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Extinction risks for many insect species, particularly across very broad spatial extents,
have been linked to the growing frequency and severity of temperatures that exceed the
boundaries of their realized niches. Measurement and mitigation of such impacts is
hindered by the availability of high-resolution measurements of species-specific severity of
extreme weather, especially temperature. While techniques enabling interpolation of
broad-scale remote sensing metrics are vital for such efforts, direct remote sensing
measurements of thermal conditions could inform improve habitat management by
providing detailed insights that interpolative approaches cannot. Advances in unmanned
aerial vehicle (UAV) technology have created opportunities to better evaluate the role of
microclimates in local species extinctions. Here, we develop a method to create high-
resolution maps of microclimates using UAV and thermal imaging technology that use
species’ realized niche boundaries to assess potential effects of severity of extreme
temperatures. We generated air temperature maps (5cm resolution) and canopy height
models (CHM; 1cm resolution) for 15 sites in a rare alvar ecosystem in eastern Ontario. We
validated these remote sensing observations against independent, in situ temperature
observations using iButtons. Temperature observations were accurate and related to
physical heterogeneity in alvar habitats. We converted temperature measures into
estimates of proximity of thermal niche boundaries for three butterfly species found during
field surveys. This is the first time that this method has been applied to high resolution
remote sensing observations and offers potential to assess the availability and adequacy
of microclimates within habitats at resolutions relevant for conservation management.
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41 Abstract

42

43 Extinction risks for many insect species, particularly across very broad spatial extents, 

44 have been linked to the growing frequency and severity of temperatures that exceed the 

45 boundaries of their realized niches. Measurement and mitigation of such impacts is hindered by 

46 the availability of high-resolution measurements of species-specific severity of extreme weather, 

47 especially temperature. While techniques enabling interpolation of broad-scale remote sensing 

48 metrics are vital for such efforts, direct remote sensing measurements of thermal conditions 

49 could inform improve habitat management by providing detailed insights that interpolative 

50 approaches cannot. Advances in unmanned aerial vehicle (UAV) technology have created 

51 opportunities to better evaluate the role of microclimates in local species extinctions. Here, we 

52 develop a method to create high-resolution maps of microclimates using UAV and thermal 

53 imaging technology that use species� realized niche boundaries to assess potential effects of 

54 severity of extreme temperatures. We generated air temperature maps (5cm resolution) and 

55 canopy height models (CHM; 1cm resolution) for 15 sites in a rare alvar ecosystem in eastern 

56 Ontario. We validated these remote sensing observations against independent, in situ temperature 

57 observations using iButtons. Temperature observations were accurate and related to physical 

58 heterogeneity in alvar habitats. We converted temperature measures into estimates of proximity 

59 of thermal niche boundaries for three butterfly species found during field surveys. This is the 

60 first time that this method has been applied to high resolution remote sensing observations and 

61 offers potential to assess the availability and adequacy of microclimates within habitats at 

62 resolutions relevant for conservation management. 
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79 Introduction

80 Climate change exposes species to abiotic conditions that may exceed their tolerances 

81 (Kerr et al. 2015; Urban et al. 2016), leading to growing frequencies and severities of extreme 

82 weather events (Harris et al. 2018; Kerr 2020). Such changes contribute to the declines of many 

83 species (Riddell et al. 2021; Soroye et al. 2020). Over broad geographical areas, such extreme 

84 events are increasing extinction risks for populations of key pollinator species (Soroye et al. 

85 2020) and vertebrates at global extents (Williams and Newbold, 2021). Distinguishing between 

86 effects of �press� events (e.g. shifts in average climatic conditions that can progressively change 

87 the suitability of an environment for particular species) vs. �pulse� events (e.g. short duration 

88 extreme weather that can cause population decline; Harris et al. 2018), temperature extremes 

89 (�pulse� events) in particular have been linked to changes in species colonization-extinction 

90 dynamics, contributing to declines for many species across broad geographical areas. Translating 

91 broad-scale models to direct local measurements that assess species� exposures to extreme 

92 temperature, relative to their individual tolerances, could improve habitat management and 

93 species� conservation prospects. 

94 Microclimate refugia are areas where species can find shelter from extreme weather (Rull 

95 2009). The size of these refugia depends on the body size and niche boundaries of each species 

96 (Keppel et al. 2012). Species distribution models (SDMs) are often used to forecast impacts of 

97 climate change on species� ranges (Algar et al. 2009; Kharouba et al. 2009; Porfirio et al. 2014). 

98 However, such methods rely heavily on long term climate data and are more appropriate for use 

99 at large biogeographical extents (Anderson & Gaston 2013; Ashcroft 2010; Potter et al. 2013). 

