

A survey of researchers’ code sharing and code reuse practices, and assessment 1
of interactive notebook prototypes 2

Lauren Cadwallader1, Iain Hrynaszkiewicz1 3

1 Public Library of Science (PLOS), 1265 Battery St East, Suite 200, San Francisco, CA 4
94111, USA 5

 6

 7

Corresponding Author: 8

Lauren Cadwallader1 9

Public Library of Science (PLOS), 1265 Battery St East, Suite 200, San Francisco, CA 10
94111, USA 11

Email address: lcadwallader@plos.org 12

 13

A survey of researchers’ code sharing and code reuse practices, and assessment of 14
interactive notebook prototypes 15

 16
Authors 17
 18
Lauren Cadwallader1 and Iain Hrynaszkiewicz1 19
 20
Correspondence to lcadwallader@plos.org 21

1. Public Library of Science (PLOS), 1265 Battery St East, Suite 200, San 22
Francisco, CA 94111, USA 23

Abstract 24

This research aimed to understand the needs and habits of researchers in relation to 25
code sharing and reuse; gather feedback on prototype code notebooks created by 26
Neurolibre; and help determine strategies that publishers could use to increase code 27
sharing. 28
 29
We surveyed 188 researchers in computational biology. Respondents were asked about 30
how often and why they look at code, which methods of accessing code they find useful 31
and why and what aspects of code sharing are important to them, and how satisfied 32
they are with their ability to complete these. Respondents were asked to look at a 33
prototype code notebook and give feedback on its features. Respondents were also 34
asked how much time they spent preparing code and if they would be willing to increase 35
this to use a code sharing tool, such as a notebook. 36
 37
As a reader of research articles the most common reason (70%) for looking at code was 38
to gain a better understanding of the article. The most commonly encountered method 39
for code sharing – linking articles to a code repository -- was also the most useful 40
method of accessing code from the reader’s perspective. As authors, the respondents 41
were largely satisfied with their ability to carry out tasks related to code sharing. The 42
most important of these tasks were ensuring that the code was running in the correct 43
environment, and sharing code with good documentation. 44
 45
The average researcher, according to our results, is unwilling to incur additional costs 46
(in time, effort or expenditure) that are currently needed to use code sharing tools 47
alongside a publication. We infer this means we need different models for funding and 48
producing interactive or executable research outputs if they are to reach a large number 49
of researchers. For the purpose of increasing the amount of code shared by authors, 50
PLOS Computational Biology is, as a result, focusing on policy rather than tools. 51

 52
 53

Introduction 54

Code sharing requirements of journals and funders are increasing but are not as 55
prevalent as requirements for sharing other research outputs, such as research data. 56
Software tools such as code notebooks can facilitate code sharing in a way that reduces 57
barriers to computational reproducibility but is not necessarily cost (e.g. time) free to 58
authors. Some publishers have experimented with executable code and interactive 59
features in their articles. Policies can also be employed to increase the amount of code 60
shared alongside published articles. Researchers working in fields such as 61
computational biology generate code for a large proportion of their studies 62
(Hrynaszkiewicz & Cadwallader 2021). Sharing code improves reproducibility, 63
especially when made available before publication (Fernández-Juricic 2021). Lack of 64
source code -- along with raw data, and protocols -- has been described as the main 65
barrier to computational reproducibility of published research (Seibold et al. 2021). 66
However, technical and cultural barriers to computational reproducibility have been 67
identified in the literature (Samota & Davey 2021, Hrynaszkiewicz, Harney & 68
Cadwallader 2021a, Van den Eynden et al. 2016). These barriers include insufficient 69
time, funds and skills to prepare code for sharing. A desire to protect intellectual 70
property (IP) is also reported as a common or important barrier to code sharing. 71
 72
Journals and publishers must understand and respond to these challenges in the 73
research communities they serve if they wish to support open, reproducible research, 74
and test and implement solutions. Introducing policies is an important way for journals to 75
increase awareness and adoption of research practices that are important to a particular 76
community, as demonstrated by the increase in research data sharing policies and 77
practices in the last decade (Hrynaszkiewicz 2020). In 2021 PLOS Computational 78
Biology introduced a strengthened, mandatory code sharing policy in response to a 79
desire of this community to support reproducibility by increasing the availability of code 80
associated with articles published in the journal (Cadwallader et al 2021). The 81
introduction of this policy was supported by the results of a survey of the computational 82
biology community, which demonstrated their support for a mandatory code sharing 83
policy in PLOS Computational Biology (Hrynaszkiewicz, Harney & Cadwallader 2021a). 84
The survey results also found that code sharing and access are important to 85
researchers, and that they are satisfied with their ability to share their own code, but 86
they are not satisfied with their ability to access other researchers’ code. Following Jobs 87
To Be Done theory (Ulwick & Osterwalder 2016), this finding implies that there may be 88
opportunities for new solutions (which could be products, policies, services or features) 89
that support researchers in accessing other researchers’ code. 90

