant*
- 468 *Biology* 34: 550-563 DOI:10.1071/FP06315.
- Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. 2014. Trehalose metabolism in plants.
- 470 *Plant Journal* 79: 544-567 DOI: 10.1111/tpj.12509.
- 471 Lu SN, Wang JY, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI,
- 472 Marchler GH, Song JS, Thanki N, Yamashita RA, Yang MZ, Zhang DC, Zheng CJ, Lanczycki
- 473 CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: the conserved domain database in 2020. *Nucleic*
- 474 Acids Research 48: D265-D268 DOI: 10.1093/nar/gkz991.
- 475 Lyu JI, Min SR, Lee JH, Lim YH, Kim JK, Bae CH, Liu JR. 2013. Overexpression of a 6-
- phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during
- drought and salt stress without growth aberrations in tomato. *Plant Cell, Tiss and Organ* Culture
- 478 112: 257-262 DOI: 10.1007/s11240-012-0225-7.
- 479 Mafra V, Kubo KS, Vlves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM,
- 480 Machado MA. 2012. Reference gene for accurate transcript normalization in citrus genotypes
- under different experimental conditions. *PLoS One* 7: e31263 DOI:
- 482 10.1371/journal.pone.0031263.

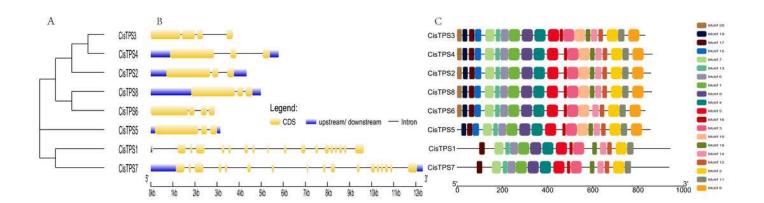
- 483 Morabito G, Secchi F, Schubert A. 2021. Grapevine TPS (trehalose-6-phosphate synthase)
- 484 family genes are differentially regulated during development, upon sugar treatment and drought
- stress. Plant Physiology and Biochemistry 164: 54-62 DOI: 10.1016/j.plaphy.2021.04.032.
- 486 Mu M, Lu XK, Wang JJ, Wang DL, Yin ZJ, Wang S, Fan WL, Ye WW. 2016. Genome-wide
- 487 identification and analysis of the stress-resistance function of the TPS (Trehalose-6-Phosphate
- 488 Synthase) gene family in cotton. *BMC Genetics* 17: 54 DOI: 10.1186/s12863-016-0360-y.
- Pampurova S, Verschooten K, Avonce N, Dijck PV. 2014. Functional screening of a cDNA
- 490 library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies
- 491 trehalose biosynthesis genes of plant and microbial origin. Journal of Plant Research 127: 803-
- 492 813 DOI: 10.1007/s10265-014-0663-x.
- Paul MJ, Primavesi LF, Jhurreea D, Zhang Y. 2008. Trehalose metabolism and signaling. *Annual*
- 494 Review of Plant Biology 59: 417-441 DOI: 10.1146/annurev.arplant.59.032607.092945.
- 495 Ping XK, Wang TY, Lin N, Di FF, Li YY, Jian HJ, Wang H, Lu K, Li JN, Xu XF, Liu LZ. 2019.
- 496 Genome-wide identification of the LAC gene family and its expression analysis under stress in
- 497 Brassica napus. Molecules 24: 1985 DOI: 10.3390/molecules24101985.
- 498 Qi LY, Chen L, Wang CS, Zhang SL, Yang YJ, Liu JL, Li DL, Song JK, Wang R. 2020.
- Characterization of the auxin efflux transporter PIN proteins in pear. *Plants* 9: 349 DOI:
- 500 10.3390/plants9030349.
- Ramon M, de Smet I, Vandesteene L, Naudts M, Leyman B, Dijck PV, Rolland F, Beeckman T,
- Thevelein JM. 2009. Extensive expression regulation and lack of heterologous enzymatic
- activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana. Plant, Cell and
- 504 Environment 32: 1015-1032 DOI: 10.1111/j.1365-3040.2009.01985.x.
- Song JB, Mao HY, Cheng J, Zhou Y, Chen RR, Zeng LM, Li H, Wang YH. 2021. Identification
- of the trehalose-6-phosphate synthase gene family in *Medicago truncatula* and expression
- analysis under abiotic stresses. *Gene* 787: 145641 DOI: 10.1016/j.gene.2021.145641.
- Sun J, Chen T, Tao J. 2021. Single molecule, full-length transcript sequencing provides insight
- into the *TPS* gene family in *Paeonia ostii*. *PeerJ* 9: e11808 DOI: 10.7717/peerj.11808.
- 510 Sun MX, Zhu ZJ, Chen JJ, Yang R, Luo QJ, Wu W, Yan XJ, Chen HM. 2019. Putative trehalose
- 511 biosynthesis proteins function as differential floridoside-6-phosphate synthases to participate in
- 512 the abiotic stress response in the red alga *Pyropia haitanensis*. *BMC Plant Biology* 19: 325 DOI:
- 513 10.1186/s12870-019-1928-2.


- Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R. 2008. The transcriptional co-activator
- 515 MBF1C is a key regulator of thermotolerance in Arabidopsis thaliana. Journal of Biological
- 516 *Chemistry* 283: 9269-9275 DOI: 10.1074/jbc.M709187200.
- Tang B, Wang S, Wang SG, Wang HJ, Zhang JY, Cui SY. 2018. Invertebrate trehalose-6-
- 518 phosphate synthase gene: genetic architecture, biochemistry, physiological function, and
- potential applications. Frontiers in Physiology 9: 30 DOI: 10.3389/fphys.2018.00030.
- Tian LF, Xie ZJ, Lu CQ, Hao XH, Wu S, Huang Y, Li DP, Chen LB. 2019. The trehalose-6-
- 521 phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana. Plant Cell
- 522 Reports 38: 869-882 DOI: 10.1007/s00299-019-02408-y.
- Timothy LB, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS.
- 2009. MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Research* 37:
- 525 W202-W208 DOI: 10.1093/nar/gkp335.
- Vandesteene L, Ramon M, le Roy K, van Dijck P, Rolland F. 2010. A single active trehalose-6-P
- 527 synthase (TPS) and a family of putative regulatory TPS-like proteins in *Arabidopsis*. *Molecular*
- 528 *Plant* 3: 406-419 DOI: 10.1093/mp/ssp114.
- van Dijken AJH, Schluepmann H, Smeekens SCM. 2004. Arabidopsis trehalose-6-phosphate
- synthase 1 is essential for normal vegetative growth and transition to flowering. *Plant Physiology*
- 531 135: 969-977 DOI: 10.1104/pp.104.039743.
- Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boller T, Wiemken A, Aeschbacher RA, Wingler
- A. 2001. Trehalose metabolism in *Arabidopsis*: occurrence of trehalose and molecular cloning
- and characterization of trehalose-6-phosphate synthase homologues. *Journal of Experimental*
- 535 *Botany* 52: 1817-1826 DOI: 10.1093/jexbot/52.362.1817.
- Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M,
- 537 Schmid M. 2013. Regulation of flowering by trehalose-6-phosphate signaling in *Arabidopsis*
- thaliana. Science 339: 704-707 DOI: 10.1126/science.1230406.
- Wei BQ, Wang LL, Zhang R, Chen LZ, Zhang SL, Zhang JN. 2016. Identification of *CaTPS*
- gene family and expression analysis of *CaTPS1* in hot pepper. *Acta Horticulturae Sinica* 43:
- 541 1504-1512 DOI: 10.16420/j.issn.0513-353x.2016-0207.
- Wingler A, Delatte TL, O'Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H. 2012.
- Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon
- 544 availability. *Plant Physiology* 158: 1241-1251 DOI: 10.1104/pp.111.191908.

