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Abstract 24 

This research aimed to understand the needs and habits of researchers in relation to 25 
code sharing and reuse; gather feedback on prototype code notebooks created by 26 
Neurolibre; and help determine strategies that publishers could use to increase code 27 
sharing. 28 
 29 
We surveyed 188 researchers in computational biology. Respondents were asked about 30 
how often and why they look at code, which methods of accessing code they find useful 31 
and why and what aspects of code sharing are important to them, and how satisfied 32 
they are with their ability to complete these. Respondents were asked to look at a 33 
prototype code notebook and give feedback on its features. Respondents were also 34 
asked how much time they spent preparing code and if they would be willing to increase 35 
this to use a code sharing tool, such as a notebook. 36 
 37 
As a reader of research articles the most common reason (70%) for looking at code was 38 
to gain a better understanding of the article. The most commonly encountered method 39 
for code sharing – linking articles to a code repository -- was also the most useful 40 
method of accessing code from the reader’s perspective. As authors, the respondents 41 
were largely satisfied with their ability to carry out tasks related to code sharing. The 42 
most important of these tasks were ensuring that the code was running in the correct 43 
environment, and sharing code with good documentation. 44 
 45 
The average researcher, according to our results, is unwilling to incur additional costs 46 
(in time, effort or expenditure) that are currently needed to use code sharing tools 47 
alongside a publication. We infer this means we need different models for funding and 48 
producing interactive or executable research outputs if they are to reach a large number 49 
of researchers. For the purpose of increasing the amount of code shared by authors, 50 
PLOS Computational Biology is, as a result, focusing on policy rather than tools. 51 



 

 52 
 53 

Introduction 54 

Code sharing requirements of journals and funders are increasing but are not as 55 
prevalent as requirements for sharing other research outputs, such as research data. 56 
Software tools such as code notebooks can facilitate code sharing in a way that reduces 57 
barriers to computational reproducibility but is not necessarily cost (e.g. time) free to 58 
authors. Some publishers have experimented with executable code and interactive 59 
features in their articles. Policies can also be employed to increase the amount of code 60 
shared alongside published articles. Researchers working in  fields such as 61 
computational biology generate code for a large proportion of their studies 62 
(Hrynaszkiewicz & Cadwallader 2021). Sharing code improves reproducibility, 63 
especially when made available before publication (Fernández-Juricic 2021). Lack of 64 
source code -- along with raw data, and protocols -- has been described as the main 65 
barrier to computational reproducibility of published research (Seibold et al. 2021). 66 
However, technical and cultural barriers to computational reproducibility have been 67 
identified in the literature (Samota & Davey 2021, Hrynaszkiewicz, Harney & 68 
Cadwallader 2021a, Van den Eynden et al. 2016). These barriers include insufficient 69 
time, funds and skills to prepare code for sharing. A desire to protect intellectual 70 
property (IP) is also reported as a common or important barrier to code sharing. 71 
 72 
Journals and publishers must understand and respond to these challenges in the 73 
research communities they serve if they wish to support open, reproducible research, 74 
and test and implement solutions. Introducing policies is an important way for journals to 75 
increase awareness and adoption of research practices that are important to a particular 76 
community, as demonstrated by the increase in research data sharing policies and 77 
practices in the last decade (Hrynaszkiewicz 2020). In 2021 PLOS Computational 78 
Biology introduced a strengthened, mandatory code sharing policy in response to a 79 
desire of this community to support reproducibility by increasing the availability of code 80 
associated with articles published in the journal (Cadwallader et al 2021). The 81 
introduction of this policy was supported by the results of a survey of the computational 82 
biology community, which demonstrated their support for a mandatory code sharing 83 
policy in PLOS Computational Biology (Hrynaszkiewicz, Harney & Cadwallader 2021a). 84 
The survey results also found that code sharing and access are important to 85 
researchers, and that they are satisfied with their ability to share their own code, but 86 
they are not satisfied with their ability to access other researchers’ code. Following Jobs 87 
To Be Done theory (Ulwick & Osterwalder 2016), this finding implies that there may be 88 
opportunities for new solutions (which could be products, policies, services or features) 89 
that support researchers in accessing other researchers’ code. 90 



 