100 Species experience temperatures at very localized spatial extents (Suggitt et al. 2011). While 

101 some studies have measured microclimatic variation of complex local landscapes at scales 

102 relevant to the movement and habitat use of individual organisms, fewer studies have assessed 

103 this microclimatic variability relative to individual species� thermal boundaries comprehensively 

104 throughout habitats (Milling et al. 2018; Pincebourde et al. 2016; Rebaudo et al. 2016; Slavich et 

105 al. 2014; Suggitt et al. 2011; Suggitt et al. 2018). A key challenge is that many habitats exhibit 

106 considerable thermal heterogeneity (e.g. Milling et al. 2018), which can enable species to find 

107 shelter from short duration temperature extremes (Suggitt et al. 2011; Suggitt et al. 2018). 

108 Techniques to measure microclimate heterogeneity relative to the limits of species� tolerances 

109 are essential for predicting extinction risks of small-bodied species (Pincebourde et al. 2016; 

110 Potter et al. 2013; Rebaudo et al. 2016; Suggitt et al. 2018), but are likely to require emerging 

111 remote sensing technologies (Zellweger et al. 2019). 

112 Unmanned aerial vehicles (UAVs, or drones) show considerable promise in ecological 

113 research (Christie et al. 2016; Duffy et al. 2021; Zellweger et al. 2019). The availability of 

114 powerful, lightweight sensors, including thermal, multispectral, visible light, and LiDAR, create 

115 opportunities to translate broad-scale models to particular habitats, which could help predict 

116 movements or presences of individual species within habitats (Anderson & Gaston 2013; Duffy 
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117 et al. 2021; Zellweger et al. 2019). Satellite thermal infrared (TIR) imagery and topographical 

118 data have been used in broad-scale ecological models (Zellweger et al. 2019). However, most 

119 satellite TIR imagery resolution is too coarse to detect and measure microclimates directly, 

120 particularly for small-bodied organisms, which may limit their application to air and soil 

121 microclimatic temperature measurements in some cases (Anderson & Gaston 2013; Zellweger et 

122 al. 2019). Radiometric thermal cameras mounted on UAVs provide measurements at very high 

123 resolutions that can complement broader-scale remote sensing measurements of temperature 

124 (Anderson & Gaston 2013; Brenner et al. 2018; Byerlay et al. 2020; Maes et al. 2017; Messina & 

125 Modica 2020; Milling et al. 2018). Prior to the onset of UAV and thermal camera technologies, 

126 microclimate studies required temperature loggers, such as iButtons (George et al. 2015; Holden 

127 et al. 2011). Such loggers are vital for calibrating and validating thermal remote sensing 

128 observations, but remote sensing provides unique advantages in terms of synoptic environmental 

129 measurement that greatly expands the reach of in situ ecological measurement (George et al. 

130 2015; Holden et al. 2011; Kerr & Ostrovsky 2003).

131 The thermal limits of each species could predict the response of small-bodied species to 

132 climate change (Sunday et al. 2012). There is mounting evidence of species altering their 

133 historical range in response to habitats exceeding their thermal limitations (Hufnagel & Kocsis 

134 2011; Soroye et al. 2020; Williams & Newbold 2021). When temperatures exceed a species� 

135 thermal tolerances, their fecundity and survival declines because they must expend energy on 

136 behavioural or physiological thermoregulation rather than resource gathering or reproduction 

137 (e.g. Buckley et al. 2021).  The newly-developed and tested Thermal Position Index (TPI; Kerr 

138 2020; Soroye et al. 2020; Williams & Newbold 2021) relates species� realized thermal niches to 

139 their extinction-colonization dynamics. This method measures thermal tolerances using historical 

140 observations of air temperatures in areas where species have successfully persisted over time. 

141 Species� upper thermal limits evolve slowly, so adaptation rates are likely to be insufficient to 

142 permit many species to tolerate rapid warming (Araújo et al. 2013; Bennett et al. 2021). 

143 This paper proposes a new methodological framework to measure landscape-scale 

144 microclimatic profiles with UAV and thermal infrared imaging technology, and illustrates their 

145 use in a practical conservation setting. We simultaneously outline a method of translating the 

146 Thermal Positioning Index, previously validated at global scales, to microclimatic applications. 

147 This framework includes five steps: data collection, assessment of species� thermal limits, map 

148 building, mapping of thermal conditions relative to species� measured tolerances, and 

149 interpretation (sensu Faye et al. in 2016). We present examples of how individual species� 

150 tolerances can be linked to remotely sensed thermal data to describe habitat suitability for three 

151 butterfly species:  Hesperia sassacus (Indian skipper), Speyeria aphrodite (Aphrodite fritillary), 

152 and Coenonympha tullia (Common ringlet).
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153 Materials & Methods

154 STEP 1 - DATA COLLECTION 

155 Study Site. Field sites were located in Burnt Lands Provincial Park situated 30km west of 

156 Ottawa, ON, which hosts an alvar ecosystem interspersed with mostly coniferous tree stands. 

157 Fifteen sites of varying sizes separated by a minimum of 20 m of forested area were selected 

158 (Gordon & Kerr 2022). All sites consisted of open areas and clearings. Only two were not 

159 surrounded by trees. Research and UAV use permits were provided by Ontario Parks. 