 91
Numerous technical solutions (tools) exist that could play a role in improving code 92
availability, and reuse. Scholarly publishers and tool providers have experimented with 93
interactive and reproducible articles for years (Akhlaghi et al. 2021). Such tools 94
inherently require availability of code and data to enable interactivity with and reuse of 95
results. An example of this is the journal eLife and reproducible document platform 96
Stencila, who have collaborated to experiment with publication of Executable Research 97
Articles (ERA; Tsang and Maciocci 2020). Other tools that support code sharing and 98
reuse alongside scholarly articles include commercial platforms such as Code Ocean, 99
which provides executable “code capsules”; Gigantum, and NextJournal (Perkel 2019) 100
and collaborative, interactive code notebooks such as Observable (Perkel 2021). For a 101
review of infrastructures that support computational reproducibility see Konkol et al. 102
(2020). Many code notebook tools are built on open source technology, such as Jupyter 103
and MyBinder, and researcher-led efforts to produce code notebook type outputs often 104
use these (Lasser 2020). One relatively new code notebook initiative, Neurolibre, 105
supported by the Canadian Open Neuroscience Platform, is an open access platform 106
hosting notebooks derived from published or preprinted research articles that can be 107
freely modified and re-executed (Boudreau et al. 2021). 108
 109
The potential benefits of these tools – for researchers as readers and authors, for 110
publishers, and the accessibility of science – are numerous. Our focus was on how 111
these tools meet researcher needs for code sharing and reuse, as these needs align 112
with PLOS’ goals to increase the adoption, and benefits, of open science. But the extent 113
to which these tools do meet these needs is unclear from the available literature. 114
Furthermore, the adoption of new tools or workflows for preparing and sharing code 115
would incur costs, in terms of time and effort, for researchers (as authors, readers, 116
editors and peer reviewers) and publishers. For new tools to be widely adopted it is 117
important to understand if additional effort required to adopt new tools is acceptable to 118
users. As a publisher PLOS experiments with solutions that support open science in 119
different communities, and partners with community resources, such as data 120
repositories and preprint servers to achieve this. To this end, rather than creating new 121
solutions, PLOS partnered with Neurolibre to learn more about the value of their 122
interactive code notebooks and research publications, to readers and authors. The 123
results were anticipated to: 124

- Provide a deeper understanding of how researchers share and interact with code 125
- Inform PLOS Computational Biology’s plans for further supporting code sharing 126

and reuse, beyond its mandatory code sharing policy 127
- Inform development of Neurolibre with quantifiable feedback from potential users 128

of the tool on the tools itself and their needs that are related to the features of the 129
tool. 130

- Provide PLOS, and other publishers, with quantitative insights on researchers’ 131
attitudes and experience with interactive article features, to inform future 132
publishing innovation approaches 133

Methods 134

We created a survey in English in Alchemer and distributed it in February and March 135
2021.The survey had three main purposes: 136

1) Understand how researchers interact with code as readers of articles 137
2) Gather feedback on the prototype NeuroLibre notebook version of PLOS 138

Computational Biology articles 139
3) Gain a more detailed understanding of researchers’ abilities to carry out code 140

sharing tasks, how they rate the importance of these tasks and how satisfied they 141
are with their ability to complete the tasks 142

 143
The survey was promoted with an accompanying blog (Cadwallader 2021) and email 144
campaign, which was sent to previous PLOS authors and other PLOS registered users 145
in computational biology related disciplines (n=23,272). The survey (Cadwallader et al. 146
2022) was launched with the blog on the 11th February 2021 and the email campaign 147
followed on the 19th February. The results were exported from Alchemer on 25th March 148
2021. 149
 150
The survey methodology was adapted from our group’s previous recent work (described 151
in Hrynaszkiewicz, Harney & Cadwallader 2021b). Briefly, respondents were asked to 152
answer a series of questions from the perspective of both readers and authors of 153
articles with associated code. To identify if there were opportunities to support 154
researchers with sharing code using new solutions, we asked respondents to rate 155
various code sharing and reuse factors in terms of how important they were to them and 156
how satisfied they were with their ability to complete them. These responses were 157
converted to numerical scores and used to calculate opportunity scores for each factor 158
using the following equation: 159
 160

Opportunity score = Mean importance * (1 - mean satisfaction/100) 161
 162
Opportunity scores above 25 indicate “better than neutral” or marginal opportunities and 163
scores above 36 we regard as good opportunities. This approach is more nuanced than 164
simply using quadrants and looking for high importance/low satisfaction scores. 165
 166
In addition, Neurolibre created two prototype interactive notebook versions (NeuroLibre 167
2020a, 2020b) of articles published in PLOS Computational Biology (Larremore 2019, 168
Tampuu et al. 2019), so they could be shared with the community and their feedback 169

janosch

janosch
Were the results also published/archived? No word about raw data
availability

sought on the value and features of the interactive format. Survey respondents were 170
asked to give feedback on one of these prototypes. 171

Ethical considerations 172

We did not obtain approval from a research ethics committee as the research was 173
considered to be low risk and we did not collect sensitive information about the 174
participants. All data were collected anonymously. Participants were informed that their 175
participation in this survey was completely voluntary, and that they were free to 176
withdraw from the study at any time until they submitted their response. Answers were 177
never associated with individual participants and the results only analyzed in aggregate. 178
The data collection procedures and survey tool are compliant with the General Data 179
Protection Regulation 2016/679. 180

Results 181

Respondent demographics 182

The survey received a total of 188 complete responses, with an additional 39 partial 183
responses (some but not all questions answered) and 175 incomplete responses (some 184
but not all demographic questions answered only). 79% of the respondents clicked 185
through from the email campaign link (n=316), which had a 1.4% engagement (click) 186
rate. This analysis will focus on the 188 complete responses. 187
 188
A range of disciplines are represented by the respondents, with a third of respondents 189
being from the computational biology field (Table 1). For those who chose ‘Other’, 13 190
out of 14 respondents were in STEM fields, with Maths related fields being most 191
commonly specified (n=6). One individual was from a social sciences discipline. 192
 193
Responses are skewed more towards researchers with fewer publications, (Figure 1). 194
Respondents were overwhelmingly from Europe (46%) or North America (40%), with 195
very few respondents indicating their location in other geographic regions (Table 2). 196
54% of respondents had previously published in PLOS Computational Biology. 197

When and why researchers access or read code 198

Respondents were asked to answer a set of questions from the viewpoint of a reader of 199
research articles that had associated code to understand how they interacted with code 200
in this setting. Three-quarters (n=141) of the respondents look at code associated with a 201
research paper at least occasionally, with 39% (n=74) looking at code frequently or very 202
frequently. Only 6% (n=12) said they never looked at the associated code (Figure 2). 203
 204

janosch

janosch
Which numbers support that statement?