- Xie DW, Wang XN, Fu LS, Sun J, Zheng W, Li ZF. 2015. Identification of the trehalose-6-
- 546 phosphate synthase gene family in winter wheat and expression analysis under conditions of
- 547 freezing stress. *Journal of Genetics* 94: 55-65 DOI: 10.1007/s12041-015-0495-z.
- Xie L, Wang ZX, Huang B. 2014. Genome-wide identification classification and expression of
- 549 TPS family genes in soybean. Chinese Journal of Oil Crop Sciences 36: 160-167.
- 550 Xu YC, Wang YJ, Mattson N, Yang L, Jin QJ. 2017. Genome-wide analysis of the *Solanum*
- tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential
- expression during development and stress. BMC Genomics 18: 926 DOI: 10.1186/s12864-017-
- 553 4298-x.
- Yang HL, Liu YJ, Wang CL, Zeng QY. 2012. Molecular evolution of trehalose-6-phosphate
- synthase (TPS) gene family in *Populus*, *Arabidopsis* and rice. *PloS One* 7: e42438 DOI:
- 556 10.1371/journal.pone.0042438.
- Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byu MO. 2000. Genetic engineering of drought
- resistant potato plants by introduction of the trehalose-6- phosphate synthase (TPS1) gene from
- Saccharomyces cerevisia | *Iolecules and Cells* 10: 263-268 DOI: 10.1006/jmbi.2000.3859.
- Zang BS, Li HW, Li WJ, Deng XW, Wang XP. 2011. Analysis of trehalose-6-phosphate
- synthase (TPS) gene family suggests the formation of TPS complexes in rice. *Plant Molecular*
- 562 *Biology* 76: 507522 DOI: 10.1007/s11103-011-9781-1.
- Zentella R, Mascorro-Gallardo JO, Dijck PV, Folch-Mallol J, Bonini B, Vaeck CV, Gaxiola R,
- Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G. 1999. A Selaginella lepidophylla
- 565 trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast *tps1*
- mutant. *Plant Physiology* 119: 1473-1482 DOI: 10.1104/pp.119.4.1473.
- Zhao ML, Ni J, Chen MS, Xu ZF. 2019. Ectopic expression of Jatropha curcas TREHALOSE-6-
- 568 PHOSPHATE PHOSPHATASE J causes late-flowering and heterostylous phenotypes in
- *Arabidopsis* but not in *Jatropha*. *Internation Journal of Molecular Sciences* 20: 2165 DOI:
- 570 10.3390/ijms20092165.
- Zhaxybayeva O, Gogarten JP. 2003. Spliceosomal introns: new insights into their evolution.
- 572 *Current Biology* 13: 764-766 DOI: 10.1016/j.cub.2003.09.017.
- Zhou R, Sun C, Zhang YS, Lu CY, Yang JC, Lin LB. 2021. Bioinformatics analysis of trehalose
- phosphate synthase (TPS) gene family in *Brassica napus* L.. *Molecular Plant Breeding* 19:
- 575 2500-2511 DOI: 10.13271/j.mpb.019.002500.


Chromosomal distribution of CisTPS genes.

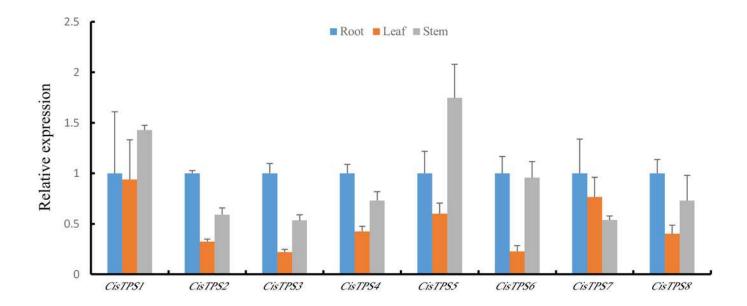

Collinearity analysis of Arabidopsis , sweet orang and rice.



Phylogenetic analysis of TPS gene family in Arabidopsis, rice and sweet orange.

