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Predicting the combined effects of predators on shared prey has long been a focus of
community ecology, yet quantitative predictions often fail. Failure to account for
nonlinearity is one reason for this. Moreover, prey depletion in multiple predator effects
(MPE) studies generates biased predictions in applications of common experimental and
quantitative frameworks. Here, we explore additional sources of bias stemming from
nonlinearities in prey predation risk. We show that in order to avoid bias, predictions about
the combined effects of independent predators must account for nonlinear size-dependent
risk for prey as well as changes in prey risk driven by nonlinear predator functional
responses and depletion. Historical failure to account for biases introduced by well-known
nonlinear processes that affect predation risk suggest that we may need to reevaluate the
general conclusions that have been drawn about the ubiquity of emergent MPEs over the
past three decades.
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1 Abstract

2 Predicting the combined effects of predators on shared prey has long been a focus of community 

3 ecology, yet quantitative predictions often fail. Failure to account for nonlinearity is one reason 

4 for this. Moreover, prey depletion in multiple predator effects (MPE) studies generates biased 

5 predictions in applications of common experimental and quantitative frameworks.  Here, we 

6 explore additional sources of bias stemming from nonlinearities in prey predation risk.  We show 

7 that in order to avoid bias, predictions about the combined effects of independent predators must 

8 account for nonlinear size-dependent risk for prey as well as changes in prey risk driven by 

9 nonlinear predator functional responses and depletion. Historical failure to account for biases 

10 introduced by well-known nonlinear processes that affect predation risk suggest that we may 

11 need to reevaluate the general conclusions that have been drawn about the ubiquity of emergent 

12 MPEs over the past three decades. 

13 Introduction

14 Predicting how changes in predator abundance and diversity influence the structure and function 

15 of food webs has remained an elusive target for ecologists for decades (Ives et al., 2005; McCoy 

16 et al., 2012; Sih et al., 1998; Soluk & Collins, 1988). This difficulty stems in part from the 

17 myriad pathways through which predator-prey interactions can unfold. While predators provide 

18 essential ecosystem functions via prey consumption, they also affect food web dynamics via a 

19 variety of non-consumptive effects (Byrnes & Stachowicz, 2009; Cardinale et al., 2012; Preisser 

20 et al., 2007; Werner & Peacor, 2003). Understanding and predicting the roles of predators in 

21 food web dynamics becomes even more complicated when considering multiple predators that 

22 share prey (McCoy et al., 2012; Sih et al., 1998).  One predator species may induce changes in 

23 prey behavior, morphology, physiology, or development that alter the prey�s interactions with 
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24 other predators (Preisser et al., 2007; Werner & Peacor, 2003). Quantifying the emergent effects 

25 of multiple predators on prey suppression, defined as deviations from predicted levels of prey 

26 suppression based on the independent effects of each predator (Sih et al., 1998), is consequently 

27 critical for understanding real ecological communities.  However, common approaches for 

28 generating null expectations for independent predator effects make many simplifying 

29 assumptions that limit the accuracy of our measurement of emergent multi-predator effects 

30 (Sentis & Boukal, 2018).  In this paper, we build on recent advances in this field to present a 

31 generalized functional response framework that incorporates nonlinear processes that modify 

32 prey risk to generate appropriate null expectations for the aggregate effects of multiple predators 

33 on shared prey. 

34

35 Predator consumption of prey is typically described by the predator's functional response, which 

36 describes the number of prey eaten in a given period of time as a function of prey density.  C. S. 

37 Holling proposed three general forms for predator functional responses based on the attack rate 

38 (i.e. rate that predators encounter and capture prey), and handling time (i.e. the time spent 

39 pursuing, consuming, and digesting prey) of the predators (Holling, 1959).  A Type I (linear) 

40 functional response assumes that prey consumption by predators is defined by attack rate, 

41 whereas Type II  (saturating) and Type III (sigmoidal) assume prey consumption is determined 

42 by attack rate at low prey densities and handling time at higher prey density (Holling, 1959; 

43 Royama, 1971).  Holling�s formalization of mechanistic models for predator functional 

44 responses revolutionized the study of predation ecology. Since its introduction the functional 

45 response framework has been a mainstay for theoretical and experimental studies in food web 

46 ecology and an important tool for ecological applications such as evaluating the potential 
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47 effectiveness of biocontrol agents (Cuthbert et al., 2018) and impacts of invasive predators (Dick 

48 et al., 2014). However, the use of Holling�s functional responses for quantifying and predicting 

49 the strength of predator-prey interactions has had mixed success, due in part to simplifying 

50 assumptions that are violated in most natural and experimental settings (e.g., Griffen, 2021).  