janosch

janosch
Figure2: Absolute numbers in bars would be better

The degree to which readers from different disciplines look at code associated with 205
research articles is variable, although many of the cohorts included in the survey results 206
are small (Figure 3). Of the largest cohorts surveyed, those in the Biology and Life 207
Sciences look at code associated with articles less frequently than in Computational 208
Biology and Bioinformatics. Lower levels of looking at code are also seen in the 209
Medicine and Health Sciences cohort although this is a smaller group (n=18). 210
 211
Respondents were asked why they look at code associated with published articles. Free 212
text answers were provided by 178 respondents. Answers were categorised to identify 213
general trends, with the majority of respondents (n=100) giving two or more reasons for 214
looking at the code. 215

● 125 (70%) respondents look at code to aid their understanding of the article. For 216
example, 113 respondents (63%) specified that they wish to directly verify the 217
code or examine its use in the context of the research presented and 38 218
respondents (21%) look at the code to better understand the methods described 219
in the article, e.g. what parameters were selected. 220

● 86 (48%) respondents gave answers that fell into the ‘reuse’ category, e.g. 221
directly reusing the code (62 responses/35%) and reusing selected parts of the 222
code (27 responses/15%). Other reuse reasons were using the code as an 223
example in teaching (1 response), as a comparison to the reader’s own code (6 224
response/3%) and to reuse the data (1 response). 225

● Respondents also looked at the code to assess the quality of the research (37 226
respondents/21%), giving reasons such as to check for minimal standards (8 227
responses/4%), for trust or transparency reasons (5 responses/3%) and replicate 228
the analysis using their own data (21 responses/12%). 229

● Reasons linked to discovery were also given by 5 respondents (3%), for example 230
finding new Github repositories of interest and looking for novel code. 231

 232

The usefulness of methods for accessing or reading code 233

Respondents were asked how useful they found various methods of accessing code 234
associated with a research article, when considering the 6 months before they 235
completed the survey . Not all respondents had encountered the methods specified. 236
Using a ‘Link to a code repository’ was the most common method (encountered by 237
98%), followed by ‘link to a website’ (88%) and ‘available on request’ (87%) (Figure 4). 238
A link to archived code, that is, a snapshot of code deposited in a generalist repository 239
was encountered by 72% of respondents. Links to code notebooks were encountered 240
by 66% and executable code capsules by 40%. The methods were not defined for 241
respondents, although they had been asked to look at a prototype notebook before 242
answering the questions. 243

 244
‘Link to code repository’ was rated as the most useful method – both in terms of the 245
number of respondents who rated it ‘extremely’ or ‘very useful’, and the number who 246
rated it as ‘not at all useful’ (Figure 5). Accessing code that is ‘available on request’ was 247
rated as least useful (based on number of ‘not at all useful’). 248
 249
The five-point unipolar scale used in this question can be mapped to a value from 0 to 250
100, with 0 equalling ‘not at all useful’ and 100 equalling ‘extremely useful’. ‘I have not 251
encountered this method of sharing’ responses were not scored. Taking the mean rating 252
for all the methods (Figure 6), the most commonly encountered method (link to a code 253
repository), is also the most useful. The mean scores given were: to code notebooks 254
(69.9 +/-5.3 (95% CI)); link to archived code (64.5 +/-4.4 (95% CI)); link to website (52.3 255
+/-4.2 (95% CI)); and executable code capsules (50.8 +/-8.9 (95% CI)). The 95% 256
confidence intervals for code capsules and link to a website (41.9-59.7 and 48.1-56.5 257
respectively) do not overlap those for code notebooks and archived code (64.6-75.1 and 258
60.0-68.9 respectively). 259
 260
The reasons why researchers favoured certain methods of accessing code were 261
gathered via a free text question. The most common reasons, which all received 262
between 18 and 10 mentions, were (in order of number of mentions): 263

- Ability to see new versions of the code (most associated with code repositories1) 264
- Quick to access the code (most associated with code repositories) 265
- The method allows exploration of the code, which aids understanding (most 266

associated with notebooks) 267
- The method is associated with good documentation/README files (most 268

associated with code repositories) 269
- The practicality of the method (most associated with code repositories) 270
- The method provides long term access to the code (most associated with 271

archived code2) 272
- The method allows for reproduction of results (most associated with code 273

repositories and notebooks) 274
- It is an established method (most associated with code repositories) 275

Features of code notebooks that are useful when accessing or reading code 276

All respondents were then asked to rate the importance of various features of the 277
Neurolibre prototype notebook (NeuroLibre 2020a) using a 5-point unipolar scale, or 278

1 Github was the most highly named code repository in all areas of the survey. Bitbucket had a small
number of mentions by name.
2 Zenodo was the most highly named archive repository in all areas of the survey. OSF was also
mentioned in this context.

janosch

janosch

janosch

janosch

janosch
number for “link to code repo” is missing

selected that they did not use the feature. Converting these responses to numerical 279
scores on a scale of 0 to 100 and taking the mean (Table 3) gives us a sense of the 280
features readers value the most. The top two features – ‘having all the code, data and 281
figures in one place’ and ‘knowing the code is running in the right environment’ – are not 282
features unique to code notebooks. Features related to the interactivity elements of the 283
notebook, e.g. ability to change parameters of the figures, had mean scores in the low 284
to mid 60s. The lowest scoring feature was ‘having extra figures included that were not 285
in the original paper’. 286

Importance and satisfaction of factors associated with sharing code from an author’s 287
perspective 288

