Chemistry, taxonomy and ecology of the potentially chimpanzee-dispersed *Vepris teva* sp.nov. (Rutaceae) endangered in coastal thicket in the Congo Republic (#65195)

First revision

Guidance from your Editor

Please submit by 28 May 2022 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 5 Figure file(s)
- 1 Table file(s)
- 2 Raw data file(s)

Custom checks

Field study

- Have you checked the authors <u>field study permits</u>?
- Are the field study permits appropriate?

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Chemistry, taxonomy and ecology of the potentially chimpanzee-dispersed *Vepris teva* sp.nov. (Rutaceae) endangered in coastal thicket in the Congo Republic

Moses K Langat 1, Teva Kami 2, Martin Cheek Corresp. 1

Corresponding Author: Martin Cheek Email address: m.cheek@kew.org

Continuing a survey of the chemistry of species of the largely continental African genus Vepris, we investigate a species previously referred to as Vepris sp. 1 of Congo. From the leaves of *Vepris* sp. 1 we report six compounds. The compounds were three furoquinoline alkaloids, kokusaginine (1), maculine (2), and flindersiamine (3), two acridone alkaloids, arborinine (4) and 1-hydroxy-3-methoxy-10-methylacridone (5), and the triterpenoid, ßamyrin (6). Compounds 1-4 are commonly isolated from other Vepris species, compound 5 has been reported before once, from Malagasy Vepris pilosa, while this is the first report of ß-amyrin from Vepris. This combination of compounds has never before been reported from any species of Vepris. We test the hypothesis that Vepris sp.1 is new to science and formally describe it as Vepris teva, unique in the genus in that the trifoliolate leaves are subsessile, with the median petiolule far exceeding the petiole in length. Similar fleshyleathery 4-locular syncarpous fruits are otherwise only known in the genus in *Vepris* glaberrima (formerly the monotypic genus Oriciopsis Engl.), a potential sister species, but requiring further investigation to confirm this phylogenetic position. We briefly characterise the unusual and poorly documented Atlantic coast equatorial ecosystem, where Vepris teva is restricted to evergreen thicket on white sand, unusual in a genus usually confine to evergreen forest. This endemic-rich ecosystem with a unique amphibian as well as plants, extends along the coastline from the mouth of the Congo River to southern Rio Muni, a distance of about 1000 km, traversing five countries. We map and illustrate Vepris teva and assess its extinction risk as Endangered (EN B1ab(iii)+B2ab(iii)) using the IUCN 2012 standard. Only three locations are known, and threats include port and oil refinery construction and associated activities, with only one protected location, the Jane Goodall Institute's Tchimpounga Reserve. Initial evidence indicates that the seeds of Vepris teva are dispersed by chimpanzees, previously unreported in the genus

Science, Royal Botanic Gardens, Kew, Richmond, United Kingdom

² Herbier National, Institut de Recherche National en Sciences Exactes et Naturelles (IRSEN), Brazzaville, Republic of Congo

1 2 3	Chemistry, Taxonomy and Ecology of the potentially chimpanzee-dispersed Vepris teva sp.nov. (Rutaceae) Endangered in coastal thicket in the Congo Republic			
4 5 6 7	Moses Langat ¹ , Teva Kami ² & Martin Cheek ¹			
8	¹ Science Dept., Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, United Kingdom			
9 10 11	² Herbier National, Institut de Recherche National en Sciences Exactes et Naturelles (IRSEN), Cité Scientifique de Brazzaville, République du Congo			
12 13 14	Corresponding author: Martin Cheek ¹			
15 16 17	Email address: m.cheek@kew.org			
18 19 20				
21 22 23				
242526				
27 28				
29 30 31				
32 33 34				
35 36 37				
38 39 40				
41 42				
43 44 45				

56

57

58

59

64

ABSTRACT.

Continuing a survey of the chemistry of species of the largely continental African genus Vepris, we investigate a species previously referred to as *Vepris* sp. 1 of Congo.

From the leaves of *Vepris* sp. 1 we report six compounds. The compounds were three

furoquinoline alkaloids, kokusaginine (1), maculine (2), and flindersiamine (3), two acridone 60

alkaloids, arborinine (4) and 1-hydroxy-3-methoxy-10-methylacridone (5), and the triterpenoid, 61

62 β-amyrin (6). Compounds 1-4 are commonly isolated from other Vepris species, compound 5

63 has been reported before once, from Malagasy Vepris pilosa, while this is the first report of \(\beta \)-

amyrin from Vepris. This combination of compounds has never before been reported from any

65 species of Vepris.

66 We test the hypothesis that *Vepris* sp.1 is new to science and formally describe it as *Vepris teva*, unique in the genus in that the trifoliolate leaves are subsessile, with the median petiolule far 67 68 exceeding the petiole in length. Similar fleshy-leathery 4-locular syncarpous fruits are otherwise only known in the genus in *Vepris glaberrima* (formerly the monotypic genus *Oriciopsis* Engl.), 69

70 a potential sister species, but requiring further investigation to confirm this phylogenetic

71 position.

72 We briefly characterise the unusual and poorly documented Atlantic coast equatorial ecosystem, 73 where Vepris teva is restricted to evergreen thicket on white sand, unusual in a genus usually 74 confine to evergreen forest. This endemic-rich ecosystem with a unique amphibian as well as 75 plants, extends along the coastline from the mouth of the Congo River to southern Rio Muni, a distance of about 1000 km, traversing five countries. We map and illustrate Vepris teva and 76

assess its extinction risk as Endangered (EN B1ab(iii)+B2ab(iii)) using the IUCN 2012 standard. 77

78 Only three locations are known, and threats include port and oil refinery construction and 79

associated activities, with only one protected location, the Jane Goodall Institute's Tchimpounga

Reserve. Initial evidence indicates that the seeds of *Vepris teva* are dispersed by chimpanzees,

previously unreported in the genus

82 83

84

80

81

Key words. Alkaloids, Jane Goodall Foundation, *Oriciopsis*, TotalEnergies SA, triterpenoids, white sand habitat.

85 86

87 88

INTRODUCTION

- 91 As part of a series of studies of the chemistry of *Vepris* led by the first author, material from a
- 92 Congolese *Vepris* previously referred to in field studies as *Vepris sp.* 1 of Pointe Noire was
- 93 investigated. In this paper we present the chemical results, compare the taxon morphologically
- 94 within *Vepris*, test the hypothesis that this taxon is new to science and formally name it as *Vepris*
- 95 teva Cheek. We also present data on its ecology in coastal thicket on white sand, a poorly known
- and highly threatened ecosystem on the equatorial Atlantic coast of Africa. Initial field
- 97 observations suggest that the seeds of *Vepris teva* are dispersed by chimpanzees.

- 99 Vepris Comm. ex A. Juss. (Rutaceae-Toddalieae), is a genus with 91 accepted species, 23 in
- 100 Madagascar and the Comores and 68 in Continental Africa with one species extending to Arabia
- and another endemic to India (Plants of the World Online, continuously updated). The genus was
- last revised for tropical Africa by *Verdoorn (1926)*. Founded on the Flore du Cameroun account
- of Letouzey (1963a), nine new species were recently described from Cameroon (Onana &
- 104 Chevillotte 2015; Cheek et al., 2018a; Onana et al., 2019; Cheek & Onana 2021; Cheek, Hatt,
- 105 Onana 2021), taking the total in Cameroon to 25 species, the highest number for any country
- globally. The greatest concentration of *Vepris* species in Cameroon is within the Cross-Sanaga
- 107 Interval (*Cheek et al., 2001*) with 15 species of *Vepris* of which nine are endemic to the Interval.
- 100 The Concerned at 1, 2001) with 13 species of vept is of which this are chacine to the filterval
- 108 The Cross-Sanaga has the highest species and generic diversity per degree square in tropical
- 109 Africa (Barthlott et al., 1996; Dagallier et al., 2020) including endemic genera such as
- 110 Medusandra Brenan (Peridiscaceae, Breteler et al., 2015; Soltis et al., 2007). By comparison,
- neighbouring Gabon has just seven species of *Vepris* (*Sosef et al., 200*) and just one species,
- 112 Vepris lecomteana (Pierre) Cheek & T. Heller is listed for Congo-Brazzaville (Plants of the
- World Online, continuously updated), illustrating how under-recorded the Flora of this
- biodiverse country Several Cameroon species are threatened (*Onana & Cheek, 2011*) and in
- one case considered grobally extinct (*Cheek et al., 2018a*), although only two currently appear on
- the IUCN Red List: Vepris lecomteana (Pierre) Cheek & T. Heller (Vulnerable, Cheek, 2004)
- and Vepris trifoliolata (Eng.) Mziray (Vulnerable, World Conservation Monitoring Centre,
- 110 LOON I de CAC:
- 118 1998). In other parts of Africa species are even more highly threatened, e.g., the Critically
- 119 Endangered Vepris laurifolia (Hutch. & Dalziel) O. Lachenaud & Onana of Guinea-Ivory Coast
- 120 (formerly V. felicis Breteler, Cheek 2017a; Lachenaud & Onana, 2021).

121

- 122 In continental Africa, *Vepris* are easily recognised. They differ from all other Rutaceae because
- they have digitately (1–)3(–5)-foliolate (not pinnate) leaves, and unarmed (not spiny) stems. The genus consists of evergreen shrubs and trees, predominantly of tropical lowland evergreen forest,
- but with some species extending into submontane forests and some into drier forests and
- woodland. Vepris species are often indicators of good quality, relatively undisturbed evergreen
- forest since they are not pioneers. New species are steadily coming to light (*Cheek et al., 2019*).