51

52 The multiplicative risk model (MRM)--introduced by Soluk and Colins (1988) and formalized in 

53 a review by Sih et. al. 1998--is the most broadly used method to generate null expectations for 

54 the combined effects of multiple predators with the MRM approach receiving more than 1350 

55 citations to date.  The MRM predicts the expected proportion of prey surviving in the presence of 

56 two independent predators as the product of survival in the presence of each predator alone 

57 (Billick & Case, 1994; Griffen, 2006; McCoy et al., 2012; Sih et al., 1998; Soluk & Collins, 

58 1988; Vonesh & Osenberg, 2003). However, appropriate application of the MRM requires either 

59 that the predator has a type I (i.e. linear) functional response or, if the functional response is 

60 nonlinear, that prey are immediately replaced so that their density is maintained over time and 

61 thus their predation risk is constant (McCoy et al., 2012; Sih et al., 1998).  

62 Most predators have non-linear saturating functional responses (Jeschke et al., 2004; Lafferty et 

63 al., 2015); therefore, in the absence of instantaneous replacement, per capita risk for prey 

64 changes over time as prey are depleted by predation events (Juliano, 2001; McCoy et al., 2012; 

65 Rogers, 1972). Most multiple predator experiments allow depletion of prey, which typically 

66 leads to inflated estimates of per capita risk due to Jensen�s inequality (McCoy et al., 2012; Ruel 

67 & Ayres, 1999), and biased predictions of both single and combined predator effects (McCoy et 

68 al., 2012; Sentis & Boukal, 2018).  In these scenarios, the application of the MRM as a null 

69 model likely fails to predict the combined effects of multiple predators correctly, simply because 
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70 it fails to account for the nonlinearity typical of predation rates across prey abundance (McCoy et 

71 al., 2012). Despite the limitations of the MRM for predicting multiple predator effects identified 

72 in McCoy et al. 2012, the MRM has been cited more than 80 times over the past decade  (based 

73 on a Google Scholar search of  "multiplicative risk model" and predator*).

74

75 In addition to prey depletion and a nonlinear functional response, many other nonlinear processes 

76 can limit the utility of commonly used approaches for predicting effects of multiple predators on 

77 shared prey. For instance, variation in predator and/or prey sizes or variation in environmental 

78 temperature can change per capita predation risk in nonlinear ways. In the remainder of this 

79 paper, we expand on approaches presented in McCoy et al. 2011 and McCoy et al. 2012 by 

80 describing a framework for predicting predator effects on prey based on a generalized functional 

81 response that can be used to incorporate a variety of nonlinear processes (e.g., density, size, or 

82 temperature dependence) that modify per-capita risk.  Next we use simulations to explore how 

83 nonlinear risk associated with variation in prey body size may generate biased predictions in 

84 multiple predator effects studies that do not account for size dependent predation risk. 

85 Generalized functional response framework 

86 The generalized functional response framework integrates nonlinear predator functional 

87 responses, nonlinear modifiers of risks (e.g., size- or temperature-dependent predation), and 

88 changes in somatic growth to generate null expectations for the combined effects of any number 

89 of independently acting predators. Specifically, we use a partial differential equation model that 

90 allows predation to change as a function of both prey density and a nonlinear modifier (s) of 

91 predation rates (Ei) by k different predator types (Pi); and when relevant, it can also account for 

92 changes in size-dependent and density-dependent prey somatic growth (g). 
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95

96

97 In this equation, the vector  denotes the distribution of prey abundances across levels of s.  For �
98 simplicity, we assume that predator body sizes within a given species are approximately constant 

99 over time. 