 91 
Numerous technical solutions (tools) exist that could play a role in improving code 92 
availability, and reuse. Scholarly publishers and tool providers have experimented with 93 
interactive and reproducible articles for years (Akhlaghi et al. 2021). Such tools 94 
inherently require availability of code and data to enable interactivity with and reuse of 95 
results. An example of this is the journal eLife and reproducible document platform 96 
Stencila, who have collaborated to experiment with publication of Executable Research 97 
Articles (ERA; Tsang and Maciocci 2020).  Other tools that support code sharing and 98 
reuse alongside scholarly articles include commercial platforms such as Code Ocean, 99 
which provides executable “code capsules”; Gigantum, and NextJournal (Perkel 2019) 100 
and collaborative, interactive code notebooks such as Observable (Perkel 2021). For a 101 
review of infrastructures that support computational reproducibility see Konkol et al. 102 
(2020). Many code notebook tools are built on open source technology, such as Jupyter 103 
and MyBinder, and researcher-led efforts to produce code notebook type outputs often 104 
use these (Lasser 2020). One relatively new code notebook initiative, Neurolibre, 105 
supported by the Canadian Open Neuroscience Platform, is an open access platform 106 
hosting notebooks derived from published or preprinted research articles that can be 107 
freely modified and re-executed (Boudreau et al. 2021). 108 
 109 
The potential benefits of these tools – for researchers as readers and authors, for 110 
publishers, and the accessibility of science – are numerous. Our focus was on how 111 
these tools meet researcher needs for code sharing and reuse, as these needs align 112 
with PLOS’ goals to increase the adoption, and benefits, of open science. But the extent 113 
to which these tools do meet these needs is unclear from the available literature. 114 
Furthermore, the adoption of new tools or workflows for preparing and sharing code 115 
would incur costs, in terms of time and effort, for researchers (as authors, readers, 116 
editors and peer reviewers) and publishers. For new tools to be widely adopted it is 117 
important to understand if additional effort required to adopt new tools is acceptable to 118 
users. As a publisher PLOS experiments with solutions that support open science in 119 
different communities, and partners with community resources, such as data 120 
repositories and preprint servers to achieve this. To this end, rather than creating new 121 
solutions, PLOS partnered with Neurolibre to learn more about the value of their 122 
interactive code notebooks and research publications, to readers and authors. The 123 
results were anticipated to: 124 

- Provide a deeper understanding of how researchers share and interact with code 125 
- Inform PLOS Computational Biology’s plans for further supporting code sharing 126 

and reuse, beyond its mandatory code sharing policy 127 
- Inform development of Neurolibre with quantifiable feedback from potential users 128 

of the tool on the tools itself and their needs that are related to the features of the 129 
tool. 130 



 

- Provide PLOS, and other publishers, with quantitative insights on researchers’ 131 
attitudes and experience with interactive article features, to inform future 132 
publishing innovation approaches 133 

Methods 134 

We created a survey in English in Alchemer and distributed it in February and March 135 
2021.The survey had three main purposes: 136 

1) Understand how researchers interact with code as readers of articles 137 
2) Gather feedback on the prototype NeuroLibre notebook version of PLOS 138 

Computational Biology articles 139 
3) Gain a more detailed understanding of researchers’ abilities to carry out code 140 

sharing tasks, how they rate the importance of these tasks and how satisfied they 141 
are with their ability to complete the tasks 142 

 143 
The survey was promoted with an accompanying blog (Cadwallader 2021) and email 144 
campaign, which was sent to previous PLOS authors and other PLOS registered users 145 
in computational biology related disciplines (n=23,272). The survey (Cadwallader et al. 146 
2022) was launched with the blog on the 11th February 2021 and the email campaign 147 
followed on the 19th February. The results were exported from Alchemer on 25th March 148 
2021. 149 
 150 
The survey methodology was adapted from our group’s previous recent work (described 151 
in Hrynaszkiewicz, Harney & Cadwallader 2021b). Briefly, respondents were asked to 152 
answer a series of questions from the perspective of both readers and authors of 153 
articles with associated code. To identify if there were opportunities to support 154 
researchers with sharing code using new solutions, we asked respondents to rate 155 
various code sharing and reuse factors in terms of how important they were to them and 156 
how satisfied they were with their ability to complete them. These responses were 157 
converted to numerical scores and used to calculate opportunity scores for each factor 158 
using the following equation: 159 
 160 