160 Recognized as rare and imperiled ecosystems by the Nature Conservancy of Canada, alvars are 

161 characterized by open and barren areas with little to no soil, and often host rare species (NCC 

162 2020). During summer, these landscapes can experience highly localized extreme heat in areas 

163 with exposed limestone, while vegetated areas nearby might have considerably lower 

164 temperatures. The spatial variability in these thermal conditions has not previously been 

165 measured. 

166 UAV and Sensor. A DJI Matrice 300 quadcopter with real-time kinetic (RTK) positioning was 

167 deployed. This drone carried a Zenmuse XT2 dual sensor with thermal (13mm focal length; 

168 640x512 image capture) and visual (8mm focal length, 12 megapixel resolution) imaging 

169 capabilities (DJI Inc., Shenzhen, China). A RTK base station was deployed in the field, which 

170 increased the positioning accuracy of the UAV by providing real-time differential corrections, 

171 and eliminated the need for ground control points. The quadcopter was equipped with the DJI 

172 pilot program, which included a mission function allowing execution of automated flight and 

173 camera control sequences. Imaging was acquired during missions programmed in the DJI pilot 

174 program using satellite imagery. The thermal camera captured images in the thermal infrared 

175 (TIR) spectral range in the radiometric-jpeg (R-JPEG) format. Each pixel was embedded with 

176 temperature data. The in-camera emissivity value was set to 1 for TIR images and adjusted in the 

177 GIS workflow step outlined below. The visual camera captured images in the red, green, and 

178 blue spectral bands (RGB). Both cameras captured images simultaneously. Every image was 

179 geotagged with the RTK-corrected GPS coordinates.

180 Flight Plan. Image acquisition flight plans were programmed with a 90% image overlap on all 

181 sides to optimize mapping accuracy, as recommended by the Pix4DMapper software used in the 

182 mapping step (Pix4D SA, Lausanne, Switzerland). The UAV was programmed to capture images 

183 at 1 second intervals and fly at a constant 2.5 m/s speed to maximize survey area, given a 37-

184 minute battery life limitation, while minimizing motion blur. All missions were performed at 37 

185 meters altitude to achieve 5 cm thermal imaging resolution and 1 cm RGB imaging resolution. 

186 All flights were restricted to days above 15℃ with <50% cloud cover between 10:30am and 

187 3:30pm to ensure the accuracy and comparability of the thermal imagery gathered (Dai et al. 

188 1999). Cloud cover alters TIR-based temperature measurement, so all flight missions were 

189 paused during cloudy periods and resumed after they cleared. Missions were aborted if 
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190 conditions remained cloudy. Butterfly surveys were conducted in parallel to our UAV surveys. 

191 While the data was not used in this paper, the butterfly monitoring methodology�s temporal and 

192 temperature requirements (i.e. between 10:45am and 3:45pm, and over 13℃) had to be respected 

193 for the drone surveys as well (Pollard 1977). As the method was designed for British summer 

194 conditions, mild liberties were taken with the methodology (i.e. earlier start but higher 

195 temperature requirement). 

196 In situ Temperature Measurements. To calibrate temperature readings captured by the thermal 

197 imaging, temperature loggers were placed in situ. At each site, an iButton (DS1922L-F5#, 

198 Maxim, Dallas, USA; accuracy: ±0.5℃) coated in clear plastic (Roznik & Alford 2012) was 

199 placed on the ground approximately 1 meter into the tree line in full shade near each site�s access 

200 point for convenience. The plastic coating provided a waterproofing barrier (Plasti Dip, Blaine, 

201 MN, USA) for the iButton but is not expected to significantly affect the air temperature readings 

202 in the shade (Roznik & Alford 2012). These temperature loggers (hereafter referred to as ground 

203 loggers) were assumed to measure near surface air temperature as tree shade blocked most solar 

204 radiation and acted as solar shields (Gies et al. 2007). Statistical verifications were made to 

205 support this assumption. Three ground loggers were lost in the field, likely due to wildlife 

206 interference. At three sites, three poles each containing three uncoated iButtons at 0.05 m, 0.75 

207 m, and 1.5 m (total of 27 iButtons) were placed to record air temperature variations at different 

208 heights (Fig. 1). These poles were constructed out of white PVC pipes (Mittra et al. 2013). The 

209 three sites were chosen for their variation in dominant surface type (limestone, grass, and mix of 

210 both). Temperature loggers (hereafter referred to as pole loggers) were positioned on the tip of 

211 each protrusion and rest on wire mesh to allow ventilation. Additional holes were drilled along 

212 the main pole and on each protrusion to allow better ventilation. These temperature loggers were 

213 used to model the relationship between UAV captured remotely sensed soil surface temperatures 

214 and air temperatures as air temperature is the metric adult lepidopterans, our study group, are 

215 most exposed to. Every iButton was programmed to record temperature at 30-minute intervals 

216 and was placed in the field only to be retrieved at the end of the field season. Air temperature 

217 was also measured before every UAV mission in a shaded area using a handheld HT-86 

218 humidity meter (Wal Front, USA; accuracy: ±0.5℃, ±3% RH).