- 129 Species of Vepris in Africa extend from South Africa, e.g. Vepris natalensis (Sond.) Mziray, to
- the Guinean woodland in the fringes of the Sahara Desert (Vepris heterophylla (Engl.)
- Letouzey). Mziray (1992) subsumed the genera Araliopsis Engl., Diphasia Pierre, Diphasiopsis
- 132 Mendonça, Oricia Pierre, Oriciopsis Engl., Teclea Delile, and Toddaliopsis Engl. into Vepris,
- although several species were only formally transferred subsequently (e.g., *Harris*, 2000;
- 134 Gereau, 2001; Cheek et al., 2009; Onana & Chevillotte, 2015). Mziray's conclusions were
- largely confirmed by the molecular phylogenetic studies of *Morton (2017)* but Morton's
- sampling was limited, identifications appeared problematic (several species appear

- simultaneously in different parts of the phylogenetic trees) and more molecular work would be
- desirable. Morton studied about 14 taxa of *Vepris*, all from eastern Africa. More recently
- 139 Appelhans & Wen (2020) focusing on Rutaceae of Madagascar have found that the genus
- 140 Ivodea Capuron is sister to Vepris and that a Malagasy Vepris is sister to those of Africa.
- However, the vast majority of the African species including all those of West and Congolian
- 142 Africa, remain unsampled leaving the possibility open of changes to the topology of the
- phylogenetic tree when this is addressed.

- 145 Characteristics of some of the formerly recognised genera are useful today in grouping species.
- 146 The "araliopsoid" species have firm, subglobose, 4-locular fruit syncarpous with 4 external
- grooves; the "oriciopsoid" soft, fleshy 4-locular syncarpous fruit; "oricioid" species are 4-locular
- and apocarpous in fruit; the fruits of "diphasioid" species are laterally compressed in one plane,
- bilocular and bilobed at the apex; while "tecleoid" species are unilocular in fruit and 1-seeded,
- lacking external lobes or grooves. There is limited support for these groupings in Morton's study,
- 151
- Due to the essential oils distributed in their leaves, and the alkaloids and terpenoids distributed in
- their roots, bark and leaves, several species of *Vepris* have traditional medicinal value (*Burkill*,
- 154 1997). Burkill details the uses, essential oils and alkaloids known from five species in west
- 155 Africa: Vepris hiernii Gereau (as Diphasia klaineana Pierre), Vepris suaveolens (Engl.) Mziray
- 156 (as Teclea suaveolens Engl.), Vepris afzelii (Engl.) Mziray (as Teclea afzelii Engl.), Vepris
- 157 heterophylla (Engl.) Letouzey (as Teclea sudanica A. Chev.) and Vepris verdoorniana (Exell &
- 158 Mendonça) Mziray (as Teclea verdoorniana Exell & Mendonça) (Burkill, 1997: 651–653).
- Research into the characterisation and anti-microbial and anti-malarial applications of alkaloid
- and limonoid compounds in *Vepris* is active and ongoing (e.g., *Atangana et al.*, 2017), although
- sometimes published under generic names no longer in current use, e.g. Wansi et al., (2008).
- Applications include as synergists for insecticides (Langat, 2011). Cheplogoi et al., (2008) and
- 163 Imbenzi et al., (2014) respectively list 14 and 15 species of Vepris that have been studied for
- such compounds. A review of ethnomedicinal uses, phytochemistry, and pharmacology of the
- genus Vepris was recently published by Ombito et al., (2021), listing 213 different secondary
- 166 compounds, mainly alkaloids and furo- and pyroquinolines, isolated from 32 species of the
- genus, although the identification of several of the species listed needs checking. However, few
- of these compounds have been screened for any of their potential applications. Recently, *Langat*
- 169 et al., (2021) have published three new acridones and reported multi-layered synergistic anti-
- 109 et al., (2021) have published three new actionics and reported mutit-layered synergistic anti-
- 170 microbial activity from Vepris gossweileri (I.Verd.) Mziray, recently renamed as Vepris africana
- 171 (Hook.f ex Benth.) Lachenaud & Onana (Lachenaud & Onana, 2021).

172173

MATERIALS & METHODS

174

175 **Taxonom**

- 176 The electronic version of this article in Portable Document Format (PDF) will represent a
- 177 published work according to the International Code of Nomenclature for algae, fungi, and plants
- 178 (ICN), and hence the new names contained in the electronic version are effectively published
- under that Code from the electronic edition alone. In addition, new names contained in this work which have been issued with identifiers by IPNI will eventually be made available to the Global
- which have been issued with identifiers by IPNI will eventually be made available to the Global
 Names Index. The IPNI LSIDs can be resolved and the associated information viewed through
- any standard web browser by appending the LSID contained in this publication to the prefix

- 183 "http://ipni.org/". The online version of this work is archived and available from the following
- 184 digital repositories: PeerJ, PubMed Central, and CLOCKSS.
- 185 Fieldwork in the Republic of Congo resulting in the specimens and observations cited in this
- 186 paper was conducted with the collaboration and support of the CERVE (Centre d'Etudes sur les
- Ressources Végétales) (currently named IRSEN (Institut de Recherche National en Sciences 187
- 188 Exactes et Naturelles, Brazzaville)-National Herbarium of Congo and Royal Botanic Gardens,
- 189 Kew beginning in 2010 under research permit (Autorisation de Recherche)
- 190 021/MRS/DGRST/DMAST (issued 2 Nov 2010), and the specimens were exported under
- 191 permit (Autorisation D'Exportation des Énchantillons Botaniques) number 003/CERVE/57/2011
- 192 (issued 4 Dec 2011). At the Royal Botanic Gardens, Kew, fieldwork was approved by the
- 193 Institutional Review Board of Kew entitled the Overseas Fieldwork Committee (OFC) for which
- 194 the registration number was OFC 490-3 – 490-6 (2010-2011). The most complete set of
- 195 duplicates for all specimens made was deposited at IEC, the remainder exported to K for
- 196 identification and distribution following standard practice.
- 197 The taxonomic study is based on herbarium specimens and observations of live material in
- 198 Congo-Brazzaville made by the second two authors and their colleagues in 2010–2012.
- 199 Herbarium citations follow Index Herbariorum (*Thiers et al.*, *continuously updated*),
- 200 nomenclature follows Turland et al., (2018) and binomial authorities follow IPNI (continuously
- updated). The methodology for the surveys in which the specimens were collected is given in 201
- 202 Cheek & Cable (1997). All specimens cited have been seen. Material of the suspected new
- 203 species was compared morphologically with material of all other species African Vepris,
- 204 principally at K, but also using material and images from BM, EA, BR, FHO, G, GC, HNG, P
- 205 and YA. Specimens at WAG were viewed on the Naturalis website
- 206 (https://bioportal.naturalis.nl/). The main online herbarium used during the study apart from that
- 207 of WAG was that of P (https://science.mnhn.fr/all/search). Herbarium material was examined
- 208 with a Leica Wild M8 dissecting binocular microscope fitted with an eyepiece graticule
- 209 measuring in units of 0.025 mm at maximum magnification. The drawing was made with the
- 210 same equipment using a Leica 308700 camera lucida attachment.
- 211 unce Vepris teva was detected as being new to science, seemingly restricted to coastal white
- sands (with other new and threatened species) in July 2011 we conducted desk-top studies using 212
- 213 Google Earth to find other areas of this poorly studied habitat where it survives in the Republic
- 214 of Congo. We visited these areas in Nov.-Dec. 2012, travelling by road from the northern border
- with Gabon to the southern border with Angola (Cabinda) to visit targeted sites, but also ground-215
- 216 truthing sites in different but adjoining habitats to test whether the species was indeed restricted
- 217 to the white sand habitat.

220 **Chemistry**

- 221 Samples were made from live plants (preferable to preserved material for chemical analysis)
- 222 cultivated from seed at the Royal Botanic Gardens, Kew which were associated with the
- 223 herbarium collections *Mpandzou et al.* 1754 (IEC, K) collected with the authorisation of Herbier
- 224 National, Institut de Recherche National en Sciences Exactes et Naturelles (IRSEN formerly
- CERVE, see permit references below), Cité Scientifique de Brazzaville. Two plants, grown from 225
- 226 seed, were cultivated in 3 inch (c. 8 cm) diam. plastic pots, using a free-draining potting medium
- 227 of 25% Coir (coconut husk fibre), 17% each of Seramis (baked expanded clay granules), medium

- Perlite (amorphous volcanic glass) and fine bark, 12% loam and 12 % grit, with a slow-release
- 229 fertiliser. Plants were cultivated in a glasshouse in full light, with temperature maintained in the
- range 21-25 deg. Celsius. The humidity goal is 70%, achieved by spraying over and damping
- down the floor at least twice a day. Watering is usually once per day, and feeding twice a week
- in summer, once in winter, with an additional weekly Kelp feed.
- 233 The plants grew very slowly, reaching only 15 cm in height, and not becoming reproductive,
- even after ten years of cultivation, before they died in 2021. The cause of death is unknown. This
- suggests that there is scope to develop an improved cultivation protocol. The RBG, Kew
- reference number for this accession was 2019-14.