Opportunity score = Mean importance * (1 - mean satisfaction/100) 161 
 162 
Opportunity scores above 25 indicate “better than neutral” or marginal opportunities and 163 
scores above 36 we regard as good opportunities. This approach is more nuanced than 164 
simply using quadrants and looking for high importance/low satisfaction scores. 165 
 166 
In addition, Neurolibre created two prototype interactive notebook versions (NeuroLibre 167 
2020a, 2020b) of articles published in PLOS Computational Biology (Larremore 2019, 168 
Tampuu et al. 2019), so they could be shared with the community and their feedback 169 
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sought on the value and features of the interactive format. Survey respondents were 170 
asked to give feedback on one of these prototypes. 171 

Ethical considerations 172 

We did not obtain approval from a research ethics committee as the research was 173 
considered to be low risk and we did not collect sensitive information about the 174 
participants. All data were collected anonymously. Participants were informed that their 175 
participation in this survey was completely voluntary, and that they were free to 176 
withdraw from the study at any time until they submitted their response. Answers were 177 
never associated with individual participants and the results only analyzed in aggregate. 178 
The data collection procedures and survey tool are compliant with the General Data 179 
Protection Regulation 2016/679. 180 

Results 181 

Respondent demographics 182 

The survey received a total of 188 complete responses, with an additional 39 partial 183 
responses (some but not all questions answered) and 175 incomplete responses (some 184 
but not all demographic questions answered only). 79% of the respondents clicked 185 
through from the email campaign link (n=316), which had a 1.4% engagement (click) 186 
rate. This analysis will focus on the 188 complete responses. 187 
 188 
A range of disciplines are represented by the respondents, with a third of respondents 189 
being from the computational biology field (Table 1). For those who chose ‘Other’, 13 190 
out of 14 respondents were in STEM fields, with Maths related fields being most 191 
commonly specified (n=6). One individual was from a social sciences discipline. 192 
 193 
Responses are skewed more towards researchers with fewer publications, (Figure 1). 194 
Respondents were overwhelmingly from Europe (46%) or North America (40%), with 195 
very few respondents indicating their location in other geographic regions (Table 2). 196 
54% of respondents had previously published in PLOS Computational Biology. 197 

When and why researchers access or read code 198 

Respondents were asked to answer a set of questions from the viewpoint of a reader of 199 
research articles that had associated code to understand how they interacted with code 200 
in this setting. Three-quarters (n=141) of the respondents look at code associated with a 201 
research paper at least occasionally, with 39% (n=74) looking at code frequently or very 202 
frequently. Only 6% (n=12) said they never looked at the associated code (Figure 2). 203 
 204 
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The degree to which readers from different disciplines look at code associated with 205 
research articles is variable, although many of the cohorts included in the survey results 206 
are small (Figure 3). Of the largest cohorts surveyed, those in the Biology and Life 207 
Sciences look at code associated with articles less frequently than in Computational 208 
Biology and Bioinformatics. Lower levels of looking at code are also seen in the 209 
Medicine and Health Sciences cohort although this is a smaller group (n=18). 210 
 211 
Respondents were asked why they look at code associated with published articles. Free 212 
text answers were provided by 178 respondents. Answers were categorised to identify 213 
general trends, with the majority of respondents (n=100) giving two or more reasons for 214 
looking at the code.  215 

● 125 (70%) respondents look at code to aid their understanding of the article. For 216 
example, 113 respondents (63%) specified that they wish to directly verify the 217 
code or examine its use in the context of the research presented and 38 218 
respondents (21%) look at the code to better understand the methods described 219 
in the article, e.g. what parameters were selected.  220 

● 86 (48%) respondents gave answers that fell into the ‘reuse’ category, e.g. 221 
directly reusing the code (62 responses/35%) and reusing selected parts of the 222 
code (27 responses/15%). Other reuse reasons were using the code as an 223 
example in teaching (1 response), as a comparison to the reader’s own code (6 224 
response/3%) and to reuse the data (1 response). 225 

● Respondents also looked at the code to assess the quality of the research (37 226 
respondents/21%), giving reasons such as to check for minimal standards (8 227 
responses/4%), for trust or transparency reasons (5 responses/3%) and replicate 228 
the analysis using their own data (21 responses/12%). 229 