219 STEP 2 - GENERATING THERMAL LIMITS 

220 We extracted data on the five hottest and coldest locations in the ranges of butterfly 

221 species that were detected in our study sites based on a historical air temperature dataset (Harris 

222 et al. 2014). As in Soroye et al. (2020), we used a baseline observation period to estimate thermal 

223 limits. Only occurrences between 1901 and 1975 were considered when estimating species� 

224 upper and lower thermal limits. Climate change has accelerated rapidly after that baseline period. 

225 By using the location-month combinations, only the months where a species observation had 

226 occurred were considered to extract monthly maximum and minimum air temperatures. 

227 Therefore, the summer months of the overwintering sites would not be considered when 
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228 extracting thermal limits. Location-month combinations were used in lieu of location-day 

229 combinations due to lack of historical daily temperature data. These values have previously been 

230 shown to be informative with respect to insect and other species� vulnerabilities to changing 

231 frequencies of extreme weather (Outhwaite et al. 2022; Soroye et al. 2020; Williams & Newbold 

232 2021). Historical air temperatures were obtained from the Climate Research Unit dataset (Harris 

233 et al. 2014). Lepidoptera occurrence information was extracted from the eButterfly citizen 

234 science program (Prudic et al. 2017) and from longer term butterfly observations assembled 

235 through the activities of systematists and biological surveyors (Soroye et al. 2018). Each species 

236 observation is traceable to a curated museum specimen or to a submitted observation that has 

237 been approved by a team of butterfly experts.

238 STEP 3 - MAPPING

239 A total of 30 drone surveys were conducted from May 17 to August 26, 2021. One survey 

240 was discarded due to a brief malfunction with the RTK base station, which caused 

241 georeferencing discrepancies. As a result, every raster output was produced 29 times for each of 

242 the drone surveys. Raw TIR and RGB images collected in the field were used to generate TIR, 

243 RGB, digital surface model (DSM), and digital terrain model (DTM) orthomosaics (i.e. a 

244 georeferenced aerial image geometrically corrected; Faye et al. 2016) using the Pix4Dmapper 

245 software. The software used the embedded GPS information in each image and detected 

246 characteristic objects in the images to generate tie points and create densified point clouds. These 

247 clouds were then used to blend overlapping images and create an orthomosaic (hereafter referred 

248 to as map) with the original pixel information still intact. For each of the 29 surveys, one map of 

249 each type (TIR, RGB, DSM, DTM) was created. TIR maps had an approximate resolution of 5 

250 cm/pixel, while RGB, DSM, and DTM maps had an approximate resolution of 1 cm/pixel. 

251 STEP 4 - GIS PROCESSING

252 Classified Surface Type Map. The RGB maps were then imported into ArcGIS Pro software 

253 (Esri, Redlands, CA, USA). Thermal cameras estimate soil temperature by measuring the amount 

254 of infrared energy being reflected from the ground (Madding 1999). However, each surface 

255 reflects, absorbs, and emits re-radiated light differently (i.e. emissivity). To better estimate soil 

256 surface temperature, correcting for surface emissivity is essential (Madding 1999). To correct the 

257 remotely sensed soil surface temperature TIR maps for emissivity, each RGB map had to be 

258 classified by surface type (Becker 1987; Faye et al. 2016). This was accomplished using the 

259 Classification Wizard tool. The following surface types were included in the classification 

260 schema: debris, forest, grass, tall grass, limestone, shrub, soil, water, and wood. An object-based 

261 classification type was used using a supervised classification method. In each RGB map, 

262 approximately 25% of each surface type was identified using the Segment Picker tool. This 

263 process generated a classified raster with each pixel identified as the appropriate surface type. 
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264 These maps were validated by matching ground truth data about major landscape features to the 

265 land cover classification. 

266 Emissivity Map. To create emissivity rasters, an �Emissivity� field was added to the classified 

267 maps� attribute tables. The emissivity values were added manually based on a literature review 

268 (Table 1). Objects identified as debris were given an emissivity value of 1 as their composition 

269 was not always known. Each map was then resampled to match the pixel size of the classified 

270 maps to the pixel size of the thermal maps. The emissivity values were extracted into a new 

271 raster and turned into floating point rasters to ensure the emissivity map was in the same raster 

272 format as the TIR maps. 