100

101 We assume prey consumption (Ei) by each predator (Pi ) follows a Type II saturating functional 

102 response (Holling, 1959; Lafferty et al., 2015; McCoy et al., 2012; Rogers, 1972), which 

103 describes the density-dependent foraging dynamics of most natural enemies (Jeschke et al., 2004; 

104 Lafferty et al., 2015). We incorporate modifier-dependent predation by modeling the attack rate, 

105 , and handling time, h, as functions of a prey risk modifier . Details about the derivation of � �
106 our size distributed functional response are in supplement 1.

107

108 The total attack rate from predator type i (predators act independently, i.e. there is no 

109 interference competition) is 

110 ,�� =
��(�)�(�)

1 + ����
111 where Ai = sum(ai(s)C(s)) is the total attack rate for predator type i (i.e. the expected per-

112 predator rate of prey consumption when prey are rare or handling is not limiting) and Hi is the 

113 propensity-weighted average handling time, i.e.

114

115 �� =
∑��(�)�(�)ℎ(�)��
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116 These expressions take into account the fact that prey-handling by predators is limited by the 

117 entire range of prey they consume, not just the prey in a particular class (supplement 1).

118 A wide array of potential processes and functional forms can be used to model modifier-

119 dependent predation risk (e.g., McCoy et al. 2011).  For instance, temperature is known to 

120 modify predation in nonlinear ways and could be modeled by making the attack rate a quadratic 

121 function of temperature and handling time a power function of temperature and predator body 

122 mass (Davidson et al., 2021; Sentis & Boukal, 2018; Uiterwaal & DeLong, 2020).  

123

124 Here we focus on body size as an exemplar of a modifier that has nonlinear effects on predation 

125 risk. Size-specific risk is often a nonlinear function of predator and prey body sizes and can 

126 sometimes have stronger implications for per-capita predation risk than prey density (McCoy et 

127 al., 2011; McCoy & Bolker, 2008; Rudolf, 2008; Woodward et al., 2005). Therefore, failure to 

128 account for variation in the sizes of prey in experiments (e.g., differences in prey size structure), 

129 or changes in prey size as a result of somatic growth over the course of an experiment (e.g., a 

130 study of a single cohort over time), can bias predictions about the combined effects of multiple 

131 predators.  Most species increase in size by orders of magnitude during their lifetimes (Fenchel, 

132 1974; Werner & Gilliam, 1984); thus, failure to appreciate the dynamic effects of body size on 

133 predator-prey interactions can complicate our understanding of predator prey dynamics.  

134

135 We will explore two empirically supported functions for changes in predation risk as 

136 functions of prey size, an exponential function (Alford, 1999; Aljetlawi et al., 2004; McCoy et 

137 al., 2011; McCoy & Bolker, 2008) of the form  

138 3� = � ∙ �(1 ‒ ��)
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139 and a unimodal function (Kalinkat et al., 2013; McCoy et al., 2011; McCoy & Bolker, 2008; 

140 Vonesh & Bolker, 2005; Vucic‐Pestic et al., 2010; Wahlström et al., 2000) of the form 

141  4� = �(�� ⋅ �(1 ‒ (��)))�
142 where  is maximum attack rate,  scales the most vulnerable prey size s, and  determines the � � �
143 width of the window of maximum vulnerability (i.e., the level of prey size specialization for a 

144 predator) (Fig. 1).  For simplicity, we will assume predator size is not variable, however predator 

145 size or predator:prey body size ratios could also be considered within this framework.  We 

146 assume handling time is independent of prey body size, but this assumption could be relaxed 

147 (e.g., eq. 2 and McCoy et al. 2011). 

148

149 When predation is size-dependent we may also need to consider prey body size growth through 

150 time. We represent prey growth in our generalized functional response formulation via an 

151 advection term that moves the prey through different size classes. In order to integrate these 

152 equations over time in a numerically stable way, we implement the advection term by assuming 

153 the locations of size bins (rather than sizes of individuals) change over time. We first solve the 

154 growth equation ( ) to find size as a function of time, then substitute those size ��/�� = �(�)
155 values into the predation term at each time step.  As with size-dependent predation, many 

156 functional forms are available for modeling growth; we use a standard Gompertz growth model. 