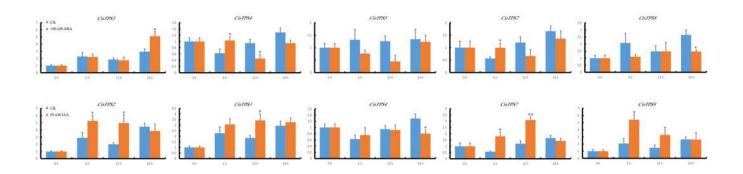
Phylogenetic analysis (A), motif compositions (B), and gene structures (C) of *TPS* genes in sweet orange.

Distribution of *cis*-elements in *CisTPS* genes.


1		Box 4	2	3	1	6	5	3	2	5
1				3		O	3			
1		Commence of the secondary	1		3		4	_	1	
1		Assessment and the second of t					1	1		
1			0	0		-		0	4.4	
1			6	3	5	1		8	14	
1) 					1126		
1	90		1	1			3	1	1	
1	1					1				1
1	Sp						1		- N	
1	Ons								186.4	
1		1	1			1		1	i iii kan	
1	e								1	
3				1						2
1			1							
1								3		
1		SECOND SEC SECURIO ESSE						1		
1		ACE						1		
1		GATA-motif				1	1			
1 1 C-rich repeats WUN-motif 2 1 1 O2-site 1 5 3 1 2 ARE 1 1 1 C-motif LTR 1 1 1 LTR MBS 2 2 1 TCA-element 4 ABRE CGTCA-motif TGACG-motif 3 3 1 2 2 1 3 3 1 2 2 2 1 4 1 2 1 TGACG-motif TATC-box P-box 1 2 1 1 TGA-element			1		1	1				
1		GATT-motif			1					
1		TC-rich repeats								1
1		WUN-motif						1		
1	010	O2-site	1						2	
1) 110	ARE	2			2	1	3	5	1
1	Str	GC-motif			1					
2	ess	LTR			1			1		1
5 13 6 5 2 3 6 ABRE 3 3 1 2 2 2 1 TGACG-motif TGACG-motif 1 2 2 2 1 TATC-box P-box 1 2 1 1 1 TGA-element		MBS		1	3	2			1	
3 3 1 2 2 2 1 CGTCA-motif TGACG-motif TGACG-motif GARE-motif TATC-box P-box TGA-element		TCA-element			1		2			2
1 2 1 1 TGA-element	· ·	ABRE	6	3	2	5		6	13	5
1 2 1 1 TGA-element	Ph	CGTCA-motif	1	2	2		2	1	3	3
1 2 1 1 TGA-element	yto	TGACG-motif	1	2	2		2	1	3	3
1 2 1 1 TGA-element	hoi									1
1 2 1 1 TGA-element	E				-	2	1)
1 2 1 1 TGA-element	one	Cartes above here occupations	1							
		Annual Consequences		1		1		2		1
		AuxRR-core							1	

Expression levels of *CisTPS* genes in root, leaf, and stem.

Values are means ± SEM of three biological replicates.



Expression of *CisTPS* genes induced by phytohormones.

Values are means ± SEM of three biological replicates. Asterisks indicate statistical

significance determined by Student's *t*-test (*P < 0.05, **P < 0.01).

Expression of CisTPS genes induced by abiotic stresses.

Values are means ± SEM of three biological replicates. Asterisks indicate statistical

significance determined by Student's *t*-test (*P < 0.05, **P < 0.01).