Spectroscopic and spectrometric analysis were conducted as follows: the FTIR spectra were recorded using a Perkin-Elmer Frontier/Spotlight 200 spectrometer, and the acquired data used to determine the functional groups present in the compounds. 1D and 2D NMR spectra were recorded in CDCl₃ on a 400 MHz Bruker AVANCE NMR instrument at room temperature. Chemical shifts (δ) are expressed in ppm and were referenced against the solvent resonances at δ_H 7.26 and δ_C 77.23 ppm for 1H and ^{13}C NMR for CDCl₃. Accurate masses, for determination of molecular formulae of the compounds, were recorded on a Thermo Scientific Orbitrap Fusion spectrometer. Purity of compounds was monitored *via* thin layer chromatography (TLC) using pre-coated aluminium-backed plates (silica gel 60 F_{254} , Merck) and compounds were visualised by UV radiation at 254 nm and then using an anisaldehyde spray reagent (1% *p*-anisaldehyde:2% H_2SO_4 : 97% cold MeOH) followed by heating. Final purifications used preparative thin layer chromatography (Merck 818133) and gravity column chromatography that was carried out using a 2 cm diameter column, which were packed with silica gel (Merck Art. 9385) in selected solvent systems.

The leaves were freeze-dried and ground to fine powder using a blender. The dried leaves (37 g) were successively extracted using methylene chloride (CH₂Cl₂) solvent to target non-polar and semi-polar compounds and methanol solvent (MeOH) to target polar compounds. The CH₂Cl₂ and MeOH extracts obtained were 1.7 g and 4.3 g respectively. The methylene chloride extract was subjected to gravity column chromatography packed with a 1:1 blend of silica gel merck 9385 and eluted isocratically using 10% ethyl acetate in methylene chloride, collecting 35 mL. The fractions were monitored using TLC and fractions with the same retention times were pooled. Fractions 12–13 gave compound 5 which was determined to be 1-hydroxy-3-methoxy-10-methylacridone (*Haensel & Cybulksi, 1978*). Fractions 14–18 gave compound 6 which was determined to be β-amyrin (*Okoye et al., 2014*). Fractions 23–25 gave compound 2 which was determined to be arborinine (*Vaquette et al., 1976*). Fractions 40–47 gave compound 3 which was determined to be flindersiamine (*Vaquette et al., 1976*) and fractions 55–63 gave compound 1 which was determined to be kokusaginine (*Pusset et al., 1991*).

Extinction risk assessment

- Points were georeferenced using locality information from herbarium specimens. The map was made using simplemappr (*Shorthouse*, 2010). The conservation assessment was made using the
- 273 categories and criteria of *IUCN* (2012), EOO was calculated with GeoCat (*Bachman et al.*,

274 *2011*). Threats were observed by the second two authors directly in the field in Republic of Congo.

276277

RESULTS

278279

Chemistry

280 The structures of the alkaloids were determined based on comprehensive spectroscopic and 281 spectrometric analysis, and the spectra of the known compounds were compared to those 282 previously reported. The compounds were three furoquinoline alkaloids, kokusaginine (1) 283 (Pusset et al., 1991), maculine (2) (Vaquette et al., 1976) and flindersiamine (3) (Vaquette et al., 284 1976), two acridone alkaloids, arborinine (4) (Haensel & Cybulksi, 1978) and 1-hydroxy-3methoxy-10-methylacridone (5) (Haensel & Cybulksi, 1978), and one triterpenoid, β-amyrin (6) 285 286 (Okove et al., 2014) (Fig. 1). 287 This combination of secondary compounds matches none of those reported from the 32 taxa of

This combination of secondary compounds matches none of those reported from the 32 taxa of *Vepris* that have been chemically investigated to date (*Ombito et al.*, 2021). While compounds 1–4 are relatively widespread in the investigated species, each having been recorded in 9–12 taxa, compound 5 is recorded only in one species, *Vepris pilosa* (Baker)I.Verd. (now a synonym of *V. glomerata* (F.Hoffm.)Engl.). However, compounds 2 & 3 have not been recorded in *Vepris glomerata*. Compound 6 has not been reported previously from *Vepris*. The chemical results therefore do not conflict with the morphologically-based conclusion that *Vepris* sp. 1 is new to science (see below).

294295296

297

298

299

300

301

302

303

304

288289

290

291

292

293

Morphology

The morphological characteristics of *Vepris* sp. 1 are highly unusual within the genus. The subsessile leaves with the median petiolule far exceeding the petiolule in length is unique within the genus. The leathery-walled, syncarpous, 4-loculed, and slightly lobed, subverrucate fruits which have fleshy-juicy mesocarp surrounding the seeds are otherwise known in only one species, *Vepris glaberrima*, formerly segregated as the monotypic genus *Oriciopsis*. The two species share several unusual characters, such as numerous parallel, straight secondary and intersecondary nerves, with few quaternary nerves, sparse oil glands and long median petiolules, suggesting they are sister species. *Vepris* sp. 1 however differs greatly from the last species in the characters indicated below in Table 1 and in the diagnosis below.

305 306 307

308

Vepris teva Cheek sp. nov. – Figs. 2 and 3.

Type. Republic of Congo, Kouilou, Port 8, along coast just northwest of Pointe Noire, near
Pointe Indienne, 4° 42′ 46.5"S, 11° 49′ 18.3"E, 10 m elev., fl. 23 Nov. 2011, *T. Kami et al.* 1227
(holotype K000875074; isotypes EA, IEC, MO, P, US)

312313

Syn. Vepris sp. 1 of Pointe Noire (van der Burgt & Merklinger, 2012).

- 315 Diagnosis: differs from all known trifoliolate species of *Vepris* in the median petiolule far
- exceeding the petiole in length (usually by a factor of 2–4 times) on reproductive stems,
- 317 especially near the stem apex (vs. petiole exceeding petiolule in length in all other species). Most
- 318 similar to Vepris glaberrima (Engl.) J.B.Hall ex D.J. Harris in the soft, leathery-fleshy, 4-
- 319 loculed, and slightly lobed, subverrucate syncarpous fruit, differing in the inflorescences

PeerJ

320 exceeding the petiole in length (vs. shorter than the petioles), the secondary nerves (10–)11–16(– 321 18) on each side of the midrib (vs. 20–30), the leaflet apices shortly rounded-acuminate (vs. 322 long, acutely acuminate) and other characters shown in Table 1 above. 323 324 325 Dioecious (probably) shrub 0.5–1.5 m tall, moderately branched, glabrous apart from the 326 bracteole margins. Stems terete, internodes (0-)0.9-5.3(-7.5) cm long, (1.5-)2-3.5(-4) mm 327 diam. at lowest leafy node, epidermis glossy, medium brown, finely longitudinally striate, at 328 length splitting longitudinally, soon lenticellate, lenticels very sparse white, orbicular or elliptic, 329 often longitudinally divided in two, $(0.3-)0.5-1.3(-2.25) \times (0.2-)0.3-0.6(-0.9) \text{ mm}$. 330 Leaves alternate, trifoliolate (rarely unifoliolate), median leaflet usually slightly longer than 331 lateral leaflets, elliptic, less usually obovate-elliptic, $(4.5-)5.5-10.6(-14.3) \times (2-)2.7-3.5(-5.2)$ 332 cm, acumen broadly triangular $(0.3-)0.4-0.9(-1) \times 0.25-0.45$ cm, apex rounded, base acute-333 decurrent, secondary nerves (10–)11–16(–18) on each side of the midrib, arising at 50–80° from 334 the midrib, straight, united by a slightly looping inframarginal vein 0.6–1.2 mm from the margin 335 (Fig. 1A-C), tertiary nerves conspicuous on the abaxial but not adaxial surface, mainly parallel to 336 the secondary nerves, uniting transversely only in the outer part of the blade (Fig. 1B), 337 quaternary nerves inconspicuous; oil gland dots translucent in transmitted light, inconspicuous 338 on the adaxial surface, conspicuous but concolorous, raised on the abaxial surface (Fig. 1B & C), 339 (2-)4-7(-8) per mm², the diameter of the glands 0.1-0.225 mm; lateral leaflets as the median 340 leaflet, but (4.7-)5.5-8.7)-12.7) x (1.9-)2.2-3.4(-4.25) cm, base acute. Petiolules canaliculate, those of fertile stems exceeding the petiole in length (Fig. 1 A&C), (0.3–)0.5–1.1(–1.6) cm long, 341 those of median leaflets much longer than the lateral; articulated at junction with the petiole. 342 343 Petiole canaliculate, those of fertile stems 0.15–0.4(–0.75) cm long, those of sterile stems (e.g. 344 Mpandzou 1653, IEC, K) much longer, 4–5.2 cm long. Inflorescences terminal, less usually 345 axillary in the most distal subapical node(s), thyrsoid, contracted, about as wide as long 0.4–0.85 346 cm diam., 5–20-flowered, main axis with 1–3 pairs of 1–3-flowered cymes \pm evenly spaced from 347 the base; bracts quadrate-triangular, 0.5 x 0.8 mm. Pedicels each subtended by a second order 348 bract and two bracteoles, all ovate-triangular, 0.5–0.6 x 0.3 mm, margins sparingly minutely 349 simple hairy. Female flowers unknown, apart from parts persisting in fruit. Stigma discoid, peltate, subsessile, 1 mm diam. Male flowers with pedicel 1.2–1.5 x 0.5 mm, terete, widening to 350 351 0.8–1.2 mm wide below the sepals, lacking conspicuous glands. 352 Calyx with sepals 4, imbricate, erect, broader than long, transversely semi-elliptic, 0.4–0.7(–0.9) 353 x 1.1–1.6 mm, apex broadly rounded or rounded-obtuse. *Petals* 4, oblanceolate, concave, erect, 354 3.2–3.5 x 1.4–1.5 mm, apex obtuse, rounded or minutely retuse, margin membranous, central part thickened with numerous raised oil-glands conspicuous on the abaxial surface. Stamens 8, 355 356 erect, free, slightly exceeding petals, subequal, the outer 4 with slightly longer filaments than the 357 inner 4, 358 filaments terete, 2.5–3.0 mm long, 0.4mm wide at base, narrowing gradually to 0.2 mm wide at 359 apex; anthers submedifixed, introrse to lateral dehiscence, oblong-ovate, 1-1.2 x 0.6 mm; disc 360 inconspicuous; ovary (pistillode) obclavate-4-angled/fluted, 3-3.1 x 1.2-1.3 mm, 0.7 mm wide at 361 apex, apex rounded with a slight central depression, in plan view 4-lobed (Fig. 1F) stigmas 362 punctate, minute; 4-locules each biovulate. Fruit in terminal clusters of (1-)2-4, yellow-orange, subglobose or obovoid, apex rounded-slightly depressed, longitudinally 4-grooved to slightly 363 364 lobed, 11–14 x 11–13 mm, 4-locular but usually with 1–2 locules incompletely formed, 1–2(–4)-365 seeded by abortion. Pericarp leathery, surface minutely wrinkled to slightly vertucate, 0.5–0.7