157 This model assumes that relative growth rate decreases exponentially with size, leading to a 

158 growth curve

159 5�(�) = � ∙ � ‒ � ∙ �( ‒ ��)
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160 where  is the negative log of scaled initial size (i.e. � is the maximum size and � � =‒ ln 

161   and  is a constant that describes the rate of decrease in relative growth rate as size (�(0)/�) �
162 decreases.   For example, if the first size bin initially includes individuals in the range 

163 [s1(0),s2(0)], at time t it will include individuals in the range [s1(t),s2(t)]. 

164

165  We also incorporate individual variation in growth via a diffusion term, the third term in 

166 equation 1. This term describes diffusion along the size axis that naturally arises from 

167 continuously occurring, independent variation around growth rate (i.e. Brownian motion Brooks 

168 et al., 2013). Because the width of the size bins in the model varies over time according to the 

169 specified growth curve, the effective diffusion rate is also size-dependent.

170

171 For the purposes of this study, we focus on two predator-one prey interactions with a few 

172 specific functional forms. However, equation 1 is generalizable to model assemblages consisting 

173 of many (i = 1 to k in eq. 1) concurrent predators and a wide array of functional forms for the 

174 predator functional response (e.g. Holling type III, Holling 1959), risk modifiers, and somatic 

175 growth models (Gompertz, 1825; Kahm et al., 2010; Richards, 1959; West et al., 2001). 

176

177 We conduct a literature review to examine the prevalence of size dependent interactions in 

178 multiple predator effects studies. Next, we simulate predation by two predators using our 

179 generalized functional response model with prey size-dependent predation risk and compare the 

180 simulation results with predictions generated by the multiplicative risk model (MRM). We then 

181 explore how different functional forms of size-dependent risk influence the MRM predictions 

182 relative to simulation outputs. To contextualize our analysis we used functional relationships and 
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183 estimates of size variation reported in studies of size dependent predation on red eyed treefrog 

184 larvae (Brooks et al., 2013; McCoy et al., 2011). 

185

186 Methods
187
188

189 Reviewing size dependence

190 We searched web of science on May 8, 2018 using the terms �(�multiple pred* �) OR (�risk 

191 reduction" & pred*) OR (�risk enhancement� & pred*) OR (MPE & pred*) & experiment", and 

192 retained results for the previous 20 years, a total of 492 papers. We then screened the studies to 

193 include only those that were experimental, manipulated presence of at least two predators, and 

194 had treatments of control, predator monocultures, and multiple predators foraging together. After 

195 screening, we retained 121 observations from 119 studies (Supplement 2 and 3). We then 

196 reviewed the full text of these 121 studies to determine how or if prey size was reported and if 

197 so, how much size changed over the duration of the experiment.

198 Comparing the MRM Predictions and Generalized Functional Response Simulations

199 The MRM predicts the expected proportion of prey surviving in the presence of two independent 

200 predators as the product of survival (proportion alive) in the presence of each predator alone (  ��
201 and ) corrected for survival in the absence of a predator ( ) in additive�� ��
202   6��� =

�� ∙ ����
203 or substitutive

204   7���
2

=
�0.5� ∙ �0.5���

205 experimental designs (Billick & Case, 1994; Griffen, 2006; McCoy et al., 2012; Sih et al., 1998; 

206 Soluk & Collins, 1988; Vonesh & Osenberg, 2003). Predicted predation rates based on the MRM 
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207 assume that per-capita risk is the same for all prey individuals and that it remains constant over 

208 time (McCoy et al., 2012; Sih et al., 1998).  However, when predators have nonlinear and 

209 saturating functional responses (Jeschke et al., 2004; Lafferty et al., 2015) and prey are depleted, 

210 or when risk is a nonlinear function of some other modifying factor (e.g., temperature or size), 

211 per capita risk is not constant (Juliano, 2001; McCoy et al., 2012; Rogers, 1972). Thus, 

212 applications of the MRM based on static estimates of survival can bias estimates of per-capita 

213 risk from individual predators, which carry over to bias predictions of combined predators 

214 (McCoy et al., 2012; Sentis & Boukal, 2018). By accounting for nonlinear modifiers of prey risk 

215 and depletion, we expect that the generalized functional response framework presented here 

216 could be used to generate more accurate predictions for the combined effects of multiple 

217 predators.   