Importance and satisfaction responses were converted to numerical scores as 289
described in the Methods section. All factors scored above 50 for mean importance, 290
with standard deviations ranging between 20.6 and 33.3 (Table 4 and Figure 7). ‘Ability 291
to share my code with good accompanying documentation’ received the highest mean 292
importance score (82.2, SD: 20.6) and was also fairly well satisfied (72.2 , SD: 23.2). All 293
of the factors have a mean satisfaction score above 50, although the standard 294
deviations all range between 23.2 and 28.8. The lowest scoring factors are ‘Readers 295
can easily run the code in the correct environment’ (mean satisfaction score 55.4 , SD: 296
28.0) and ‘The data and code are in the same place’ (mean satisfaction score 60.4 , SD: 297
28.8). These are both considered important factors (means scores 76.1 , SD: 23.8 and 298
73.0 , SD: 28.0 respectively). These are the only two factors that have an opportunity 299
score above 25, although they are not above 36, and therefore present only a marginal 300
opportunity. 301

Time spent on preparing code as authors 302

The survey also asked questions about the amount of time authors spent preparing to 303
share their code. The majority of respondents spend more than one day preparing code 304
and this observation holds true when it is separated into cohorts based on the number 305
of papers published (Figure 8). The researchers with the most papers (>50) are most 306
likely to take more than one week to prepare their code for sharing, whereas the most 307
common response for researchers with fewer papers (<50) was more than one day but 308
less than one week. This may be a reflection on the number of additional constraints on 309
time felt by more established, i.e. published, researchers, such as teaching or 310
supervision of students. 311

Time authors are willing to spend improving their methods of sharing code 312

Respondents were also asked how much extra time they would be willing to spend on 313
using a new tool to make the code easier to read and run. This question was chosen as 314

our preliminary interviews with researchers suggested that making code easier to run 315
and read for others was important for authors, which is supported by the satisfaction 316
and importance scores seen in this survey (Table 4 and Figure 7). Answers were varied, 317
with the top three responses being ‘more than one day’ (36%), ‘a day’ (21%) and ‘a 318
couple of hours’ (20%). There does not appear to be a trend if the respondents are split 319
into cohorts based on the number of previous publications (Figure 9). However, those 320
who already spend more than a day preparing their code are more likely to spend extra 321
time on a new tool to improve their code. 322
 323

 324

Discussion 325

What do readers value and why? 326

The findings from this survey show the most prevalent reason for readers looking at 327
code was for verification or examination purposes, with 70% of respondents looking at 328
the code to aid their understanding of the article. In journals where word limits apply, the 329
reproducibility of the research can be compromised if methodological details -- in this 330
case computational methods -- are not fully detailed (Samota & Davey 2021; Haddaway 331
& Verhoeven 2015) and it is unsurprising, therefore, that researchers commonly look at 332
code to aid their understanding of the work. The number of respondents who wished to 333
rerun (rather than examine) the code for reproducibility reasons was lower (~16%), 334
which has also been observed in other studies (Peterson & Panofsky 2021). 335
 336
The desire to look at the code rather than run it aligns well with the ranking of a code 337
repository, such as Github, as the most useful method for accessing code by readers 338
(only 1% ranked it as not at all useful), as the presentation of code in these repositories 339
lends itself to exploration or examination but not to immediately rerunning or interacting 340
with code. This survey did not map participants’ workflows so they could be 341
downloading and running code locally, although this is not always easy or possible 342
(Samota & Davey 2021). 98% of respondents had encountered code shared via 343
repositories and this prevalence is perhaps a factor in its high usefulness scores as it is 344
widely used by researchers in computational disciplines. The high encounter rate 345
combined with the high usefulness scores indicates that generally readers are satisfied 346
with the most common methods of code sharing. 347
 348
The survey results also show best practice for code sharing (depositing code in an 349
archive repository) has been encountered by 72% of our respondents. This is a higher 350
percentage than seen in our previous research on data sharing practices where 56% 351
deposit data in a repository. With both code and data, often researchers aren’t following 352

what is considered to be best practice (using repositories) but are satisfied with their 353
ability to share data, from their perspective (Hrynaszkiewicz et al. 2021b). 354
 355
At the other end of the scale (discounting the “available on request” option which was 356
viewed very negatively), executable code capsules had the lowest mean usefulness 357
score of all the methods presented (50.8) whereas code notebooks scored higher 358
(69.9). This is interesting given that they have similar features and aims and raises the 359
question: what are notebooks doing better than code capsules, or what needs are they 360
meeting that capsules aren’t? Unfortunately, we cannot answer that question directly 361
with our survey data. 362
 363
The survey question on why readers favoured certain methods of access give some 364
insight into user needs when it comes to accessing code. Versioning, good 365
documentation and long term access are elements considered best practice for code 366
sharing (Lamprecht et al. 2020) and were all amongst the most common reasons given 367
for preferred methods. The other reasons relate to what readers wish to do with the 368
code – explore the code and/or reproduce the results in a quick and accessible manner 369
– and are what these methods of code sharing are good at facilitating. 370

Prototype notebook features 371

Respondents were asked to rank the importance of a range of features they may have 372
encountered in the prototype notebook, however, many of these features are not 373
exclusive to this notebook and can be found in other code sharing tools. Presenting the 374
prototype notebooks may have affected the respondents answers to the usefulness of 375
the features, however, given that a third of respondents had not encountered a 376
notebook associated with a research article in the last 6 months the prototype did offer 377
some useful context to those participants and gave all respondents a similar experience 378
to guide their answers. Readers scored ‘having all the code, data and figures in one 379
place’ -- a feature also present in tools such as code capsules -- as the most important 380
(mean score 81.0/100). The usefulness of having code, data and figures in one place 381
aligns with how information is often presented in a published article: figures are together 382
with the text, and the data and code are shared (if they are shared) on a different, or 383
multiple different, platforms making the research outputs dispersed. This issue could be 384
solved in a number of different ways, either through technological solutions (such as 385
notebooks, executable code capsules or imbedded repository widgets on article pages), 386
publishing practices (such as requiring authors to share outputs in a certain way) or 387
through changing researcher behaviour so they share their research as a single 388
package of text, figures, data and code regardless of any mandates or policies they 389
have to comply with or solutions offered by publishers. 390
 391

janosch

janosch

janosch
Where does this number come from? Fig 3?