mm thick, endocarp bony 0.05 mm thick; mesocarp liquid, sweet to the taste. *Seed* encased in a cartilaginous, vascular endocarp, ellipsoid, 4–4.5 x 2.4 x 1.8–2 mm (Fig. 1H).

368369

Distribution. Republic of Congo, Kouilou Department, Tchimpounga to Djeno. Fig. 4

370371

372

373

374

375

376

377378

379

380

381

382

383

384

385 386

387

Ecology. The evergreen thicket ecosystem on white sand on the Atlantic coast of Africa Vepris teva is restricted to the key vegetation type, thicket on white sand, that occurs in a coastal ecosystem extending along the equatorial Atlantic coast of Africa in the southern hemisphere. This ecosystem extends from the mouth of the Congo River in the Democratic Republic of Congo, along the coast through Angolan Cabinda, Republic of Congo into southern Gabon, with some areas thought to extend into Rio Muni of Equatorial Guinea. It extends discontinuously along the coastline for about 1000 km and extends inland for between 100-3000 m, and is based on old, partly dissected and flattened, highly leached white sand dunes that run parallel to the coast, alternating with lower, wet or seasonally wet drainage areas often developing black peaty soils, that can develop either swamp forest e.g. with Alstonia congensis Engl. trees and an understorey of Acrostichum aureum L. or a wetland grassland community including Cyperaceae, Utricularia, Drosera, Xyridaceae and Stipularia africana P.Beauv. Thicket develops on the top of the ridges. In the ecotone transition areas, the shallow slopes between the thicket and wetland area, a sparse grassland develops on the upper part of the white sand with *Chlorophytum*, Dissotis congolensis (Cogn. ex Büttner) Jacq.-Fél., Eulophia caricifolia (Rchb.f.) Summerh., and in the lower damper, seasonally inundated parts of the ecotone, grass species including Anadelphia hamata Stapf, and herbs such as Neurotheca corymbosa Hua, both globally restricted to this vegetation type.

388 389 390

391

392

393

394

395

396

397

398

399

400

401 402

403

404

405

On the seaward side of the dunes a sea-shore community including halophytes develops with succulent species such as Sansevieria longiflora Sims, while in brackish inlets the Atlantic mangrove community is formed, including *Rhizophora racemosa* G.Mey. On the landward side of the ecosystem two substrates interface with the white sand, red-brown loam, and grey sand which each have their own communities of grassland species. This ecosystem has rarely been referred to in the literature. The best account is probably that by Vande Weghe (2007) regarding the areas in southern Gabon. He refers to a sand-burrowing toad *Hemisus perretii* Laurent (Vande Weghe, 2007: 250) that is restricted to this ecosystem. Van der Burgt & Merklinger (2012) have characterised this ecosystem in the Republic of Congo after our studies in 2010– 2012, recognising the nine habitats referred to above, six of which have threatened, or provisionally threatened plant species often restricted to this ecosystem. However, Critically Endangered (CR) and Endangered (EN) species are reported only from two of the habitats: the thicket (13 species) and sparse grassland on white sand habitats (2 species). The evergreen thicket which is the habitat to which Vepris teva is restricted is only 2–3 m tall and consists of shrubs, intermixed with very few emergent tree species e.g. Hyphaene guineensis Schumach. & Thonn, and Tessmannia dawei J. Léonard, numerous climbers and several herbs, characteristically:

406 407

Common shrubs: *Chrysobalanus icaco* subsp. *icaco* L., *Syzygium guineense* var. *guineense* (Willd.) D C., *Ochna multiflora* DC, *Dalbergia grandibracteata* De Wild., *Manilkara lacera* (Baker) Dubard, *Premna serratifolia* L., *Rytigynia dewevrei* Robyns, *Trichoscypha imbricata* Engl., *Tricalysia coriacea* (Benth.) Hiern, *Vismia affinis* Oliv., *Psychotria kimuenzae* De Wild.,

- Psydrax moandensis Bridson, Thomandersia butayei De Wild., Baphia leptostemma subsp. 412
- 413 leptostemma Baill. and Leptactina mannii Hook.f.,

- 415 Common climbers: Pentarhopalopilia marquesii (Engl.) Hiepko, Uvaria versicolor Pierre ex
- 416 Engl. & Diels, Calycobolus cabrae (De Wild. & T.Durand) Heine, Jasminum kwangense Liben
- 417
- 418 Ancylobothrys scandens (Schumach. & Thonn.) Pichon

419

420 Common herbs: Pseuderanthemum lindavianum De Wild. & T. Durand, Coleus calaminthoides 421 Baker and Dracaena braunii Engl.

422

- 423 The grassland is maintained by dry season fires which kill most or all woody plants (Vande
- 424 Weghe, 2007), none of which, curiously, appear fire-adapted. Such grassland fires were recorded
- 425 by us in Congo in July 2010. Owing to the sparsity of the herbs in the grassland, fires are not
- 426 intense due to the low fuel- load. It is sometimes possible for shrubs to establish in grassland.
- 427 Chrysobalanus icaco is a shrub which, once established, in the absence of fire, can spread
- 428 laterally to form a thicket in which other species of shrub and tree can colonise, leading towards
- 429 succession from grassland to thicket.

430

- 431 Among the endemic and highly threatened shrub species of this ecosystem, several apart from
- 432 Vepris teva, were found to be new to science. Of these, those recently published are Dracaena
- 433 marina Damen (Damen et al., 2018), Baphia vili Cheek (Cheek et al., 2014), Salacia arenicola
- 434 Gosline (Gosline et al., 2014). However, several additional species remain to be published.

435 436

437

Local names and uses. None are recorded.

438 **Etymology.** Named for Teva Kami, lead collector of the type specimen, who played a key role 439 in the discovery of this species and further research upon it concerning interactions with 440 chimpanzees (see below).

- 442 **Conservation.** Vepris teva is known from nine specimens and seven sight-records made
- 443 between July 2011-Feb. 2012. These equate to an area of occupation of 40 km² using the IUCN-
- 444 preferred 4 km² gridcells, and an extent of occurrence of 172 km². It is restricted to coastal
- 445 thicket on white sand habitat in Republic of Congo. This habitat is thought to extend along the
- Atlantic coast from coastal DRC to southern Equatorial Guinea. Despite targetted surveys in this 446
- 447 habitat through most of this range especially in Congo, Vepris teva has only been found at three
- 448 of the more than eight locations studied. These are: 1) Pointe Noire at Point Indienne; 2) Djeno;
- 449 3) Tchimpounga. At the first location, the plants are threatened by an extension northward of the
- 450 port of Pointe Noire to accommodate export of rock phosphate, manganese, iron-ore for which
- 451 there is currently insufficient port capacity. Plants of Vepris teva are also threatened by cutting
- of their coastal thicket habitat for charcoal and for clearance for housing. At the second location, 452
- 453 plants are threatened by the infrastructure and activities of the Total E&P Congo petro-chemical
- 454 plant (part of TotalEnergie S.A.), the installation of which appears to have destroyed much of the
- 455 habitat of Vepris teva at this location. Indirectly, Total, as the major employer at Djeno
- 456 attracting labour which requires local accommodation, appears to have stimulated an expansion
- 457 of urbanisation, resulting in *Vepris teva* habitat being parcelled for sale as house building plots

458 (Cheek pers. obs. 2012). At Tchimpounga, a reserve created by the Jane Goodall Foundation to 459 protect chimpanzees, Vepris teva uniquely appears protected and secure so long as this venture is supported. In view of the EOO and AOO, and the threats stated, we here assess *Vepris teva* as 460 461 Endangered (EN B1ab(iii)+B2ab(iii)).