● Reasons linked to discovery were also given by 5 respondents (3%), for example 230 
finding new Github repositories of interest and looking for novel code. 231 

 232 

The usefulness of methods for accessing or reading code 233 

Respondents were asked how useful they found various methods of accessing code 234 
associated with a research article, when considering the 6 months before they 235 
completed the survey . Not all respondents had encountered the methods specified. 236 
Using a ‘Link to a code repository’ was the most common method (encountered by 237 
98%), followed by ‘link to a website’ (88%) and ‘available on request’ (87%) (Figure 4). 238 
A link to archived code, that is, a snapshot of code deposited in a generalist repository 239 
was encountered by 72% of respondents. Links to code notebooks were encountered 240 
by 66% and executable code capsules by 40%. The methods were not defined for 241 
respondents, although they had been asked to look at a prototype notebook before 242 
answering the questions. 243 



 

 244 
‘Link to code repository’ was rated as the most useful method – both in terms of the 245 
number of respondents who rated it ‘extremely’ or ‘very useful’, and the number who 246 
rated it as ‘not at all useful’ (Figure 5). Accessing code that is ‘available on request’ was 247 
rated as least useful (based on number of ‘not at all useful’).  248 
 249 
The five-point unipolar scale used in this question can be mapped to a value from 0 to 250 
100, with 0 equalling ‘not at all useful’ and 100 equalling ‘extremely useful’. ‘I have not 251 
encountered this method of sharing’ responses were not scored. Taking the mean rating 252 
for all the methods (Figure 6), the most commonly encountered method (link to a code 253 
repository), is also the most useful. The mean scores given were: to code notebooks 254 
(69.9 +/-5.3 (95% CI)); link to archived code (64.5 +/-4.4 (95% CI)); link to website (52.3 255 
+/-4.2 (95% CI)); and executable code capsules (50.8 +/-8.9 (95% CI)). The 95% 256 
confidence intervals for code capsules and link to a website (41.9-59.7 and 48.1-56.5 257 
respectively) do not overlap those for code notebooks and archived code (64.6-75.1 and 258 
60.0-68.9 respectively). 259 
 260 
The reasons why researchers favoured certain methods of accessing code were 261 
gathered via a free text question. The most common reasons, which all received 262 
between 18 and 10 mentions, were (in order of number of mentions): 263 

- Ability to see new versions of the code (most associated with code repositories1) 264 
- Quick to access the code (most associated with code repositories) 265 
- The method allows exploration of the code, which aids understanding (most 266 

associated with notebooks) 267 
- The method is associated with good documentation/README files (most 268 

associated with code repositories) 269 
- The practicality of the method (most associated with code repositories) 270 
- The method provides long term access to the code (most associated with 271 

archived code2) 272 
- The method allows for reproduction of results (most associated with code 273 

repositories and notebooks) 274 
- It is an established method (most associated with code repositories) 275 

Features of code notebooks that are useful when accessing or reading code 276 

All respondents were then asked to rate the importance of various features of the 277 
Neurolibre prototype notebook (NeuroLibre 2020a) using a 5-point unipolar scale, or 278 

 
1 Github was the most highly named code repository in all areas of the survey. Bitbucket had a small 
number of mentions by name. 
2 Zenodo was the most highly named archive repository in all areas of the survey. OSF was also 
mentioned in this context. 

janosch

janosch

janosch

janosch

janosch
number for “link to code repo” is missing



 

selected that they did not use the feature. Converting these responses to numerical 279 
scores on a scale of 0 to 100 and taking the mean (Table 3) gives us a sense of the 280 
features readers value the most. The top two features – ‘having all the code, data and 281 
figures in one place’ and ‘knowing the code is running in the right environment’ – are not 282 
features unique to code notebooks. Features related to the interactivity elements of the 283 
notebook, e.g. ability to change parameters of the figures, had mean scores in the low 284 
to mid 60s. The lowest scoring feature was ‘having extra figures included that were not 285 
in the original paper’.  286 

Importance and satisfaction of factors associated with sharing code from an author’s 287 
perspective 288 