218 We simulated foraging trials for predators in monoculture and in mixed predator species 

219 assemblages by numerically solving equation 1 (example code available in Supplement 4), 

220 providing estimates of prey survival for each of two predators alone and in combination (i.e., S1, 

221 S2, and S1,2). Estimates of S1,2 from these simulations provided the null model for independent 

222 interactions between two predators with size-dependent predation rates. We only simulate 

223 additive combinations of predators; thus, all comparisons are based on predictions from the 

224 MRM described by equation 6 and the generalized functional response in equation 1.  The degree 

225 of mismatch defined as the rate difference between generalized functional response simulations 

226 and the predictions from the MRM (eq. 6) provides a metric for the potential bias in predictions 

227 when prey are being depleted and predation risk is size-dependent. In other words, differences 

228 between simulation results and MRM predictions are caused by a failure of the MRM to account 
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229 for the non-linear, but fundamentally predictable (and therefore not emergent), effects of density- 

230 and size-dependent predation.  

231

232 For a broad range of plausible parameter values for each predator, we explored how failure to 

233 account for size-dependence can bias inferences about multiple predator effects. For attack rates 

234 that decayed exponentially with prey size, we varied the size scaling parameter , which �
235 describes how risk decreases with prey size (Fig 1a).  For attack rates that were unimodal 

236 functions of size, we varied two key parameters regulating size-dependent risk, while keeping all 

237 other parameters constant:  , the size scaling parameter that determines the most vulnerable prey �
238 size (Fig. 1b), and  the parameter that determines the degree of size specialization (i.e., width of �
239 the window of maximum vulnerability) (Fig 1c).  Because each of these parameters affects size-

240 dependent risk due to their independent and interactive effects, we explored how they affected 

241 the accuracy of predictions in three ways.  First, to examine the interactive effects of the 

242 unimodal shape parameters, we set one predator to be a size generalist (i.e., a low value ; eq. 4) �
243 that was most effective at killing small prey (i.e., a low value of d; eq. 4) and then allowed the 

244 second predator to have increasingly higher values of these two parameters (i.e., increasingly 

245 more size specialized and more effective in consuming larger prey) in each simulation.  Second, 

246 to explore the independent effects of the values of the size scaling (d) and size specialization ( ) �
247 parameters on bias, we fixed both predators to have either high or low values of each parameter 

248 (i.e., to be more efficient consumers of large or small prey, d; or to be size specialist or 

249 generalist, ). Third , we allowed the value of the free parameter to vary between the predators.  �
250
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251 Given the sparse data on prey size in studies of MPEs, we grounded our simulations by using 

252 prey sizes and growth rates published for one particular empirical system (McCoy et al., 2011) 

253 along with attack rates and handling times to match those used in McCoy et al. 2012 (i.e., 

254 maximum attack rate  = 0.5, and handling time  = 1). We initiated all simulations with a prey � ℎ
255 population size of 100 individuals evenly divided into 10 prey size classes ranging between 1and 

256 45mm. We varied the size scaling parameter d for attack rates that decayed exponentially with 

257 size (via eq 3). We varied the value of  between 0.001 and 3.5, and the value of  from 3.5 to � �
258 24 (see table 2 in McCoy et al 2011). For simulations of growing cohorts we set maximum size  

259  (eq. 5) at 35mm, the maximum growth rate parameter  to 0.05 and the growth rate decay � �
260 parameter  to a value of -0.05 (eq. 5), which are within the ranges of estimates of tadpole �
261 growth reported in McCoy et al. 2011 and Albecker & McCoy, 2019). 

262

263 Results

264 Out of 119 studies on emergent multiple predator effects published between 1998 and 2018 

265 (Supplement 2 and 3), only 15% provide information on prey size at all, and only 3% provide 

266 numerical descriptions of size ranges of prey.  Although studies with significant prey size 

267 variation may be more likely to report prey sizes, in those studies reporting data on prey size 

268 there was an almost 2-fold difference in size on average between the smallest and largest prey 

269 (Supplement 2 and 3).

270

271 Prey size refuge

272 When predation risk decayed exponentially with prey size, the MRM predicted either higher or 

273 lower risk than expected from the generalized functional response model depending upon the 
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274 specific parameters of the risk function (Fig. 1a) and the experimental duration (Fig 2 a and b).  