462

Additional specimens and observations

463 Republic of Congo, Dept. Kouilou, Tchimpounga, along coast NW of Pointe Noire, about 7 km 464 465 SE of the Kouilou River Bridge, in the Tchimpounga Chimpanzee Sanctuary, fl. 3 Dec. 2011, T. Kami et al., 1356 (IEC, K000875073); Tchimpounga pointe 2 zone ex gorillon, fl. 5 Nov. 2012, 466 467 Mpandzou et al., 1641 (IEC, K000875078); Tchimpounga, bas-Kouilou, Bois de Singe, st. 6 Dec. 2012; Mpandzou et al., 1754 (IEC, K000875081); Tchimpounga, Point 1 zone de soleil, fl. 2 468 Nov. 2012, T. Kami et al., 1421 (BR, IEC, K000875083); Tchimpounga, Point 1 zone de soleil, 469 470 fl. 3 Nov. 2012, T. Kami 1437 et al., (IEC, K000875082); **Pointe Noire,** Port 8, along coast just 471 northwest of Pointe Noire, near Pointe Indienne, 4° 42′ 46.5"S, 11 49 18.3E, 10 m elev., fl. 23 472 Nov. 2011, T. Kami et al., 1227 (holotype K000875074; isotypes EA, IEC, MO, P, US); Pointe 473 Noire, fr. 9 July 2011, *Mpandzou et al.*, 1198 (IEC, K000875072, P); near Pointe Indienne, 24 474 Nov. 2011, Port Observations 36; ibid. 24 Nov. 2011, Port Observations 61; ibid. 25 Nov. 2011, 475 Port Observations 91; ibid. 26 Nov. 2011, Port Observations 128; 27 Nov. 2011, Port 476 Observations 215; **Dieno** a côté de Terminal de Dieno, fr. 6 Dec. 2012, *Mpandzou et al.*, 1768 477 (IEC, K000875077); ibid., fr. 6 Dec. 2012, Mpandzou et al., 1754 (IEC, K000875081); Djeno, 478 near Total refinery, 15 Feb. 2012, Port Observations 309; ibid., 13 July 2011, Port Observations 479 303.

480

481 **Notes.** We first detected *Vepris teva* in July 2011, during the dry season environmental impact 482 studies for a proposed new port facility near the major existing port of Pointe Noire, Congo's 483 principal port and commercial centre. It was provisionally named as 'Vepris sp. 1 of Pointe 484 Noire,' and considered likely to be new to science since it matched no other known species of the 485 genus in tropical Africa (Cheek et al., 2011). Further collections were made in a wet season 486 survey in Nov. and Dec. 2011. These surveys resulted in the discovery of many other rare 487 species, usually previously unknown to science, mainly confined to evergreen thicket on coastal 488 white sand. Consequently, surveys in Nov.-Dec. 2012 were made along the length of the 489 Congolese coastline to map the full national extent of this ecosystem and of its rare and 490 threatened species. It was discovered that unlike many of the coastal thicket species, Vepris teva 491 is restricted to only a small length of the coast, from Djeno in the south to Tchimpounga in the 492 north. At these three sites, wherever coastal thicket on white sand appears, Vepris teva can be 493 fairly frequent. However, when thicket become degraded or damaged, it is no longer present. 494 We believe that our surveys have detected all sites where this species survives in the Republic of 495 Congo. However, it is possible that additional individuals might survive in fragments of original 496 vegetation that were overlooked by us e.g within the greater area of the city of Pointe Noire, but 497 we consider this unlikely. Also, it is possible that the species might extend to Angola (Cabinda) 498 or southern Gabon which we were not able to visit during the studies referred to in this paper. 499 Vepris teva sometimes grows alongside another species of the genus, Vepris africana (formerly 500 Vepris gossweileri). The second species extends into Angola and to S.Tomé (Lachenaud & 501 Onana, 2021). The two species cannot be confused since the first is trifoliolate, while the second 502 is unifoliolate. No Vepris species other than these two have been found in coastal thicket on 503 white sand in Congo.

Our knowledge of the phenology of *Vepris teva* is restricted to two periods of the year – July (dry season) and Nov.-Dec. (wet season). At both seasons plants were found in both flower and fruit. All flowers collected are monomorphic and have well-developed stamens with pollen, and are therefore supposed to be male. This is supported by our observation that while the fruits (the undoubted products of female flowers) have a 1 mm diam. peltate, discoid stigma, peltate stigmas have not been in any of the flowers which are therefore male. Since *Vepris* species have been found to be dioecious wherever their reproductive strategies have been studied, we conclude that female flowers remain to be discovered, although female plants (in fruit) have been collected. There is a small possibility that *Vepris teva*, atypically in the genus, might have hermaphroditic flowers.

Vepris teva grows very slowly from seed. Three plants cultivated at the Royal Botanic Gardens, Kew from seed collected in 2011, reached only 15–25 cm tall after five years. By March 2020, after 8.5 years, the plants had reached 30–45 cm tall, but none had shown signs of flowering. All three of these plants showed the long petiole of sterile plants, and not the characteristic extremely short petioles of reproductive individuals. Thus, the age of sexual maturity is likely to be at least 10 years in *Vepris teva*.

Because *Vepris teva* has a 4-locular syncarpous flower producing a soft fleshy fruit it would formerly have been classified in the monotypic genus *Oriciopsis*, together with *V. glaberrima* (*Letouzey*, 1963b: 79–80). The last species occurs in lowland evergreen forest at the junction of Cameroon, C.A.R. and Gabon and is also a small, sparingly branched shrub. It is conceivable that the two are sister species (see above). Four-locular syncarpous ovaries are also seen in the formerly accepted genera *Araliopsis* and *Toddaliopsis*, but in these taxa the fruits are hard. The former occurs in W-C Africa but is a large tree with digitately 5-foliolate leaves, the second a tree of coastal E Africa with a subspiny, "nut-like" fruit.

Vepris teva appears unique and is easily recognisable in the genus and in its habitat because of the combination of long petiolules with extremely short petioles on the fertile stems. The petioles can be so contracted that they are almost invisible, and it then appears that there are three simple, leaves, each on its own petiole (in fact leaflets on petiolules) at each node.

Chimpanzee-mediated seed dispersal.

During field surveys of the vegetation in which *Vepris teva* occurs, the last author tested the hypothesis that the fruits might conform to the 'spat seed' syndrome characteristic of some primate-dispersed plant species (*Sengupta et al., 2015; Dominy & Duncan, 2005*). When the base of a fruit plucked from a shrub is sucked, the pleasantly sweet, watery mesocarp with the seed(s) enters the mouth, the juice can be swallowed, and the slippery seed(s) in their endocarp(s) spat out (Fig. 5).

One of the three known locations for *Vepris teva* is the Tchimpounga Reserve, co-managed by the Jane Goodall Institute (*Jane Goodall Institute*, 2018) which focuses on chimpanzee conservation and research of both rescued animals from captivity and hunting, and chimpanzees

indigenous to the coastal thicket ecosystem (see below). During field observations for doctoral studies of fruit consumption by chimpanzees from tree species by the second author (2014–2020, *Kami, 2021*), chimpanzees were observed to seemingly feed on the fruits of this species of *Vepris* – evidenced by empty pericarps and separated, spat seeds of this species after they had been in the vicinity of the fruiting shrubs. Chimpanzee seed dispersal of *Vepris teva* seems very likely but more detailed studies are needed to confirm this.

556557

CONCLUSIONS

558559560

561

562563

564

565566

567

568

569

570

571

The description of a known compound, \$\beta\$-amyrin, for the first time in \$Vepris\$, is consistent with previous research wherein nearly each species of the genus that is newly chemically investigated contributes additional compounds, often those that are new to science (e.g., \$Langat et al. 2021\$). The number of species of \$Vepris\$ that have been chemically investigated is rising steadily, numbers having doubled in the last seven years, with 15 species of \$Vepris\$ reported as investigated by \$Imbenzi et al. (2014)\$ and 32 by \$Ombito et al. (2021)\$, the last reporting 213 secondary compounds in five classes from \$Vepris\$. However, this represents only a third of the known species diversity of the genus, which itself is increasing as taxonomists uncover additional species new to science, 12 new species having been published since 2000, a c. 15% increase in numbers for the genus, the recent novelties having been detected mainly in Cameroon (e.g. \$Onana & Chevillotte, 2015\$). The range of biological activity shown by these compounds is wide and has great potential to address current and future needs of humanity, from medical to agricultural. However, screening for biological activity lags far behind discovery of compounds.

572573574

575

576577

The case of *Vepris teva* illustrates the importance of uncovering and publishing species before they become extinct and become lost forever, together with their potential applications for humanity, in this case secondary compounds with potential e.g., as anti-microbials, natural insecticides and in the case of β-amyrin, recorded here for the first time in *Vepris*, strong anti-inflammatory action (*Okoye et al.*, 2014).