Importance and satisfaction responses were converted to numerical scores as 289 
described in the Methods section. All factors scored above 50 for mean importance, 290 
with standard deviations ranging between 20.6 and 33.3 (Table 4 and Figure 7). ‘Ability 291 
to share my code with good accompanying documentation’ received the highest mean 292 
importance score (82.2, SD: 20.6) and was also fairly well satisfied (72.2 , SD: 23.2). All 293 
of the factors have a mean satisfaction score above 50, although the standard 294 
deviations all range between 23.2 and 28.8. The lowest scoring factors are ‘Readers 295 
can easily run the code in the correct environment’ (mean satisfaction score 55.4 , SD: 296 
28.0) and ‘The data and code are in the same place’ (mean satisfaction score 60.4 , SD: 297 
28.8). These are both considered important factors (means scores 76.1 , SD: 23.8 and 298 
73.0 , SD: 28.0 respectively). These are the only two factors that have an opportunity 299 
score above 25, although they are not above 36, and therefore present only a marginal 300 
opportunity. 301 

Time spent on preparing code as authors 302 

The survey also asked questions about the amount of time authors spent preparing to 303 
share their code. The majority of respondents spend more than one day preparing code 304 
and this observation holds true when it is separated into cohorts based on the number 305 
of papers published (Figure 8). The researchers with the most papers (>50) are most 306 
likely to take more than one week to prepare their code for sharing, whereas the most 307 
common response for researchers with fewer papers (<50) was more than one day but 308 
less than one week. This may be a reflection on the number of additional constraints on 309 
time felt by more established, i.e. published, researchers, such as teaching or 310 
supervision of students. 311 

Time authors are willing to spend improving their methods of sharing code 312 

Respondents were also asked how much extra time they would be willing to spend on 313 
using a new tool to make the code easier to read and run. This question was chosen as 314 



 

our preliminary interviews with researchers suggested that making code easier to run 315 
and read for others was important for authors, which is supported by the satisfaction 316 
and importance scores seen in this survey (Table 4 and Figure 7). Answers were varied, 317 
with the top three responses being ‘more than one day’ (36%), ‘a day’ (21%) and ‘a 318 
couple of hours’ (20%). There does not appear to be a trend if the respondents are split 319 
into cohorts based on the number of previous publications (Figure 9). However, those 320 
who already spend more than a day preparing their code are more likely to spend extra 321 
time on a new tool to improve their code. 322 
 323 

 324 

Discussion 325 

What do readers value and why? 326 

The findings from this survey show the most prevalent reason for readers looking at 327 
code was for verification or examination purposes, with 70% of respondents looking at 328 
the code to aid their understanding of the article. In journals where word limits apply, the 329 
reproducibility of the research can be compromised if methodological details -- in this 330 
case computational methods -- are not fully detailed (Samota & Davey 2021; Haddaway 331 
& Verhoeven 2015) and it is unsurprising, therefore, that researchers commonly look at 332 
code to aid their understanding of the work. The number of respondents who wished to 333 
rerun (rather than examine) the code for reproducibility reasons was lower (~16%), 334 
which has also been observed in other studies (Peterson & Panofsky 2021). 335 
 336 
The desire to look at the code rather than run it aligns well with the ranking of a code 337 
repository, such as Github, as the most useful method for accessing code by readers 338 
(only 1% ranked it as not at all useful), as the presentation of code in these repositories 339 
lends itself to exploration or examination but not to immediately rerunning or interacting 340 
with code. This survey did not map participants’ workflows so they could be 341 
downloading and running code locally, although this is not always easy or possible 342 
(Samota & Davey 2021). 98% of respondents had encountered code shared via 343 
repositories and this prevalence is perhaps a factor in its high usefulness scores as it is 344 
widely used by researchers in computational disciplines. The high encounter rate 345 
combined with the high usefulness scores indicates that generally readers are satisfied 346 
with the most common methods of code sharing.  347 
 348 
The survey results also show best practice for code sharing (depositing code in an 349 
archive repository) has been encountered by 72% of our respondents. This is a higher 350 
percentage than seen in our previous research on data sharing practices where 56% 351 
deposit data in a repository. With both code and data, often researchers aren’t following 352 