273 Emissivity-Corrected Remotely Sensed Soil Surface Temperature Map. Emissivity-corrected 

274 soil surface temperature maps were created by multiplying the TIR maps with the emissivity 

275 maps. The difference in focal length between the TIR and visual cameras caused occasional 

276 misalignments between the RGB and TIR maps. As such, the emissivity and TIR maps were first 

277 manually aligned.  

278 Modelling Air Temperature. To transform the remotely sensed soil surface temperature maps 

279 into air temperature maps, we modelled the relationship between the air temperatures (ground 

280 and pole logger data) and soil surface temperatures (emissivity-corrected remotely sensed soil 

281 surface temperature maps) at a given position. We ensured air temperature data of different 

282 logger heights was not statistically different before performing the model. The mean temperature 

283 in a 30cm radius around the iButton locations were extracted and used as soil surface 

284 temperature proxy on the corrected soil surface temperature maps. The iButton temperature 

285 recorded nearest the time of the UAV survey was used as air temperature. A simple linear 

286 regression model with 76 data points was constructed in R to relate air temperature to remotely 

287 sensed soil surface temperature used here as the independent variable (R Core Team 2020). 

288 Although air temperature data recorded via iButtons was considered to represent �true� 

289 temperatures, it was used as the dependent variable. This allowed for an easier calibration of 

290 remotely sensed soil surface temperatures into air temperatures. As this regression model was 

291 statistically strong, we used the model slope�s equation to calibrate drone-based ground 

292 temperature maps into air temperature measurements. 

293 Soil surface temperatures differ greatly between shaded and open areas, primarily due to 

294 solar radiation. The effects of radiation on organismal body temperatures are complex, 

295 depending on factors such as behaviour, body size, and coloration (Stelbrink et al. 2019; 

296 Stevenson 1985). To avoid systemic biases due to variability in solar radiation, we limited UAV 

297 operation to cloud-free times around mid-day and treated radiation as a constant in our 

298 subsequent modelling (Dai et al. 1999). We opted to measure in situ air temperature in the shade, 

299 as convention dictates when measuring ambient air temperature, to find a single generalized 

300 conversion factor for soil surface to air temperature over our study sites. This methodology was 
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301 developed to require minimal microhabitat temperature modelling. Therefore, pole loggers were 

302 placed in sites with varying surface types to account for the landscape variability, and data were 

303 pooled together to generalize the model across the study sites. The resulting air temperature 

304 model remained statistically strong and facilitates its reproducibility in different ecosystems. A 

305 main objective of our study was to adapt a verified global index of species vulnerability to 

306 microclimatic scales. A big component of this index uses historical air temperature data captured 

307 from meteorological stations to estimate species thermal niche boundary. As such, air 

308 temperature measurements needed to be used to generate the TPI and overheating index of each 

309 species.

310 Air Temperature Map. Air temperature maps were extrapolated from the emissivity-corrected 

311 remotely sensed soil surface temperature maps using the aforementioned air temperature model 

312 equation (Fig. 2). These maps were used in step 5 (see below) as they better represent the 

313 thermal conditions experienced by animals and airborne insects such as Lepidoptera. 

314 Thermal Positioning Map. Thermal positioning maps were generated using the historical 

315 thermal limits of the study species (H. sassacus, S. aphrodite, and C. tullia) and the air 

316 temperature maps. Thermal positioning maps estimate a species� proximity to its thermal limits 

317 in every pixel. These maps were estimated as

318 � =

�� ‒  ���������� ‒  �����,

319 developed by Soroye, Newbold, and Kerr (2020), where P is the species� thermal position at a 

320 given location or pixel, Nm is the air temperature of a given pixel in the air temperature map, 

321 NSmax is the species� upper thermal limit, and NSmin is the species� lower thermal limit (Fig. 2). 

322 This index has previously been shown to predict extinction risk among bumblebees, aspects of 

323 population dynamics among mammals, and insect declines more generally (Kerr 2020; 

324 Outhwaite et al. 2022; Soroye et al. 2020; Williams & Newbold 2021; Williams et al. 2022). A 

325 value of 1 represents a pixel with a temperature value equal to the upper thermal limit. Values 

326 exceeding 1 represent pixels with temperature readings greater than the upper thermal limit of 

327 the species. 

328 Canopy Height Map. Canopy height maps (CHM) were generated by subtracting the digital 

329 terrain maps from the digital surface maps. Terrain maps represent ground topography, while 

330 surface maps represent an elevation map of both natural and artificial features in addition to 

331 ground topography. The resulting CHMs represent the height of the natural and artificial 

332 features.

333 STEP 5 - ECOLOGICAL INDICES
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334 Overheating Index. The overheating index was used as a landscape-scale relative heat indicator. 