578579580

581

582

583

584

585

586 587

588 589

590

591

592

593

594

595

596

For each of the last 15 years or more, about 2000 new species of flowering plant have been published by scientists each year (*Cheek et al., 2020*), adding to the estimated 369 000 already documented (Nic Lughadha et al., 2016). However, only 7.2% of species have been assessed for their threat status and are included on the Red List using the IUCN (2012) standard (Bachman et al., 2019). Newly discovered species, such as Vepris teva, reported in this paper, are likely to be threatened, since widespread species tend to have been already discovered. There are notable exceptions to this rule (e.g., Vepris occidentalis Cheek & Onana (Cheek et al., 2019) a species widespread in West Africa from Guinea to Ghana). However, it is generally the more rangerestricted, infrequent species that remain unknown to science. This makes it urgent to find, document and protect such species before they become extinct. Until species are described and known to science, it is difficu assess them for their IUCN conservation status and so the possibility of protecting them is reduced (*Cheek et al., 2020*). Documented extinctions of plant species are increasing, e.g., in coastal forest of Cameroon, Oxygyne triandra Schltr. is considered extinct at its sole locality, the forest at Mabeta-Moliwe in the foothills of Mt Cameroon (Cheek et al., 2018b; Cheek & Williams 1999; Cheek, 1992), Inversodicraea bosii (C.Cusset) Rutish. & Thiv. at the Lobe Falls (Cheek et al., 2017) and in Gabon Pseudohydrosme buettneri Engl. (Cheek et al., 2021) in coastal forest. There are also examples of species that appear to have

become extinct even before they are known to science, such as in Cameroon *Vepris bali* Cheek (*Cheek et al., 2018a*), and in Gabon *Pseudohydrosme bogneri* (*Moxon-Holt & Cheek, 2021*). Human pressures have been the cause of these extinctions in all these cases

In the Republic of Congo natural habitat is fortunately relatively extensive and intact, but in some specialised ecosystems such as that with the evergreen thicket on white sand habitat described above, to which *Vepris teva* is restricted, large areas have entirely disappeared and others are set to follow them.

Further effort in prioritising high priority areas for plant conservation as Tropical Important Plant Areas (TIPAs), using the revised IPA criteria set out in *Darbyshire et al.*, (2017)) is being implemented in Guinea (*Couch et al.*, 2019). TIPAs are also in progress in countries such as Cameroon, Ethiopia, Mozambique and Uganda and might be extended elsewhere in Africa such as to the Republic of Congo, to reduce the risk of future global extinctions of range-restricted endemic species such as *Vepris teva*.

ACKNOWLEDGEMENTS

The authors thank Dr Emile Kami, former Head of the National Herbarium of Republic of Congo (IEC, formerly CERVE, now IRSEN) for expediting authorisation for botanical prospection and export of material to RBG, Kew. Our colleagues at CERVE and RBG, Kew, Aydrif Laurel Mpandzou, Raustand Mboungou, Grace Koubemba, Emile Kami, Augustin Ngoliélé, Gilbert Nsongola, Xander van der Burgt, Helen Pickering, Mme Yvette Bongou & Felix Merklinger assisted collecting the material in Congo. Paul Reed, John Merry and Colin Harris of MPD Congo S.A. provided logistic support. At the Jane Goodall Institute's Tchimpounga Reserve, Dr Rebeca Atiencia is thanked for facilitating access for our surveys. Sarah Redstone and colleagues in the Quarantine House RBG, Kew are thanked for initially growing Vepris teva from seed, and we thank especially Bradley Gangadeen of the Science Glass for growing it on under the supervision of Joanna Bates who kindly provided cultivation details. The import and safe use of this wild collected plant material was enabled through the use of Defra Plant Health Licence 2149/194627/5. Jean Michel Onana, National Herbarium of Cameroon is thanked for helpful comments on an earlier version of this paper, and for formal reviews we also thank Uday Turaga and an anonymous reviewer, together with Whitney Kistler, editor, for their valuable comments which have improved the paper.

REFERENCES
Appelhans MS, Wen J. 2020. Phylogenetic placement of <i>Ivodea</i> and biogeographic affinities of
Malagasy Rutaceae. Plant Systematics and Evolution 306:1–14.
Atangana AF, Toze FAA, Langat MK, Happi EN, Mbaze LLM, Mulholland DA, Wansi
JD. 2017. Acridone alkaloids from Vepris verdoorniana (Excell & Mendonça) Mziray
(Rutaceae). Phytochemistry Letters 19:191–195.
Bachman SP, Field R, Reader T, Raimondo D, Donaldson J, Schatz GE, Lughadha EN.
2019. Progress, challenges and opportunities for Red Listing. <i>Biological Conservation</i> 234 :45–
55. https://doi.org/10.1016/j.biocon.2019.03.002
Bachman S, Moat J, Hill AW, de la Torre J, Scott B. 2011. Supporting Red List threat
assessments with GeoCAT: geospatial conservation assessment tool, in: Smith V, Penev, eds. e-
Infrastructures for data publishing in biodiversity science. <i>ZooKeys</i> 150 :117–126. Available
from: http://geocat.kew.org/ [accessed 19 July 2020].
Barthlott W, Lauer W, Placke A. 1996. Global distribution of species diversity in vascular
plants: towards a world map of phytodiversity. <i>Erdkunde</i> 50 :317 –
327 https://doi.org/10.1007/s004250050096
Breteler FJ, Bakker FT, Jongkind CC. 2015. A synopsis of Soyauxia (Peridiscaceae, formerly
Medusandraceae) with a new species from Liberia. <i>Plant Ecology and Evolution</i> . 148 (3):409–
419. https://doi.org/10.5091/plecevo.2015.1040
Burkill HM. 1997. The Useful Plants of West Tropical Africa. Vol. 4, families M-R. Royal
Botanic Gardens, Kew.
Cheek M. 1992. A Botanical Inventory of the Mabeta-Moliwe Forest. Royal Botanic Gardens,
Kew
Cheek M. 2004. Vepris lecomteana. The IUCN Red List of Threatened Species 2004:
e.T46174A11039677. https://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T46174A11039677.en. (
Downloaded on 22 May 2021).
Cheek M. 2017. Vepris felicis. The IUCN Red List of Threatened Species 2017:
e.T65064584A65064590. http://dx.doi.org/10.2305/IUCN.UK.2017-
3.RLTS.T65064584A65064590.en. (accessed: 05/2021).
Cheek M, Cable S. 1997. Plant Inventory for conservation management: the Kew-Earthwatch
programme in Western Cameroon, 1993–96, pp. 29–38 in Doolan, S. (Ed.) African Rainforests
and the Conservation of Biodiversity, Oxford: Earthwatch Europe.
and the control of zion, violo, official zaram and zarope.

- 679 Cheek M, Onana JM. 2021. The endemic plant species of Mt Kupe, Cameroon with a new
- 680 Critically Endangered cloud-forest tree species, Vepris zapfackii (Rutaceae). Kew Bull 76, 721–
- 681 734 https://doi.org/10.1007/s12225-021-09984-x
- 682 Cheek M, Williams S. 1999. A Review of African Saprophytic Flowering Plants, pp. 39–49 in
- Timberlake & Kativu (Eds.) African Plants. Biodiversity, Taxonomy & Uses. Proceedings of the
- 684 15th AETFAT Congress at Harare, Zimbabwe. RBG, Kew.

- 686 Cheek M, Feika A, Lebbie A, Goyder D, Tchiengue B, Sene O, Tchouto P, Burgt X van der.
- **2017**. A synoptic revision of *Inversodicraea* (Podostemaceae). *Blumea* **62**:125–156.
- 688 https://doi.org/10.3767/blumea.2017.62.02.07

689

- 690 Cheek M, Gosline G, Onana JM. 2018a. Vepris bali (Rutaceae), a new critically endangered
- 691 (possibly extinct) cloud forest tree species from Bali Ngemba, Cameroon. Willdenowia 48:285–
- 692 292. https://doi.org/10.3372/wi.48.48207

693

- 694 Cheek M, Hatt S, Onana JM. 2021. The endemic plant species of Bali Ngemba Forest Reserve,
- Bamenda Highlands Cameroon, with a new Endangered cloud-forest tree species *Vepris onanae*
- 696 (Rutaceae). biorxiv https://doi.org/10.1101/2021.10.06.463416

697

- 698 Cheek M, Kami E, Kami T. 2014. Baphia vili sp. nov. (Leguminosae-Papilionoideae) of
- 699 coastal thicket of the Congo Republic and Gabon. Willdenowia 44:39–44
- 700 http://dx.doi.org/10.3372/wi.44.44106

701

- 702 Cheek M, Mackinder B Gosline G, Onana J, Achoundong G. 2001. The phytogeography and
- 703 flora of western Cameroon and the Cross River-Sanaga River interval. Systematics and
- 704 *Geography of Plants* **71**:1097–1100. https://doi.org/10.2307/3668742

705

- 706 Cheek M, Nic Lughadha E, Kirk P, Lindon H, Carretero J, Looney B,
- 707 Douglas B, Haelewaters D, Gaya E, Llewellyn T, Ainsworth M,
- 708 Gafforov Y, Hyde K, Crous P, Hughes M, Walker BE, Forzza RC, Wong KM, Niskanen T.
- 709 **2020**. New scientific discoveries: plants and fungi. Plants, People Planet **2**:371–388.
- 710 https://doi.org/10.1002/ppp3.10148

711

- 712 Cheek M, Oben B, Heller T. 2009. The identity of the West-Central African Oricia lecomteana
- 713 Pierre, with a new combination in *Vepris* (Rutaceae). *Kew Bull.* **64**:509–512
- 714 https://doi.org/10.1007/s12225-009-9135-1

- 716 Cheek M, Onana J-M, Yasuda S, Lawrence P, Ameka G, Buinovskaja G. 2019. Addressing
- 717 the Vepris verdoorniana complex (Rutaceae) in West Africa, with two new species. Kew Bull.
- 718 **74**:53. <u>https://doi.org/10.1007/S12225-019-9837-Y</u>
- 719 Cheek M, Tchiengué B, van der Burgt X. 2021. Taxonomic revision of the threatened African
- 720 genus *Pseudohydrosme* Engl. (Araceae), with *P. ebo*, a new, critically endangered species from
- 721 Ebo, Cameroon. *PeerJ* 9:e10689 https://doi.org/10.7717/peerj.10689.