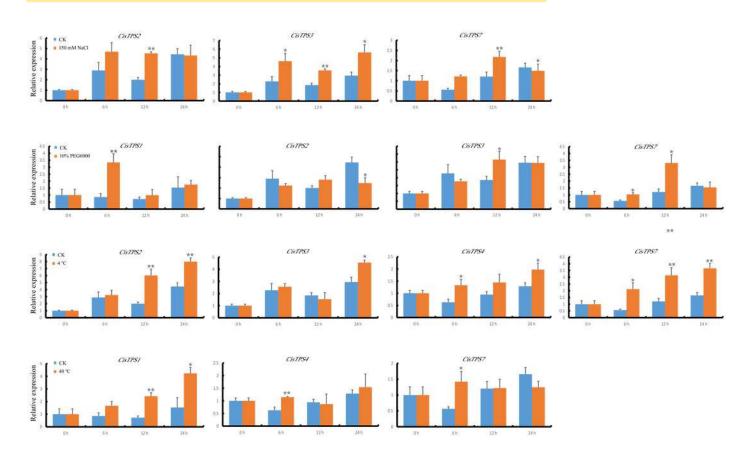


Table 1(on next page)

Primers used for qRT-PCR.

Gene name	Primer name	Sequence (5'–3')
FBOX	boxF	TTGGAAACTCTTTCGCCACT
	boxR	CAGCAACAAAATACCCGTCT
CisTPS1	1F	TTAGGAGGGGTGAGGACTCG
	1R	CCAGCCCAACCAATCCATCT
CisTPS2	2F	GACGTTGTTGGGGAATTGGC
	2R	TGGGGCATGACAGTTCCATC
CisTPS3	3F	CACGGCATTTCTTGTCCTGC
	3R	AAACCTTTGCCTCCGTTCCA
CisTPS4	4F	TGGGGCCATTCGAGTAAACC
	4R	GCAAAAAGCTACGAGCCCAG
CisTPS5	5F	GATTGTTGCTTTGGGGCCTG
	5R	GTGGCATCACAGTCCCATCA
CisTPS6	6F	GGCATCAGTGTGTCCACGTA
	6R	TGCATCAGCTACGGCATCAA
CisTPS7	7F	ACATTTGCTGGTCGGAAGGT
	7R	GCAAAACAACTTTGCCACGC
CisTPS8	8F	TCTCCTCGGACACTGAGGTT
	8R	GGTAGAAAGGTCGGCACACA

2

Table 2(on next page)

Summary of CisTPS genes.

Gene	Gene ID	Chromosome location	TPS domain	TPP domain	ORF/aa	MW/KD	PI	GRAVY	Location
			location	location	厚				
CisTPS1	XM_006467507.3	Chr2: 2018989-2028927	105-572	616-850	942	106.78	6.29	-0.333	Chloroplast
CisTPS2	2 XM_006467546.3	Chr2: 2235199-2239556	61-546	595-830	856	96.24	5.96	-0.202	Chloroplast
CisTPS3	3 XM_015527352.2	Chr2: 14383332-14388004	60-528	577-812	831	94.24	5.59	-0.186	Cytoplasm
CisTPS4	4 XM_006471525.3	Chr3: 13930419-13936240	59-547	596-831	863	96.62	5.60	-0.132	Cytoplasm
CisTPS5	5 XM_006474056.3	Chr4: 1295233-1298512	51-540	589-824	854	96.54	5.73	-0.238	Cytoplasm
CisTPSe	6 XM_006476690.3	Chr5: 3082065-3088262	59-546	583-818	832	94.55	6.11	-0.199	Cytoplasm
CisTPS7	7 XM_006477757.3	Chr5: 10415267-10433927	94-561	605-838	937	105.65	6.38	-0.392	Cytoplasm
CisTPS8	3 XM_006483756.3	Chr7: 5247964-5251328	59-546	595-830	861	96.81	6.01	-0.208	Cytoplasm

Table 3(on next page)

Secondary structures of CisTPS proteins

Protein	Alpha helix (%)	Beta turn (%)	Random coil (%)	Extended strand (%)
CisTPS1	42.68	6.05	36.94	14.33
CisTPS2	42.21	4.67	36.33	16.59
CisTPS3	45.01	5.05	32.85	17.09
CisTPS4	42.53	4.87	36.04	16.57
CisTPS5	42.39	5.39	35.25	16.98
CisTPS6	42.67	4.93	35.10	17.31
CisTPS7	43.44	5.12	37.78	13.66
CisTPS8	43.09	4.88	34.61	17.42