The second highest scoring feature (mean score 73.5/100) was ‘knowing the code is 392
running in the right environment’. Samota & Davey (2021) found that even researchers 393
trained in computational methods had regularly encountered technical barriers to 394
computational reproducibility. Containerisation -- packaging the code and all the 395
components needed to run it correctly -- is one solution to this problem. It is interesting 396
that this factor scores so high, yet so few respondents wish to run the code, or rated 397
solutions, such as notebooks and executable code capsules, highly for usefulness. 398
Authors scored their satisfaction with their ability to ensure readers are running their 399
code in the correct environment the lowest out of all factors we surveyed (mean 55.4 , 400
SD: 28.0). Although this is the lowest score, it is still above 50 and so there is little 401
opportunity to better support this activity. It is not clear from our survey findings that 402
offering a tool to assist with readers running their code in the correct environment would 403
meaningfully change the way readers interact with code although perhaps the possibility 404
of verifying reproducibility will increase confidence in the results (Nosek et al. 2015). 405
 406
The ability to interact with the code inline was ranked as the third most important feature 407
of the prototype code notebook, which supports readers’ desire to run, and possibly 408
modify, the code in the correct environment. Conversely Samota & Davey (2021) found 409
a "link to the source code of interactive figures" the least valued feature out of the list in 410
the survey. While this may suggest that readers don’t wish to run the code, it may also 411
be an indication that readers don’t like having to access links to code (contrary to our 412
findings that researchers like accessing code via repositories). The interactive features, 413
such as zooming in on data points or changing parameters, had lower importance 414
scores, in the low to mid 60s, falling between the moderately important (50/100) and 415
very important (75/100) rating. No one feature of the notebook stands out as being the 416
main reason why respondents would look at a notebook like the one tested - those who 417
scored the likelihood of looking at the notebook highly, generally scored each of the 418
features highly as well. 419

Other opportunities to support authors 420

Authors’ ability to share the code with good documentation had the highest mean 421
importance score (82.2 , SD: 20.6) and a high satisfaction score (mean 72.2 , SD:23.2) 422
and good documentation was commonly given as a reason by readers for their 423
preferred method of accessing data. In another survey of computational biology authors 424
(Hrynaszkiewicz et al. 2021a), we found that there was a disconnect between how 425
satisfied researchers are with their ability to share code well and the ability of others to 426
share code. That data suggest authors regard themselves as competent at this task but 427
view the competence of others less favourably. This is an area of interest that is worth 428
future exploration to understand if this perceived gap in skills is genuine. 429

Comparing policy to technology as solutions for increasing code sharing 430

There is evidence from our survey and others (e.g. Perkel 2017, Samota & Davey 2021) 431
that researchers regard the ability to interact with code published in its complete 432
software environment as beneficial. Using containerisation tools, such as Docker, have 433
been recommended for increasing the reproducibility of research (Burton et al. 2020) 434
but it has also been acknowledged that this requires skills that not many researchers in 435
this field have (Kim, Poline & Dumas 2018). Platforms that utilise this technology have 436
been adopted or trialled by several publishers, for example Code Ocean has been 437
deployed by some Springer Nature journals, and some Taylor & Francis journals. 438
 439
However, it has been acknowledged that authors already using Github and Zenodo may 440
feel that the creation of a code capsule is redundant (Cheifet 2021). The trial of code 441
capsules at several Nature journals demonstrated that peer reviewers were verifying the 442
code and reproducing the results of the manuscripts they were assessing (Cheifet 2021) 443
but it is unclear to what extent this was above the level of reviewer engagement seen 444
before the trial or what proportion of reviewers were engaging in this type of activity. Our 445
survey was focused on the needs of readers and authors rather than peer reviewers, 446
but showed that readers have mixed feelings about the usefulness of executable code 447
capsules. 448
 449
Samota & Davey (2021) state that top-down requirements from journals to release 450
reproducible data and code will in part rely on the availability of technical solutions that 451
are accessible and useful to most scientists. In one sense, these solutions are already 452
available in the form of code repositories, although we acknowledge this doesn’t enforce 453
reproducible code and data sharing because the code is not curated or reviewed. 454
However, technology is only one barrier and the journals that have implemented 455
enhanced solutions are, to our knowledge, yet to show that these are making a 456
significant difference to the quality or amount of code that is shared. Additionally, the 457
added benefit, as opposed to the perceived benefit, that they bring to authors and 458
readers versus the use of other methods of sharing, has not been demonstrated. On the 459
other hand, simply sharing the code underlying a publication in a repository has been 460
shown to bring benefits to authors, such as acting as a signal of credibility (McKiernan 461
et al. 2016) and increased citations of the article (Vandewalle 2012), which has similarly 462
been shown for data sharing (Piwowar, Day & Fridsma 2007, Colavizza et al. 2020). 463
 464
Whilst quality and reusability of code is very important for increasing the reproducibility, 465
trust and transparency of research; the lack of shared code is still a huge issue that 466
needs to be overcome. Serghiou et al. (2021) found that 70% of publishers have never 467
published an article with shared code when analysing over 2.7 million articles in 468
PubMed Central (PMC), and only 2.5% of published articles share code. PLOS journals 469

have higher code sharing rates, with 41% of PLOS Computational Biology article 470
sharing code in 2019 (Serghiou 2021). This suggests that the average researcher has 471
little desire for sharing code. 472
 473