335 It was calculated as the proportion of pixels within the UAV temperature measurement area 

336 where that species� thermal position was  1. For thermal position index, such values indicate 

337 that temperatures exceed the boundaries of that species� upper thermal limits. 

338 Foliage Height Diversity. Foliage height diversity (FHD) represents the canopy height diversity 

339 and is used as a landscape heterogeneity index (MacArthur & MacArthur 1961). We classified 

340 canopy height maps to the nearest 0.5m interval and calculated the inverse Simpson index to 

341 assess this aspect of heterogeneity. 

342 Thermal Diversity. Lastly, we assessed thermal diversity in a similar manner to foliage height 

343 diversity. First, we classified temperature data according to the nearest 0.5 ℃ temperature 

344 interval, and then calculated the standardized inverse Simpson index for each site (Faye et al. 

345 2016; Fig. 3). 

346 STUDY SPECIES

347 Butterflies were used as focal species. Butterflies are useful model organisms for small-

348 scale climate change research (Beirão & Cardoso 2020). Due to their small size and dependence 

349 on temperature to regulate body heat, insects are considered good model organisms to predict 

350 species response to climate change (Beirão & Cardoso 2020; Wilson & Maclean 2011). 

351 However, few insect species have detailed contemporary and historical datasets like Lepidoptera 

352 (Wilson & Maclean 2011). As a result, the impact of climate change on butterflies has been well 

353 documented (Beirão & Cardoso 2020; Hufnagel & Kocsis 2011; Mattila et al. 2011; Wilson & 

354 Maclean 2011). We assessed thermal position indices for three butterfly species (Hesperia 

355 sassacus, Speyeria aphrodite, and Coenoympha tullia) that account for microclimatic variation at 

356 scales relevant to these species� individual movements and thermoregulation. These species were 

357 selected for their variation in body size, taxonomy, and thermal tolerance (5.40℃ to 28.56℃, -

358 14.78℃ to 32.37℃, and -12.65℃ to 36.04℃ respectively). Each species was observed during 

359 transect based butterfly surveys. Beyond confirming the presence of our case study species at our 

360 study sites, results from these surveys are outside the scope of this paper.   

361

362 Results

363 Foliage height diversity (which was log-transformed) exhibited a peaked relationship 

364 with thermal diversity (R2 = 0.1138, F(1,27) = 4.595, p = 0.04123; Fig. 4). Visual inspection 

365 indicated that model residuals were normally distributed and homoscedastic.  

366 Air temperature was measured at four different heights with iButton temperature loggers 

367 (0 m, 0.05 m, 0.75 m, 1.5 m) and related to air temperature measurements using an ANCOVA. 
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368 Temperature measurements did not differ statistically within this height range, so all air 

369 temperature measurements, regardless of height, were pooled for calibration and validation of 

370 remotely sensed soil surface temperature. Air temperature, as measured using in situ iButton 

371 instruments, related strongly to UAV-based remotely sensed temperatures (R2 = 0.7129, F(1,72) 

372 = 182.2, p << 10-4). Therefore, we used the resulting regression equation, y = 0.5558x + 

373 11.12999, to calibrate air temperature values and map them (Fig.5). 

374 Coarse air temperature was a significant predictor of the overheating index for H. 

375 sassacus (R2 = 0.2902, F(1,27) = 12.45, p = 0.0015), S. aphrodite (R2 = 0.3058, F(1,27) = 13.34, 

376 p = 0.0011), and C. tullia (R2 = 0.2396, F(1,27) = 9.825, p = 0.0041). The overheating index 

377 position of our three example species diverged increasingly with increasing coarse air 

378 temperature (Fig. 6). Handheld humidity meter observations (which measure temperature and 

379 humidity) collected in situ were assumed to be a validated method of capturing locality-specific 

380 air temperature data, while drone-based temperature measurements provide the basis for the site-

381 level metric of overheating and spatial heterogeneity in thermal position. Site level average 

382 overheating potential for these species relates to contemporary in situ temperature measurements 

383 (Figure 6). These in situ values are on the x axis as thermometer measurements of temperature 

384 should have very small errors relative to any other technique we employed, including remote 

385 sensing measures. Overheating indices for each species were not statistically related to thermal 

386 diversity or foliage height diversity.