- 722 Cheek M, Tsukaya H, Rudall PJ, Suetsugu K. 2018b. Taxonomic monograph
- of Oxygyne (Thismiaceae), rare achlorophyllous mycoheterotrophs with strongly disjunct
- 724 distribution. *PeerJ* 6: e4828. https://doi.org/10.7717/peerj.4828

- 726 Cheek M, van der Burgt X, Pickering H. 2010. Report of the vegetation and plant species
- 727 survey at the MPD Port Site near Pointe Noire, Congo. Royal Botanic Gardens, Kew.
- 728 Cheplogoi PK, Mulholland DA, Coombes PH, Randrianarivelojosia M. 2008. An azole, an
- amide and a limonoid from *Vepris uguenensis* (Rutaceae). *Phytochemistry* **69:**1384–1388.
- 730 https://doi.org/10.1016/j.phytochem.2007.12.013

731

- Couch C, Cheek M, Haba PM, Molmou D, Williams J, Magassouba S, Doumbouya S,
- 733 **Diallo YM. 2019**. Threatened Habitats and Important Plant Areas (TIPAs) of Guinea, West
- 734 Africa. Kew: Royal Botanic Gardens.
- 735 Dagallier LP, Janssens SB, Dauby G, Blach-Overgaard A, Mackinder BA, Droissart V,
- 736 Svenning JC, Sosef MS, Stévart T, Harris DJ, Sonké B. 2020. Cradles and museums of
- 737 generic plant diversity across tropical Africa. New Phytologist 225:2196–2213.
- 738 Damen TH, Van der Burg WJ, Wiland-Szymańska J, Sosef MSM. 2018. Taxonomic
- 739 novelties in African Dracaena (Dracaenaceae). Blumea-Biodiversity, Evolution and
- 740 *Biogeography of Plants* **63**:31–53.

741

- Darbyshire I, Anderson S, Asatryan A, Byfield A, Cheek M, Clubbe C, Ghrabi Z, Harris
- 743 T, Heatubun CD, Kalema J, Magassouba S, McCarthy B, Milliken W, Montmollin B de,
- Nic Lughadha E, Onana JM, Saidou D, Sarbu A, Shrestha K & Radford, EA. 2017.
- 745 Important Plant Areas: revised selection criteria for a global approach to plant conservation.
- 746 Biodiversity Conservation **26**:1767–1800. https://doi.org/10.1007/s10531-017-1336-6.
- 747 **Dominy NJ, Duncan BW. 2005.** Seed-spitting Primates and the Conservation and Dispersion of
- Targe-seeded Trees. *International Journal of Primatology* **26**:631–649.
- 749 https://doi.org/10.1007/s10764-005-4370-2
- 750 Engler A. 1931. Rutaceae. In: Engler A, Harms H (eds) Die Natürlichen Pflanzenfamilien Band
- 751 **19a**:187–359. Wilhelm Engelmann, Leipzig.

752

753 Gereau RE. 2001. New names in African Celastraceae and Rutaceae. Novon 11:43–44.

754

- 755 Gosline G, Cheek M, Kami T. 2014. Two new African species of Salacia (Salacioideae.
- 756 Celastraceae). *Blumea* **59**:26–32. https://doi.org/10.3767/000651914x682026

757

- 758 **Haensel R, Cybulski EM. 1978.** Alkaloids from the root bark of *Vepris pilosa. Arch.*
- 759 *Pharmazie*. **311**:135–138.

760

- Harris DJ. 2000. Validation of the name Vepris glaberrima (Rutaceae). Kew Bulletin
- **762 55**(2):458–458.

- 764 Imbenzi PS, Osoro EK, Aboud NS, Ombito JO, Cheplogoi PK. 2014. A review on chemistry
- of some species of genus Vepris (Rutaceae family). Journal of Scientific and Innovative
- 766 *Research* **3**:357–362

- 768 IPNI. 2021. International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard
- 769 University Herbaria & Libraries and Australian National Botanic Gardens. Available at
- 770 http://www.ipni.org (accessed 05 July 2021).

771

- 772 IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1. Second edition. Gland,
- 773 Switzerland and Cambridge, UK: IUCN. Available at http://www.iucnredlist.org/ (accessed:
- 774 Aug. 2021).

775

- Jane Goodall Institute. 2018. https://www.janegoodall.org/?portfolio=tchimpounga-safe-haven-
- 777 <u>second-chance-2-2</u> (accessed 8 Aug. 2021)
- 778 Kami T. 2021. Flore et Végétation en Relation avec l'Alimentation de Pan troglodytes a l'Est du
- 779 Parc National Conkouati Douli. Thése Doctorale. Université Marien Ngouabi, Brazzaville.

780

- 781 Lachenaud O, Onana J-M. 2021. The West and Central African species
- of Vepris Comm. ex A.Juss. (Rutaceae) with simple or unifoliolate leaves, including
- 783 two new combinations. Adansonia 43:107–116.

784

- 785 Langat MK. 2011. Flindersiamine, a Furoquinoline Alkaloid from *Vepris uguenensis* (Rutaceae)
- as a Synergist to Pyrethrins for the Control of the Housefly, *Musca domestica* L. (Diptera:
- 787 Muscidae). *Journal of the Kenya Chemical Society*. **6**:9–15.

788

- 789 Langat MK, Mayowa Y, Sadgrove N, Danyaal M, Prescott TA, Kami T, Schwikkard S,
- 790 Barker J, Cheek M. 2021. Multi-layered antimicrobial synergism of (E)-caryophyllene with
- 791 minor compounds, tecleanatalensine B and normelicopine, from the leaves of *Vepris gossweileri*
- 792 (I. Verd.) Mziray. *Natural Product Research* 1–11.
- 793 https://doi.org/10.1080/14786419.2021.1899176

794

795 **Letouzey R. 1963a.** Rutaceae. *Flore du Cameroun* **1**:1–121. Muséum national d'Histoire naturelle, Paris.

797

798 Letouzey R. 1963b. Rutaceae. *Flore du Gabon* 6:3–109. Muséum national d'Histoire naturelle,

799 Paris.

800

- 801 Morton CM. 2017. Phylogenetic relationships of *Vepris (Rutaceae)* inferred from chloroplast,
- nuclear, and morphological data. *PLoS ONE* **12**: e0172708.
- 803 <u>https://doi.org/10.1371/journal.pone.0172708</u>

804

- 805 Moxon-Holt L, Cheek M. 2020. Pseudohydrosme bogneri sp. nov. (Araceae), a spectacular
- 806 Critically Endangered (Possibly Extinct) species from Gabon, long confused with Anchomanes
- 807 *nigritianus. BioRxiv* https://doi.org/10.1101/2021.03.25.437040

- 809 **Mziray W. 1992.** Taxonomic studies in *Toddalieae* Hook.f. (*Rutaceae*) in Africa. *Symb. Bot.*
- 810 *Upsal.* **30**:1–95.
- Nic Lughadha E, Govaerts R, Belyaeva I, Black N, Lindon H, Allkin, R, Magill RE,
- Nicolson N. 2016. Counting counts: Revised estimates of numbers of accepted species of
- 813 flowering plants, seed plants, vascular plants and land plants with a review of other recent
- 814 estimates. *Phytotaxa* **272:**82–88. https://doi.org/10.11646/phytotaxa.272.1.5
- Okoye NN, Ajaghaku DL, Okeke HN, Ilodigwe EE, Nworu CS, Okoye FBC. 2014. beta-
- Amyrin and alpha-amyrin acetate isolated from the stem bark of *Alstonia boonei* display
- profound anti-inflammatory activity. *Pharmaceutical Biology* **52**:11, 1478-1486, DOI:
- 818 10.3109/13880209.2014.898078
- 819 Ombito JO, Chi GF, Wansi JD. 2020. Ethnomedicinal uses, phytochemistry, and
- 820 pharmacology of the genus Vepris (Rutaceae): A review. Journal of Ethnopharmacology,
- 821 **267**:113622. https://doi.org/10.1016/j.jep.2020.113622
- Onana J-M, Cheek M. 2011. Red Data Book of the flowering plants of Cameroon, IUCN
- 823 global assessments. Kew: Royal Botanic Gardens.
- 824 **Onana J-M, Chevillotte H. 2015.** Taxonomie des *Rutaceae–Toddalieae* du Cameroun revisitée:
- 825 découverte de quatre espèces nouvelles, validation d'une combinaison nouvelle et véritable
- 826 identité de deux autres espèces de *Vepris* Comm. ex A. Juss. *Adansonia*, sér. 3. **37**:103–129.
- 827 https://doi.org/c10.5252/a2015n1a7
- 828 Onana J-M, Cheek M, Chevillotte H. 2019. Additions au genre *Vepris* Comm. ex A. Juss.
- 829 (Rutaceae-Toddalieae) au Cameroun. *Adansonia* 41:41–52.
- 830 https://doi.org/10.5252/adansonia2019v41a5
- 831 **POWO. Continuously updated.** Plants of the World Online. Facilitated by the Royal Botanic
- Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/
- 833 (downloaded 1 May 2021)

- Pusset J, Lopez JL, Pais M, Al-Neirabeyeh M, Veillon JM. 1991. Isolation and 2D NMR
- 836 studies of alkaloids from *Comptonella sessifoliola*. *Planta Medica* **57**:153–155.
- 838 Sengupta A, McConkey KR, Radhakrishna S. 2015. Primates, Provisioning and Plants:
- 839 Impacts of Human Cultural Behaviours on Primate Ecological Functions. *PLoS ONE* **10**(11):
- 840 e0140961. https://doi.org/10.1371/journal.pone.014096
- Shorthouse DP. 2010. SimpleMappr, an online tool to produce publication-quality point maps.
- [Retrieved from http://www.simplemappr.net accessed 28 May 2021]
- 843 Soltis DE, Clayton JW, Davis CC, Wurdack KJ, Gitzendanner MA, Cheek M, Savolainen
- 844 V, Amorim AM, Soltis PS. 2007. Monophyly and relationships of the enigmatic family
- 845 *Peridiscaceae. Taxon* **56**:65–73.