Additional time to prepare code for sharing 474

Additional effort is required to produce interactive and executable versions of published 475
research currently but our survey showed that even for those researchers already 476
engaged in code sharing, the majority (64%) would not be willing to spend more than a 477
day using a tool that makes code easier to read and run. This suggests that the average 478
researcher may be unwilling to incur additional costs (in time, effort or expenditure) 479
themselves to achieve these outputs, supporting a need for different models for funding 480
and producing these outputs – at least until such time as they can be produced more 481
efficiently. Asking people to predict their future behaviour can lead to overestimation of 482
positive effects (Wood et al. 2016) and therefore it is possible that the number of 483
researchers unwilling to spend more than a day on a new tool is actually higher than 484
64%. During the pilot at Nature journals, the creation of a code capsule took a median 485
time of nine days (Nature Biotechnology 2019). Time has been found to be a barrier to 486
sharing other research outputs, such as data, in other studies as well (see, amongst 487
others, Perrier, Blondal & MacDonald 2020, Tenopir et al 2020, Digital Science et al. 488
2021) 489
 490
Given the mixed feelings of researchers regarding features of interactive notebooks that 491
are not related to code access, and the lack of desire to invest the required effort to 492
produce them, to support the goal of increasing the availability of code associated with 493
publications, PLOS Computational Biology has opted for the time being to focus on 494
policy and guidance rather than technological solutions to improve code sharing. The 495
importance of these cultural solutions are often underestimated in relation to 496
reproducible code (Samota & Davey 2021). At PLOS Computational Biology, we 497
observed a high degree of voluntary code sharing (Cadwallader et al. 2021) before 498
implementation of a mandatory policy, and preliminary results of the impact of the policy 499
on the amount of code shared look positive in line with what has been learnt from 500
implementing mandatory versus optional but encouraged data sharing policy, with the 501
latter causing little change to the status quo (Christensen et al. 2019, Colavizza et al 502
2020, Statham et al. 2020). We are focusing on supporting good foundational 503
behaviours by authors that we know are important, such as sharing code with good 504
documentation and metadata (Kim et al. 2018, Stodden et al 2016). As more code 505
associated with publications is made available as a result of these activities, we 506
anticipate there will be more opportunities to understand how the quality, reusability, 507

and interactivity of shared code affect reproducibility – and the role of technological 508
solutions. 509

Limitations 510

One possible limitation of this study is non-response bias. As no incentive was offered 511
to complete the survey, respondents who are already motivated to engage with code 512
sharing may have been more likely to participate. The survey was also directed at 513
computational biologists and related disciplines therefore may not be applicable to all 514
disciplines. Also, there is an uneven distribution in terms of the number of published 515
papers, with most respondents having published fewer than 20 papers, which may limit 516
the generalisability of the findings to other researchers at other career stages. The 517
geographical spread of our respondents also limits the generalisability of our findings. 518
The survey did not give explanations of the different methods of code sharing and 519
assumed the respondents to be familiar with terms such as “code capsule” and 520
“archived in an open access repository”. 521

Conclusions 522

The survey findings have given some valuable insights into researcher behaviour and 523
attitudes towards code sharing and more interactive, executable or reproducible 524
publication formats -- which require much effort to create. We have observed a 525
“negative result” with regard to clear opportunities for implementing new features and 526
services in the publishing workflow, but we have a better understanding of why 527
researchers look at code – this predominantly seems to be to better understand the 528
article and code used. This is an issue that could be addressed with multiple potential 529
solutions that we did not evaluate, such as reporting guidelines for methods of relevant 530
studies. Further, the results suggest that researchers are on the whole satisfied with 531
code being shared via a code repository, such as Github, because this is a well used 532
tool that gives the user freedom to use the code how they wish (e.g. download, fork, 533
read through). Good accompanying documentation is important to researchers and 534
whilst they think their ability to produce documentation is good, the readers of their code 535
may disagree. 536
 537
Authors of code have variable practices when it comes to the amount of time they 538
spend preparing code. It is unclear if those spending minimal amounts of time preparing 539
code are doing so because their code is already well prepared for sharing, or because 540
they do not attach much importance to spending time preparing their code as it is not 541
regarded as as necessary for career advancement, or because they do not have the 542
time to spend on preparation. The NeuroLibre interactive code notebook demonstrated 543
that readers find many of the features valuable and overall they are generally supportive 544
of notebooks but do not see them as revolutionary in the way code is shared. For 545

publishers wishing to experiment with or implement interactive features or versions of 546
articles, it is important to note that researchers (authors) are likely to need additional 547
support or funding to be incentivised to create these outputs. For publishers wishing to 548
increase code sharing, policy may be a more effective solution, in the computational 549
biology community. 550

Acknowledgements 551

The authors thank James Harney, Gary Beardmore, Helen McDonald and Philip Mills 552
from PLOS for their contributions to the survey work. We also thank James Harney, 553
Marcel LaFlamme and Dan Morgan from PLOS and Professor Jason Papin, University 554
of Virginia and PLOS Computational Biology co-Editor-in-Chief, for comments on an 555
earlier version of this manuscript. We would also like to thank NeuroLibre for the 556
creation of the prototype notebooks and engaging in experimentation with us. 557