387 Discussion

388 Here, we demonstrate the feasibility of direct, synoptic measurements of seasonal 

389 temperature extremes relative to individual species tolerances using a UAV-borne thermal 

390 sensor. Landscape heterogeneity relates strongly to variation in temperature extremes within 

391 habitats, relative to the limits of species� thermal tolerances (see also Carroll et al. 2016; Milling 

392 et al. 2018; Suggitt et al. 2018) that are known to affect insect species persistence at broader 

393 spatial extents (Soroye et al. 2020; Kerr 2020; Outhwaite et al. 2022). The method developed 

394 here complements temperature measurements that can be interpolated from coarse resolution 

395 remote sensing and from meteorological station data (Kearney et al. 2020; Maclean & Klinges 

396 2021; Fig. 4). While previous work demonstrates that some insect species� extinction risks 

397 depend on the frequency and intensity of temperature extremes, as measured using the thermal 

398 position index (Soroye et al., 2020) or derivatives (Outhwaite et al. 2022), this is the first 

399 demonstration that these metrics can be assessed using remote sensing methods within individual 

400 habitats.  

401

402 The importance of microclimatic variation and microclimatic refugia in protecting 

403 species from the growing risks of extreme weather has been demonstrated empirically (Bladon et 

404 al. 2020; Milling et al. 2018; Riddell et al. 2021). The foundations of such work rely on observed 

405 habitat characteristics (Bladon et al. 2020) and frequently employ coarse resolution remote 
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406 sensing imagery (Riddell et al. 2021) to estimate landscape heterogeneity relative to species� 

407 habitat use. Those techniques are essential for ongoing assessments of microclimatic refugia 

408 within habitats because they can provide broad coverage relative to higher resolution, but 

409 relatively localized, UAV-based measurements. Nevertheless, more detailed remote sensing at 

410 very high resolution (in this study, 5cm), provides accurate temperature measurements that 

411 demonstrate the extent and magnitude of thermal refugia that result from physical heterogeneity 

412 within particular habitat patches. These measurements are consistent with observations made at 

413 much broader spatial scales (Carroll et al. 2016; Suggitt et al. 2018), though previous work has 

414 not assessed microclimatic variation in the context of thermal position. As all survey sites were 

415 within the same landscape, and most were very similar in their landscape features, landscape 

416 heterogeneity results were very similar. Repeating this methodology in more varied physical 

417 landscapes and ecosystems would likely produce more diverse results (Carroll et al. 2016; Gies 

418 et al. 2007). We believe the approach we have described here represents a step toward assessing 

419 fine-grained thermal constraints in real-world habitats. 

420

421  The overheating indices for the three study species (H. sassacus, S. aphrodite, and C. 

422 tullia; Fig. 2) highlighted the relative impact of localized temperature extremes on individual 

423 species relative to species� thermal limits. Variance in the within-habitat overheating index 

424 increased as temperatures rose for each of the three species for which thermal position index 

425 (and its spatial average, the overheating index) was measured, suggesting that microclimates 

426 persisted in these areas through the warmest periods we observed. As these microclimates 

427 depended on structural habitat heterogeneity (e.g. partial canopy cover and shrubs, for example), 

428 maintenance of these habitat characteristics and potentially the restoration or addition of those 

429 characteristics to habitats could improve species� resilience to warming conditions, even through 

430 the hottest periods observed within this region. Additional work is needed to assess how 

431 individual species� movements and persistence within and among these habitats might relate to 

432 thermal conditions, independent from other landscape characteristics, such as habitat 

433 connectivity. 

434

435 Infrared imagery has frequently been used to study surface temperatures in agricultural 

436 and geological studies (Faye et al. 2016; Harvey et al. 2016; Maes & Steppe 2019; Sener et al. 

437 2019). However, in ecological studies, air temperature is the primary metric for many species, 

438 including adult butterflies. Transformation of UAV-acquired soil surface temperature 

439 measurements into air temperature measurements is necessary to transform these remote sensing 

440 tools� outputs into measurements that have the greatest biological relevance for organisms, like 

441 butterflies, that spend relatively little time on exposed ground (though, we note that many 

442 butterfly species sometimes obtain nutrients from moisture on soil surfaces). Butterfly species 

443 are more likely to be vulnerable to surface temperature extremes during egg and larval phases of 

444 development (Pincebourde et al. 2021). It is likely to be possible to alter the framework we have 

445 applied here to measure temperatures most relevant to butterflies during those life stages, but 
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446 more work would be needed to understand temperature variability within the areas through 

447 which caterpillars moved as well as on the temperature dependence of ovipositioning behaviour 

448 of adult butterflies. Because in situ air temperature measurements matched remote sensing 

449 metrics quite closely (Fig. 5), we expect that UAV-based thermal measurements, especially if 

450 related to thermal tolerances of eggs and larvae, could inform risks of extreme temperatures for 

451 butterflies during these earlier life stages. 