275 For small values of d (i.e. strong size dependence for small prey) the MRM predicted higher 

276 levels of risk than expected (i.e. predicted lower survival), but this pattern was reversed for larger 

277 values of d (i.e. strong size dependence for larger prey) with the MRM predicting lower risk 

278 (higher survival) than expected (Fig. 2).  This pattern emerged because the MRM overestimates 

279 predation risk for larger prey when risk is strongly size-dependent and fails to capture the higher 

280 combined size specific rates of depletion for small and intermediate sized prey when the rate of 

281 risk decay is shallower (i.e larger values of d). These patterns were similar for growing cohorts 

282 and size structured prey, but with the magnitude of bias for growing cohorts strongly regulated 

283 by prey growth rates. 

284

285 Size Specialization

286 When size dependence was a unimodal function of prey size and small prey were most 

287 vulnerable (i.e. low values for d � Fig. 1b), the MRM predicted lower survival as the predators 

288 became more specialized relative to the generalized functional response predictions (Fig. 3 a). 

289 However, this pattern reversed when either predator was a size generalist, with the MRM 

290 predicting higher survival than the generalized model (Fig 3a). Interestingly, the MRM predicted 

291 higher survival over a much broader parameter space as the most vulnerable size class increased, 

292 with the pattern only reversing for the most size-specialized predators (fig. 3 b, c). This pattern is 

293 likely due to the increasing influence of depletion on per capita risk, as a large range of size 

294 classes are vulnerable to predation (McCoy et al. 2012). The strong effects of specializing on 

295 small prey also emerge in Figure 4. When predators do not have strong size preferences (fig 4a; 

296 small ) the MRM predicts higher survival for all values of d because it fails to account for the 
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297 increasing risk that occurs with depletion (McCoy et al. 2012). However, this pattern reverses as 

298 the predator size specialization becomes more humped shaped and peaked, because the MRM 

299 vastly over estimates mortality of the smallest and largest prey (Fig. 4 b, c). 

300

301 Discussion

302 Nonlinear processes that modify predation risk must be considered when predicting multiple 

303 predator effects. In this study we show how size-dependent risk and numerical depletion of prey 

304 interact in complex ways, which leads predictions from the MRM to be biased in ways that could 

305 be wrongfully interpreted as evidence for facilitation and inhibition among predators. Similar 

306 discrepancies can be expected with other common functional response modifiers such as 

307 temperature (e.g., Davidson et al. 2021). However, it is difficult to evaluate to what extent failure 

308 to account for nonlinear modifiers of predation risk have affected our general understanding 

309 about the importance of emergent multiple predator effects, in part because data on these 

310 variables are often not reported. For instance, most studies do not report size data (Supplement 

311 2), even though numerous studies have shown that size variation is a strong determinant of 

312 predation risk (Alford 1999; Aljetlawi et al. 2004; McCoy & Bolker 2008; McCoy et al. 2011).   

313

314 We found mismatches in the predicted survival of prey in multi-predator scenarios both when 

315 size-dependent risk declined exponentially (Fig. 2) and when prey risk was a hump shaped 

316 function of prey size (Fig 3-4).  In our simulations, the mismatch in the predictions between the 

317 MRM and Generalized functional response was largest when there was a size refuge for large 

318 prey (small values of d in Fig. 2a). When all prey were vulnerable, however, the pattern of 

319 mismatch switched directions as the effects of prey depletion on risk outweighed the reductions 
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320 in risk associated with large size (Fig. 2a).  Moreover, that magnitude of mismatch between the 

321 two models increased with experimental duration as the size structure and density of the 

322 remaining prey cohort changed through time (Fig. 2b). When prey risk is a unimodal function of 

323 size, varying both how risk scales with prey size (d in eq 4), and the width of the prey 

324 vulnerability window (  in eq 4) MRM predictions can generate opposing and increasing �
325 patterns of divergence from the simulated prey survival with combined predators (e.g. Fig. 3-4).   