Bibliography 558

Akhlaghi M, Infante-Sainz R, Roukema BF, Khellat M, Valls-Gabaud D, Baena-559

Gallé R. 2021. Toward Long-Term and Archivable Reproducibility. Computing 560

in Science & Engineering 23:82–91. DOI: 10.1109/MCSE.2021.3072860. 561

Boudreau M, Poline J-B, Bellec P, Stikov N. 2021. On the open-source landscape 562

of PLOS Computational Biology. PLOS Computational Biology 17:e1008725. 563

DOI: 10.1371/journal.pcbi.1008725. 564

Burton M, Lavin MJ, Otis J, Weingart SB. 2020. Digits: Two Reports on New Units 565

of Scholarly Publication. The Journal of Electronic Publishing 22. DOI: 566

10.3998/3336451.0022.105. 567

Cadwallader L. 2021.Exploring code notebooks through community focused 568

collaboration. Available at https://theplosblog.plos.org/2021/02/exploring-code-569

notebooks-through-community-focused-collaboration/ (accessed January 14, 570

2022). 571

Cadwallader L, Hrynaszkiewicz I, Harney J. 2022.: Data from: A survey of 572

researchers’ code sharing and reuse practices and assessment of interactive 573

notebook prototypes. figshare. Dataset. DOI: 10.6084/m9.figshare.19122611 574

Cadwallader L, Papin JA, Gabhann FM, Kirk R. 2021. Collaborating with our 575

community to increase code sharing. PLOS Computational Biology 576

17:e1008867. DOI: 10.1371/journal.pcbi.1008867. 577

Cheifet B. 2021. Promoting reproducibility with Code Ocean. Genome Biology 578

22:65. DOI: 10.1186/s13059-021-02299-x. 579

Christensen G, Dafoe A, Miguel E, Moore DA, Rose AK. 2019. A study of the 580

impact of data sharing on article citations using journal policies as a natural 581

experiment. PLOS ONE 14:e0225883. DOI: 10.1371/journal.pone.0225883. 582

Colavizza G, Hrynaszkiewicz I, Staden I, Whitaker K, McGillivray B. 2020. The 583

citation advantage of linking publications to research data. PLOS ONE 584

15:e0230416. DOI: 10.1371/journal.pone.0230416. 585

Digital Science, Simons N, Goodey G, Hardeman M, Clare C, Gonzales S, Strange 586

D, Smith G, Kipnis D, Iida K, Miyairi N, Tshetsha V, Ramokgola R, Makhera P, 587

Barbour G. 2021. The State of Open Data 2021. Digital Science. DOI: 588

10.6084/m9.figshare.17061347.v1. 589

Fernández-Juricic E. 2021. Why sharing data and code during peer review can 590

enhance behavioral ecology research. Behavioral Ecology and Sociobiology 591

75:103, s00265-021-03036–x. DOI: 10.1007/s00265-021-03036-x. 592

Haddaway NR, Verhoeven JTA. 2015. Poor methodological detail precludes 593

experimental repeatability and hampers synthesis in ecology. Ecology and 594

Evolution 5:4451. DOI: 10.1002/ece3.1722. 595

Hrynaszkiewicz I. 2020. Publishers’ Responsibilities in Promoting Data Quality and 596

Reproducibility. In: Bespalov A, Michel MC, Steckler T eds. Good Research 597

Practice in Non-Clinical Pharmacology and Biomedicine. Handbook of 598

Experimental Pharmacology. Cham: Springer International Publishing, 319–599

348. DOI: 10.1007/164_2019_290. 600

Hrynaszkiewicz I, Harney J, Cadwallader L. 2021a. A survey of code sharing 601

practice and policy in computational biology. DOI: 10.31219/osf.io/f73a6. 602

Hrynaszkiewicz I, Harney J, Cadwallader L. 2021b. A Survey of Researchers’ 603

Needs and Priorities for Data Sharing. Data Science Journal 20:31. DOI: 604

10.5334/dsj-2021-031. 605

Kim Y-M, Poline J-B, Dumas G. 2018. Experimenting with reproducibility: a case 606

study of robustness in bioinformatics. GigaScience 7. DOI: 607

10.1093/gigascience/giy077. 608

Konkol M, Nüst D, Goulier L. 2020. Publishing computational research -- A review 609

of infrastructures for reproducible and transparent scholarly communication. 610

Research Integrity and Peer Review 5:10. DOI: 10.1186/s41073-020-00095-y. 611

Lamprecht A-L, Garcia L, Kuzak M, Martinez C, Arcila R, Martin Del Pico E, 612

Dominguez Del Angel V, van de Sandt S, Ison J, Martinez PA, McQuilton P, 613

Valencia A, Harrow J, Psomopoulos F, Gelpi JL, Chue Hong N, Goble C, 614

Capella-Gutierrez S. 2020. Towards FAIR principles for research software. 615

Data Science 3:37–59. DOI: 10.3233/DS-190026. 616

Larremore DB. 2019. Bayes-optimal estimation of overlap between populations of 617

fixed size. PLOS COMPUTATIONAL BIOLOGY 15. DOI: 618

10.1371/journal.pcbi.1006898. 619

Lasser J. 2020. Creating an executable paper is a journey through Open Science. 620

Communications Physics 3:1–5. DOI: 10.1038/s42005-020-00403-4. 621

McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, McDougall D, 622

Nosek BA, Ram K, Soderberg CK, Spies JR, Thaney K, Updegrove A, Woo KH, 623

Yarkoni T. 2016. How open science helps researchers succeed. eLife 624

5:e16800. DOI: 10.7554/eLife.16800. 625

Nature Biotechnology. 2019. Changing coding culture. Nature Biotechnology 626

37:485–485. DOI: 10.1038/s41587-019-0136-9. 627

NeuroLibre. 2020a. Bayes-optimal estimation of overlap between populations of 628

fixed size. Available at https://notebook-629

factory.github.io/BayesianRepetoireOverlap/YOUR%20URL/BayesianRepetoire630

Overlap/01Introduction/intro.html (accessed February 22, 2022). 631

NeuroLibre. 2020b. Efficient neural decoding of self-location with a deep recurrent 632