 

what is considered to be best practice (using repositories) but are satisfied with their 353 
ability to share data, from their perspective (Hrynaszkiewicz et al. 2021b). 354 
 355 
At the other end of the scale (discounting the “available on request” option which was 356 
viewed very negatively), executable code capsules had the lowest mean usefulness 357 
score of all the methods presented (50.8) whereas code notebooks scored higher 358 
(69.9). This is interesting given that they have similar features and aims and raises the 359 
question: what are notebooks doing better than code capsules, or what needs are they 360 
meeting that capsules aren’t? Unfortunately, we cannot answer that question directly 361 
with our survey data. 362 
 363 
The survey question on why readers favoured certain methods of access give some 364 
insight into user needs when it comes to accessing code. Versioning, good 365 
documentation and long term access are elements considered best practice for code 366 
sharing (Lamprecht et al. 2020) and were all amongst the most common reasons given 367 
for preferred methods. The other reasons relate to what readers wish to do with the 368 
code – explore the code and/or reproduce the results in a quick and accessible manner 369 
– and are what these methods of code sharing are good at facilitating. 370 

Prototype notebook features 371 

Respondents were asked to rank the importance of a range of features they may have 372 
encountered in the prototype notebook, however, many of these features are not 373 
exclusive to this notebook and can be found in other code sharing tools. Presenting the 374 
prototype notebooks may have affected the respondents answers to the usefulness of 375 
the features, however, given that a third of respondents had not encountered a 376 
notebook associated with a research article in the last 6 months the prototype did offer 377 
some useful context to those participants and gave all respondents a similar experience 378 
to guide their answers. Readers scored ‘having all the code, data and figures in one 379 
place’ -- a feature also present in tools such as code capsules -- as the most important 380 
(mean score 81.0/100). The usefulness of having code, data and figures in one place 381 
aligns with how information is often presented in a published article: figures are together 382 
with the text, and the data and code are shared (if they are shared) on a different, or 383 
multiple different, platforms making the research outputs dispersed. This issue could be 384 
solved in a number of different ways, either through technological solutions (such as 385 
notebooks, executable code capsules or imbedded repository widgets on article pages), 386 
publishing practices (such as requiring authors to share outputs in a certain way) or 387 
through changing researcher behaviour so they share their research as a single 388 
package of text, figures, data and code regardless of any mandates or policies they 389 
have to comply with or solutions offered by publishers.  390 
 391 
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The second highest scoring feature (mean score 73.5/100) was ‘knowing the code is 392 
running in the right environment’. Samota & Davey (2021) found that even researchers 393 
trained in computational methods had regularly encountered technical barriers to 394 
computational reproducibility. Containerisation -- packaging the code and all the 395 
components needed to run it correctly -- is one solution to this problem. It is interesting 396 
that this factor scores so high, yet so few respondents wish to run the code, or rated 397 
solutions, such as notebooks and executable code capsules, highly for usefulness. 398 
Authors scored their satisfaction with their ability to ensure readers are running their 399 
code in the correct environment the lowest out of all factors we surveyed (mean 55.4 , 400 
SD: 28.0). Although this is the lowest score, it is still above 50 and so there is little  401 
opportunity to better support this activity. It is not clear from our survey findings that 402 
offering a tool to assist with readers running their code in the correct environment would 403 
meaningfully change the way readers interact with code although perhaps the possibility 404 
of verifying reproducibility will increase confidence in the results (Nosek et al. 2015). 405 
 406 
The ability to interact with the code inline was ranked as the third most important feature 407 
of the prototype code notebook, which supports readers’ desire to run, and possibly 408 
modify, the code in the correct environment. Conversely Samota & Davey (2021) found 409 
a "link to the source code of interactive figures" the least valued feature out of the list in 410 
the survey. While this may suggest that readers don’t wish to run the code, it may also 411 
be an indication that readers don’t like having to access links to code (contrary to our 412 
findings that researchers like accessing code via repositories). The interactive features, 413 
such as zooming in on data points or changing parameters, had lower importance 414 
scores, in the low to mid 60s, falling between the moderately important (50/100) and 415 
very important (75/100) rating. No one feature of the notebook stands out as being the 416 
main reason why respondents would look at a notebook like the one tested - those who 417 
scored the likelihood of looking at the notebook highly, generally scored each of the 418 
features highly as well. 419 