452

453 We found that air temperatures showed little variation from ground level to a height of 

454 1.5 metres within the alvar habitats where we collected in situ temperature values. Our 

455 measurements were made over areas with vegetated ground cover, which might have reduced 

456 temperature variability over this small range. Limestone pavement surface temperatures can be 

457 extremely hot in this habitat. Our results would have differed had our ground surface 

458 temperatures focused on those areas. Butterflies were not observed to settle onto such surfaces 

459 during hot periods. Different habitat types may exhibit other relationships between ground and 

460 air temperatures than that observed here, depending on vegetation type, vegetation density, and 

461 solar radiance (Gies et al. 2007). Our results suggest species that must engage in behavioural or 

462 physiological thermoregulation in hot conditions may face challenges escaping extreme heat by 

463 moving upward along vegetated surfaces or adjusting flight heights during foraging. Instead, 

464 such species (including the study species) will likely need to rely on heterogeneity within the 

465 habitat to find localities where vegetation creates cooler temperatures from ground to canopy and 

466 to adjust their activity periods away from the hottest times of day. Disturbances in these habitats 

467 that create more homogeneous conditions, such as removing small patches of trees or shrubs, or 

468 perhaps even mowing, may eliminate critical thermal microrefugia (Larsen 2012), and reduce the 

469 likelihood of species� persistence. We predict such effects to become more pronounced as 

470 extreme temperatures become more frequent and severe. Remote sensing-based measurements of 

471 temperatures within particular habitats will be more relevant and reliable for conservation 

472 applications if calibrated by in situ temperature measurements. Calibration is necessary as UAV-

473 based estimates of temperature, though strong (R2 = 0.7129), tended to be slightly lower than in 

474 situ iButton measurements, perhaps owing to UAV thermal measurements integrating more 

475 variable air temperatures above ground level. 

476

477 Estimates of the thermal position index focused on peak flight seasons for three butterfly 

478 species with divergent thermal tolerances. A more thorough estimate of the effects of 

479 temperature extremes on butterfly, or other species�, biology would require temperature 

480 monitoring throughout the year. We do not discount the potential importance of microclimates at 

481 other times of year, but our main focus was on measuring thermal position of habitats during the 

482 warmest periods of butterfly activity. Consequently, repeated surveys at each site assessed 

483 different temperature regimes, separated by several weeks, which we treated as independent data 

484 points. Growing frequency and severity of extreme weather is expected to cause negative 
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485 population growth among many species, but local losses of species might require several years of 

486 such climate-driven declines. 

487

488 Conclusions

489 Monitoring the biological impacts of extreme weather will require a broad array of 

490 remote sensing tools and techniques, ranging from broad-scale models drawing on coarse 

491 resolution remote sensing to UAV-based measurements that can directly observe within-habitat 

492 variation at scales relevant to site-level habitat management. Exposure to extreme temperatures 

493 that exceed species� tolerances increase their extinction risk across broad regions. This study 

494 demonstrates that such models can be translated to within-habitat scales, and identify 

495 microclimatic variability that is validated by in situ temperature measurements for individual 

496 species. We believe this work offers one avenue to expand monitoring efforts for biological 

497 diversity that can inform practical conservation management.  
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Table 1(on next page)

Emissivity values used for different land surfaces.
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Surface Type Emissivity Source

Forest 0.99 Sobrino et al. 2004

Grass 0.98 Labed & Stoll 1991

Tall Grass 0.994 Labed & Stoll 1991

Limestone 0.95 Mineo & Pappalardo 2021

Shrub 0.986 Van de Griend & OWE 1993

Soil 0.95 Nichol 2009

Water 0.995 Qin et al. 2006

Wood 0.97 Pitarma et al. 2016

1
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Figure 1
Image of a PVC pole containing iButtons at 0.05 m, 0.75 m, and 1.5 m deployed in the
field.

Photo credit: Gabrielle Ednie.
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Figure 2
Three temperature maps and three thermal positioning maps of a survey completed on
August 3rd, 2021.

The maps were rendered slightly transparent and overlaid on a shaded relief map of its
canopy height map to depict topographic variation also. The maps shown are as follows: (A)
raw remote sensing temperature map, (B) emissivity-corrected remote sensing map, (C) air
temperature map, (D) C. tullia thermal positioning map, (E) S. aphrodite thermal positioning
map, and (F) H. sassacus thermal positioning map.
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Figure 3
Flowchart of the proposed methodological framework.

Dashed lines represent data from outside sources. Rectangular shapes represent
intermediate outputs and steps. Oval shapes represent primary outputs from each step. All
soil surface temperatures were remotely sensed.
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Figure 4
Plot of the relationship between the log of foliage height diversity and thermal diversity.

Each point represents one UAV survey.
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Figure 5
Relationship between remote sensing temperature and air temperature.

Remote sensing temperature was extracted from emissivity-corrected remote sensing
temperature maps. Air temperature was extracted from in situ iButton temperature loggers
launched in the study sites.
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Figure 6
Plot of the overheating index of H. sassacus, S. aphrodite, and C. tullia in relation to
coarse air temperature.

Coarse air temperature was measured using a handheld humidity meter at the time of each
UAV survey.
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