network. Available at https://notebook-633

factory.github.io/NeuralDecoding_book/YOUR%20URL/NeuralDecoding_book/i634

ntro.html (accessed February 22, 2022). 635

Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, Buck S, 636

Chambers CD, Chin G, Christensen G, Contestabile M, Dafoe A, Eich E, 637

Freese J, Glennerster R, Goroff D, Green DP, Hesse B, Humphreys M, 638

Ishiyama J, Karlan D, Kraut A, Lupia A, Mabry P, Madon T, Malhotra N, Mayo-639

Wilson E, McNutt M, Miguel E, Paluck EL, Simonsohn U, Soderberg C, 640

Spellman BA, Turitto J, VandenBos G, Vazire S, Wagenmakers EJ, Wilson R, 641

Yarkoni T. 2015. Promoting an open research culture. Science 348:1422–1425. 642

DOI: 10.1126/science.aab2374. 643

Perkel JM. 2017.TechBlog: Interactive figures address data reproducibility : 644

Naturejobs Blog. Available at 645

http://blogs.nature.com/naturejobs/2017/10/20/techblog-interactive-figures-646

address-data-reproducibility/ (accessed January 7, 2022). 647

Perkel JM. 2019. Make code accessible with these cloud services. Nature 575:247–648

248. DOI: 10.1038/d41586-019-03366-x. 649

Perkel JM. 2021. Reactive, reproducible, collaborative: computational notebooks 650

evolve. Nature 593:156–157. DOI: 10.1038/d41586-021-01174-w. 651

Perrier L, Blondal E, MacDonald H. 2020. The views, perspectives, and 652

experiences of academic researchers with data sharing and reuse: A meta-653

synthesis. PLOS ONE 15:e0229182. DOI: 10.1371/journal.pone.0229182. 654

Peterson D, Panofsky A. 2021. Self-correction in science: The diagnostic and 655

integrative motives for replication. Social Studies of Science 51:583–605. DOI: 656

10.1177/03063127211005551. 657

Piwowar HA, Day RS, Fridsma DB. 2007. Sharing Detailed Research Data Is 658

Associated with Increased Citation Rate. PLOS ONE 2:e308. DOI: 659

10.1371/journal.pone.0000308. 660

Samota EK, Davey RP. 2021. Knowledge and Attitudes Among Life Scientists 661

Toward Reproducibility Within Journal Articles: A Research Survey. Frontiers in 662

Research Metrics and Analytics 6:35. DOI: 10.3389/frma.2021.678554. 663

Seibold H, Czerny S, Decke S, Dieterle R, Eder T, Fohr S, Hahn N, Hartmann R, 664

Heindl C, Kopper P, Lepke D, Loidl V, Mandl M, Musiol S, Peter J, Piehler A, 665

Rojas E, Schmid S, Schmidt H, Schmoll M, Schneider L, To X-Y, Tran V, Völker 666

A, Wagner M, Wagner J, Waize M, Wecker H, Yang R, Zellner S, Nalenz M. 667

2021. A computational reproducibility study of PLOS ONE articles featuring 668

longitudinal data analyses. PLOS ONE 16:e0251194. DOI: 669

10.1371/journal.pone.0251194. 670

Serghiou S, Contopoulos-Ioannidis DG, Boyack KW, Riedel N, Wallach JD, 671

Ioannidis JPA. 2021. Assessment of transparency indicators across the 672

biomedical literature: How open is open? PLOS Biology 19:e3001107. DOI: 673

10.1371/journal.pbio.3001107. 674

Serghiou, Stylianos. 2021. Αssessment of transparency indicators across the 675

biomedical literature: how open is open? DOI: 10.17605/OSF.IO/E58WS. 676

Statham EE, White SA, Sonwane B, Bierer BE. 2020. Primed to comply: Individual 677

participant data sharing statements on ClinicalTrials.gov. PLOS ONE 678

15:e0226143. DOI: 10.1371/journal.pone.0226143. 679

Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, Heroux MA, 680

Ioannidis JPA, Taufer M. 2016. Enhancing reproducibility for computational 681

methods. Science 354:1240–1241. DOI: 10.1126/science.aah6168. 682

Tampuu A, Matiisen T, Olafsdottir HF, Barry C, Vicente R. 2019. Efficient neural 683

decoding of self-location with a deep recurrent network. PLOS 684

COMPUTATIONAL BIOLOGY 15. DOI: 10.1371/journal.pcbi.1006822. 685

Tenopir C, Rice NM, Allard S, Baird L, Borycz J, Christian L, Grant B, Olendorf R, 686

Sandusky RJ. 2020. Data sharing, management, use, and reuse: Practices and 687

perceptions of scientists worldwide. PLOS ONE 15:e0229003. DOI: 688

10.1371/journal.pone.0229003. 689

Tsang E, Maciocci G. 2020.Welcome to a new ERA of reproducible publishing. 690

Available at https://elifesciences.org/labs/dc5acbde/welcome-to-a-new-era-of-691

reproducible-publishing (accessed January 14, 2022). 692

Ulwick AW, Osterwalder A. 2016. Jobs to be done: theory to practice. Houston, TX: 693

Idea Bite Press. 694

Van den Eynden V, Knight G, Vlad A, Radler B, Tenopir C, Leon D, Manista F, 695

Whitworth J, Corti L. 2016. Survey of Wellcome researchers and their attitudes 696

to open research. :1843500 Bytes. DOI: 10.6084/M9.FIGSHARE.4055448.V1. 697

Vandewalle P. 2012. Code Sharing Is Associated with Research Impact in Image 698

Processing. Computing in Science Engineering 14:42–47. DOI: 699

10.1109/MCSE.2012.63. 700

Wood C, Conner M, Miles E, Sandberg T, Taylor N, Godin G, Sheeran P. 2016. The 701

Impact of Asking Intention or Self-Prediction Questions on Subsequent 702

Behavior: A Meta-Analysis. Personality and Social Psychology Review 20:245–703

268. DOI: 10.1177/1088868315592334. 704