Other opportunities to support authors 420 

Authors’ ability to share the code with good documentation had the highest mean 421 
importance score (82.2 , SD: 20.6) and a high satisfaction score (mean 72.2 , SD:23.2) 422 
and good documentation was commonly given as a reason by readers for their 423 
preferred method of accessing data. In another survey of computational biology authors 424 
(Hrynaszkiewicz et al. 2021a), we found that there was a disconnect between how 425 
satisfied researchers are with their ability to share code well and the ability of others to 426 
share code. That data suggest authors regard themselves as competent at this task but 427 
view the competence of others less favourably. This is an area of interest that is worth 428 
future exploration to understand if this perceived gap in skills is genuine.  429 



 

Comparing policy to technology as solutions for increasing code sharing 430 

There is evidence from our survey and others (e.g. Perkel 2017, Samota & Davey 2021) 431 
that researchers regard the ability to interact with code published in its complete 432 
software environment as beneficial. Using containerisation tools, such as Docker, have 433 
been recommended for increasing the reproducibility of research (Burton et al. 2020) 434 
but it has also been acknowledged that this requires skills that not many researchers in 435 
this field have (Kim, Poline & Dumas 2018). Platforms that utilise this technology have 436 
been adopted or trialled by several publishers, for example Code Ocean has been 437 
deployed by some Springer Nature journals, and some Taylor & Francis journals.  438 
 439 
However, it has been acknowledged that authors already using Github and Zenodo may 440 
feel that the creation of a code capsule is redundant (Cheifet 2021). The trial of code 441 
capsules at several Nature journals demonstrated that peer reviewers were verifying the 442 
code and reproducing the results of the manuscripts they were assessing (Cheifet 2021) 443 
but it is unclear to what extent this was above the level of reviewer engagement seen 444 
before the trial or what proportion of reviewers were engaging in this type of activity. Our 445 
survey was focused on the needs of readers and authors rather than peer reviewers, 446 
but showed that readers have mixed feelings about the usefulness of executable code 447 
capsules. 448 
 449 
Samota & Davey (2021) state that top-down requirements from journals to release 450 
reproducible data and code will in part rely on the availability of technical solutions that 451 
are accessible and useful to most scientists. In one sense, these solutions are already 452 
available in the form of code repositories, although we acknowledge this doesn’t enforce 453 
reproducible code and data sharing because the code is not curated or reviewed. 454 
However, technology is only one barrier and the journals that have implemented 455 
enhanced solutions are, to our knowledge, yet to show that these are making a 456 
significant difference to the quality or amount of code that is shared. Additionally, the 457 
added benefit, as opposed to the perceived benefit, that they bring to authors and 458 
readers versus the use of other methods of sharing, has not been demonstrated. On the 459 
other hand, simply sharing the code underlying a publication in a repository has been 460 
shown to bring benefits to authors, such as acting as a signal of credibility (McKiernan 461 
et al. 2016) and increased citations of the article (Vandewalle 2012), which has similarly 462 
been shown for data sharing (Piwowar, Day & Fridsma 2007, Colavizza et al. 2020). 463 
 464 
Whilst quality and reusability of code is very important for increasing the reproducibility, 465 
trust and transparency of research; the lack of shared code is still a huge issue that 466 
needs to be overcome. Serghiou et al. (2021) found that 70% of publishers have never 467 
published an article with shared code when analysing over 2.7 million articles in 468 
PubMed Central (PMC), and only 2.5% of published articles share code. PLOS journals 469 



 

have higher code sharing rates, with 41% of PLOS Computational Biology article 470 
sharing code in 2019 (Serghiou 2021). This suggests that the average researcher has 471 
little desire for sharing code.  472 
 473 