326 In fact, failure to account for size dependence could lead to predicted survival of prey that was as 

327 much as 40% lower when predators specialize on small prey (Fg. 4 b,c).  However, large regions 

328 of the parameter space that we investigated showed only modest mismatches between the 

329 generalized functional response model and the MRM  ( e.g., Fig 4a). This unexpected result 

330 stems in large part from the potentially opposing effects on risk of size-dependence and 

331 depletion. As prey are depleted due to predation, per capita risk increases through time; however, 

332 prey risk often decreases as prey grow or only larger, less vulnerable size classes remain. Said 

333 differently, size-dependent predation depletes smaller prey at a faster rate leaving a larger 

334 proportion of remaining prey in less vulnerable size classes, which decelerates prey risk in a way 

335 that counteracts the increasing risk expected with depletion. However, even when the MRM and 

336 generalized functional response predictions are consistent or even match, the MRM approach 

337 fails to capture important mechanisms leading to the observed outcomes for prey abundance. 

338 Moreover, these mismatches may become magnified with other risk modifiers such as 

339 temperature which can have asymmetrical effects on predators and prey as well as on prey of 

340 different sizes (Davidson et al 2021).  

341
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342 The results of this study reinforce pleas for better integration of empiricism and theory in 

343 ecological studies (Bolker et al., 2003; Bolker, 2008; Yates et al., 2018) to help elucidate 

344 mechanistic processes that will improve our ability to predict ecological interactions  

345 (Cottingham et al., 2005; Denny & Benedetti-Cecchi, 2012). We show the potential value of 

346 incorporating nonlinear modifiers of predation risk for generating predictions and for developing 

347 a better understanding of processes that underlie multiple predator prey interactions. The 

348 increasing availability of powerful computational tools and the deployment of more efficient 

349 experimental designs (Barraquand & Gimenez, 2021; Coblentz & DeLong, 2021; Daugaard et 

350 al., 2019; Rosenbaum & Rall, 2018; Uszko et al., 2020) aimed at parameter estimation along 

351 with hypothesis testing make mechanistic studies more feasible and experimental results more 

352 informative (Aljetlawi et al., 2004; B. M. Bolker, 2008; Daugaard et al., 2019; Denny & 

353 Benedetti-Cecchi, 2012; McCoy et al., 2011; McCoy & Bolker, 2008; Okuyama & Bolker, 

354 2012).  

355 The promise of inferring mechanisms underlying complex ecological interactions based 

356 on deviations from linear extrapolations of simple statistical models has inspired hundreds of 

357 ecological experiments. However, failure to appreciate the important underlying mechanistic 

358 assumptions implicit in these models has obscured our general understanding of the functional 

359 effects of multiple predators in complex food webs.  McCoy et al. (2012) demonstrated how 

360 failure to account for depletion during multiple-predator experiments biased conclusions of 

361 experiments aimed at understanding the functional roles of multiple predators for regulating 

362 shared prey. Here we have extended that analysis to show that changes in prey risk due to other 

363 common nonlinear processes like body size and temperature may also need to be incorporated 

364 into predictions for multiple predator outcomes.  
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365

366 MPE studies often use factorial experimental designs that have high power for null hypothesis 

367 testing, and it seems likely that these experiments will continue to be commonly employed in 

368 multiple predator effects studies. Therefore, we suggest that future MPE studies need to 

369 explicitly state assumptions implicit in the experimental designs used (e.g., constant per capita 

370 predation rates, size-independent predation, constant temperature conditions), about the sizes 

371 (mean and variances) of predators and prey, potential impacts of other strong covariates (e.g., 

372 temperature), and to temper any inferences appropriately given the limitations of the statistical 

373 and experimental approaches employed.  For instance, the assumptions of linear predator 

374 functional responses or zero depletion implicit with the MRM are nearly always violated; studies 

375 that find deviations from the MRM expectations should not fall back on traditional 

376 interpretations that unconditionally attribute deviations of observed prey survival from the MRM 

377 to emergent predator facilitation or inhibition.  It would be more useful to emphasize the 

378 quantification of parameters that may give mechanistic insights about the processes generating 

379 observed outcomes in multiple predator-prey interactions.  For example, investigators could 

380 explore different covariate effects (e.g. temperature) in the generalized functional response 

381 approach presented here, or quantify how higher order modifications (e.g., antipredator 

382 behaviors) of attack rates or handling times change over the course of experiments to modify 

383 interaction strengths. 