- 846 Sosef MSM, Wieringa JJ, Jongkind CCH, Achoundong G, Azizet Issembé Y, Bedigian D,
- 847 Van Den Berg RG, Breteler FJ, Cheek M, Degreef J. 2005. Checklist of Gabonese Vascular
- 848 Plants. Scripta Botanica Belgica 35. National Botanic Garden of Belgium.
- 849 Thiers B. continuously updated. Index Herbariorum: A global directory of public herbaria and
- associated staff. New York Botanical Garden's Virtual Herbarium. Available at
- http://sweetgum.nybg.org/ih/ (accessed June 2020).

- 853 Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS,
- Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J.
- 855 Price MJ, Smith GF. (ed.) 2018. International Code of Nomenclature for algae, fungi, and
- 856 plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen,
- 857 *China, July 2017.*—Glashütten: Koeltz Botanical Books. [= Regnum Veg. **159**].

858

- 859 Van der Burgt X, Merklinger F. 2012. Preliminary report of a Vegetation and Plant Species
- 860 Survey at the MPD Port Site near Pointe Noire, Congo (Brazzaville).

861

Vande Weghe JP. 2007. Loango, Mayumba et le bas Ogooue. Wildlife Conservation Society,
 Libreville, Gabon (ISBN 978-0-9792418-1-9)

864

- Vaquette J, Hifnawy MS, Pousset A, Fournet A, Bouquet A, Cave A. 1976. Alcaloides
- 866 d'Araliopsis soyauxii. Isolement d'un nouvel alcaloide, l'araliopsine. Phytochemistry 15:743–
 745

868

- 869 Verdoorn IC. 1926. Revision of African Toddalieae. Bulletin of Miscellaneous Information,
- 870 Royal Botanic Gardens, Kew 9:389–416. https://www.jstor.org/stable/4118639

871

- Wansi JD, Mesaik M, Chiozem DD, Devkota KP, Gaboriaud-Kolar N, Lallemand M-C,
- Wandji J, Choudhary MI, Sewald N. 2008. Oxidative Burst Inhibitory and Cytotoxic
- 874 Indologuinazoline and Furoquinoline Alkaloids from *Oricia suaveolens*. *Journal of Natural*
- 875 *Products* **71**:1942–1945. https://doi.org/10.1021/np800276f
- 876 World Conservation Monitoring Centre. 1998. Vepris trifoliolata. The IUCN Red List of
- 877 *Threatened Species* 1998: e.T46175A11033334.
- 878 https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T46175A11033334.en

Table 1(on next page)

Morphological characters separating Vepris teva from Vepris glaberrima

PeerJ

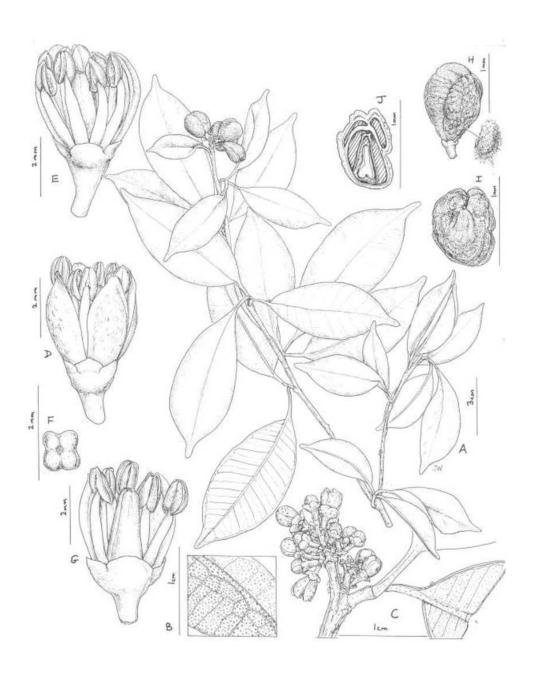
1

Characters	Vepris teva	Vepris glaberrima
Petiole length (cm)	0.14-0.4(-0.75)	4–10
Petiolule length (cm)	(0.3–)0.5–1.1(–1.6)	1.1–2.7
Median leaflet texture	Coriaceous (4.5–)5.5–10.6(–14.3)	Papyraceous 7.5–18(–20) x
and dimensions (cm)	x (2-)2.7-3.5(-5.2)	2.5–8.3
Acumen length (mm)	(3-)4-9(-10)	13–19(–20)
Oil gland dots on	Raised above surface, moderately	Not visible
abaxial surface	conspicuous	
Petal length (mm)	3.3–3.5	4.8–5.1
Calyx lobe	Well-developed 0.4–0.7 mm long	Not developed
Fruit shape	Subglobose	Ovoid
Fruit size (mm)	11–14 x 11–13	20-25 x 16-20

Furoquinoline and acridone alkaloids isolated from Vepris teva

Furoquinoline alkaloids: kokusaginine (1), maculine (2), and flindersiamine (3). Acridone alkaloids: arborinine (4) and 1-hydroxy-3-methoxy-10-methylacridone (5).

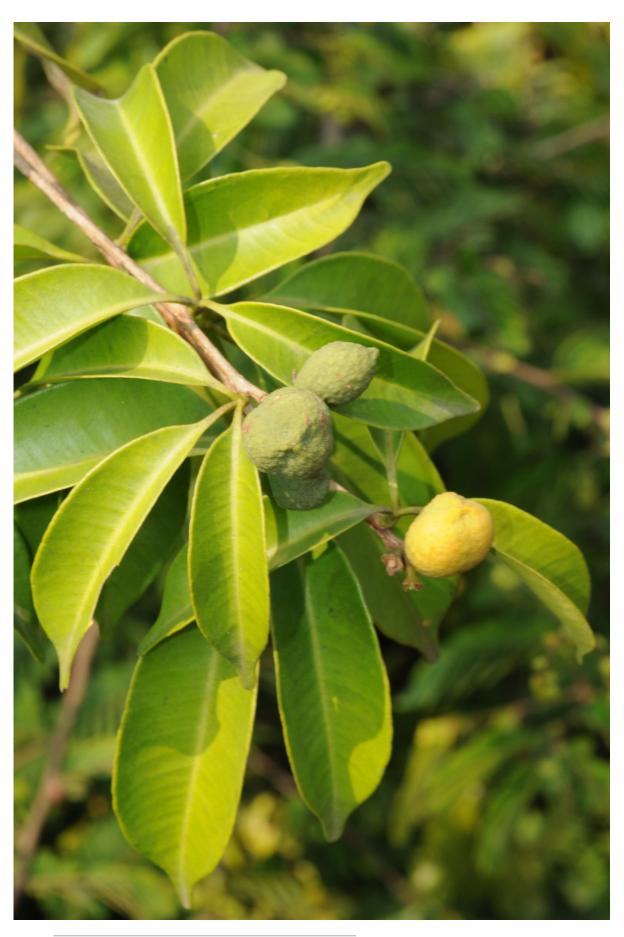
1


2: R = H

3: $R = OCH_3$

Vepris teva.

(A) Habit, fruiting stem; (B) detail of leaflet blade showing oil gland dots and nervation, lower surface of blade in foreground; (C) detail of male inflorescence; (D) male flower, side view; (E) as D, two petals removed to show stamens; (F) pistil of male flower, 4-lobed, viewed from above; (G) male flower, 2 petals and 3 stamens removed to show pistil; (H) mature fruit, side view (seed on right); (I) fruit, plan view; (J) fruit, transverse section, showing four locules, three aborted and one with seed. A & H-J from *Mpandzou et al.*, 1198, B & G from *Kami*, *T. et al.*, 1227. Drawn by Juliet Williamson, CC-BY-NC-ND.



Vepris teva.

Shrub with mature (yellow) and immature (green) fruits. Note the sessile leaves. From *Mpandzou et al.*, 1198 (IEC, K). Photo by M. Cheek.

PeerJ reviewing PDF | (2021:08:65195:1:2:NEW 24 Apr 2022)

Vepris teva

Global distribution

Vepris teva.

The empty, leathery pericarp after juice abstraction and three spat seeds. Photo: M. Cheek