Additional time to prepare code for sharing 474 

Additional effort is required to produce interactive and executable versions of published 475 
research currently but our survey showed that even for those researchers already 476 
engaged in code sharing, the majority (64%) would not be willing to spend more than a 477 
day using a tool that makes code easier to read and run. This suggests that the average 478 
researcher may be unwilling to incur additional costs (in time, effort or expenditure) 479 
themselves to achieve these outputs, supporting a need for different models for funding 480 
and producing these outputs – at least until such time as they can be produced more 481 
efficiently. Asking people to predict their future behaviour can lead to overestimation of 482 
positive effects (Wood et al. 2016) and therefore it is possible that the number of 483 
researchers unwilling to spend more than a day on a new tool is actually higher than 484 
64%. During the pilot at Nature journals, the creation of a code capsule took a median 485 
time of nine days (Nature Biotechnology 2019). Time has been found to be a barrier to 486 
sharing other research outputs, such as data, in other studies as well (see, amongst 487 
others, Perrier, Blondal & MacDonald 2020, Tenopir et al 2020, Digital Science et al. 488 
2021) 489 
 490 
Given the mixed feelings of researchers regarding features of interactive notebooks that 491 
are not related to code access, and the lack of desire to invest the required effort to 492 
produce them, to support the goal of increasing the availability of code associated with 493 
publications, PLOS Computational Biology has opted for the time being to focus on 494 
policy and guidance rather than technological solutions to improve code sharing. The 495 
importance of these cultural solutions are often underestimated in relation to 496 
reproducible code (Samota & Davey 2021). At PLOS Computational Biology, we 497 
observed a high degree of voluntary code sharing (Cadwallader et al. 2021) before 498 
implementation of a mandatory policy, and preliminary results of the impact of the policy 499 
on the amount of code shared look positive in line with what has been learnt from 500 
implementing mandatory versus optional but encouraged data sharing policy, with the 501 
latter causing little change to the status quo (Christensen et al. 2019, Colavizza et al 502 
2020, Statham et al. 2020). We are focusing on supporting good foundational 503 
behaviours by authors that we know are important, such as sharing code with good 504 
documentation and metadata (Kim et al. 2018, Stodden et al 2016). As more code 505 
associated with publications is made available as a result of these activities, we 506 
anticipate there will be more opportunities to understand how the quality, reusability, 507 



 

and interactivity of shared code affect reproducibility – and the role of technological 508 
solutions.  509 

Limitations 510 

One possible limitation of this study is non-response bias. As no incentive was offered 511 
to complete the survey, respondents who are already motivated to engage with code 512 
sharing may have been more likely to participate. The survey was also directed at 513 
computational biologists and related disciplines therefore may not be applicable to all 514 
disciplines. Also, there is an uneven distribution in terms of the number of published 515 
papers, with most respondents having published fewer than 20 papers, which may limit 516 
the generalisability of the findings to other researchers at other career stages. The 517 
geographical spread of our respondents also limits the generalisability of our findings. 518 
The survey did not give explanations of the different methods of code sharing and 519 
assumed the respondents to be familiar with terms such as “code capsule” and 520 
“archived in an open access repository”. 521 

Conclusions 522 

The survey findings have given some valuable insights into researcher behaviour and 523 
attitudes towards code sharing and more interactive, executable or reproducible 524 
publication formats -- which require much effort to create. We have observed a 525 
“negative result” with regard to clear opportunities for implementing new features and 526 
services in the publishing workflow, but we have a better understanding of why 527 
researchers look at code – this predominantly seems to be to better understand the 528 
article and code used. This is an issue that could be addressed with multiple potential 529 
solutions that we did not evaluate, such as reporting guidelines for methods of relevant 530 
studies. Further, the results suggest that researchers are on the whole satisfied with 531 
code being shared via a code repository, such as Github, because this is a well used 532 
tool that gives the user freedom to use the code how they wish (e.g. download, fork, 533 
read through). Good accompanying documentation is important to researchers and 534 
whilst they think their ability to produce documentation is good, the readers of their code 535 
may disagree. 536 
 537 
Authors of code have variable practices when it comes to the amount of time they 538 
spend preparing code. It is unclear if those spending minimal amounts of time preparing 539 
code are doing so because their code is already well prepared for sharing, or because 540 
they do not attach much importance to spending time preparing their code as it is not 541 
regarded as as necessary for career advancement, or because they do not have the 542 
time to spend on preparation. The NeuroLibre interactive code notebook demonstrated 543 
that readers find many of the features valuable and overall they are generally supportive 544 
of notebooks but do not see them as revolutionary in the way code is shared. For 545 



 

publishers wishing to experiment with or implement interactive features or versions of 546 
articles, it is important to note that researchers (authors) are likely to need additional 547 
support or funding to be incentivised to create these outputs. For publishers wishing to 548 
increase code sharing, policy may be a more effective solution, in the computational 549 
biology community. 550 
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