384  

385 Several meta-analyses and expert reviews have concluded that multiple predator - prey 

386 interactions can rarely be predicted from the independent effects of each predator alone (Byrnes 

387 & Stachowicz, 2009; Griffen, 2006; Griffin et al., 2008; Schmitz, 2007). However, since most 
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388 studies have assessed the predictability of multiple predator effects using the MRM, our results 

389 demonstrate the nuance driving the failure of such generalizations. This study highlights that our 

390 understanding of multiple predator effects may still be largely incomplete and elevates the 

391 promise of incorporating more mechanisms into multiple predator effects research for advancing 

392 the field.  

393 Although we do not demonstrate the process here, the way to make multi-predator 

394 predictions based on the dynamics of growth and size- and density-dependent predator mortality 

395 is to parameterize nonlinear functions for growth, predator preference, and predator functional 

396 response from experimental data.  Such experiments and model-fitting procedures are a core part 

397 of our research programs (Davidson et al., 2021; McCoy et al., 2011, 2012; McCoy & Bolker, 

398 2008; Okuyama & Bolker, 2012; Vonesh & Bolker, 2005). The least commonly estimated 

399 component of equation 1 is the diffusion term describing variation in growth rate: this term can  

400 be roughly estimated by fitting a linear regression to the  time-dependent variance around an 

401 estimated growth curve, or by the more sophisticated methods described in Brooks et al. 2013. 

402 Granted, this procedure is more difficult than using the MRM to estimate multi-predator 

403 outcomes -- which only needs a single value of survival from a series of  single-predator trials -- 

404 but, as we have demonstrated here, the  dynamics of predator-prey systems are often much too 

405 dynamic and nuanced to be captured by the simple assumptions of the MRM.

406
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Figure 1
Illustration of varying parameters of the size dependent risk function and predation risk
for prey of different sizes.

Panel A illustrates how changing the value of the size scaling parameter d affects the shape
of exponential size-dependent risk (equation 3). Panel B demonstrates how changing d
affects the shape of the monotonic risk function with fixed at a value of (see panel C and
equation 4). Panel C demonstrates how changing which determines the width of the window
of vulnerability affects risk across prey sizes. For panel c the size scaling parameter d was
fixed at a value of 8 (see panel B and equation 4).
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Figure 2
Heat map indicating the degree of mismatch between the Multiplicative Risk Model and
the generalized functional response.

A. The x- and y-axes depicts variation in the rate at which predation risk decayed with size
for each predator (di from eq. 3). B. Illustrates how the magnitude of bias changes over time

for two identical predators over a range of exponential decay rates. The patterns in panel B
indicate a progression through time to the conditions depicted along the 1:1 line in Panel A.
Negative differences mean that the MRM predicted higher risk to prey than the generalized
functional response model (leading to conclusions of risk reduction), whereas positive
differences underestimated risk (leading to conclusions of risk enhancement for prey). For
instance, after 7 days the MRM would predict 5% higher survival than expected for prey that
have weak size dependence and 10% lower survival when prey risk is strongly size
dependent.
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Figure 3
Mismatch in the predictions of the MRM and generalized functional response models
when predation risk was a hump shaped function of prey size.

Each facet displays the outcome from simulated experiments that ran for 10 times steps for
three different focal prey sizes. The heatmap indicates differences between predicted
survival based on the MRM and generalized functional response model. The x and y- axes
represent the difference in the values of the size specialization parameter from eq. 4
between the two predators. Negative values indicate the MRM predicted higher risk to prey
(leading to conclusions of risk reduction), whereas positive values the MRM underestimated
risk (leading to conclusions of risk enhancement for prey).
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Figure 4
Mismatch in the predictions of the MRM and generalized functional response models
when predation risk was a hump shaped function of prey size.

Each facet displays the outcome from simulated experiments that ran for 10 times steps for
three different size specialization scenarios. The heatmap indicates differences between
predicted survival based on the MRM and generalized functional response model. The x and
y- axes represent the difference in the values of the focal size parameter from eq. 4 between
the two predators. Negative values indicate the MRM predicted higher risk to prey (leading to
conclusions of risk reduction), whereas positive values the MRM underestimated risk (leading
to conclusions of risk enhancement for prey).
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