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ABSTRACT
High-throughput sequencing of amplicon libraries is the most widespread and one
of the most effective ways to study the taxonomic structure of microbial communities,
even despite growing accessibility ofwholemetagenome sequencing.Due to the targeted
amplification, the method provides unparalleled resolution of communities, but at the
same time perturbs initial community structure thereby reducing data robustness and
compromising downstream analyses. Experimental research of the perturbations is
largely limited to comparative studies on different PCR protocols without considering
other sources of experimental variation related to characteristics of the initial microbial
composition itself. Here we analyse these sources and demonstrate how dramatically
they effect the relative abundances of taxa during the PCR cycles. We developed the
mathematical model of the PCR amplification assuming the heterogeneity of ampli-
fication efficiencies and considering the compositional nature of data. We designed
the experiment—five consecutive amplicon cycles (22–26) with 12 replicates for one
real human stool microbial sample—and estimated the dynamics of the microbial
community in line with the model. We found the high heterogeneity in amplicon
efficiencies of taxa that leads to the non-linear and substantial (up to fivefold) changes
in relative abundances during PCR. The analysis of possible sources of heterogeneity
revealed the significant association between amplicon efficiencies and the energy of
secondary structures of theDNA templates. The result of ourworkhighlights non-trivial
changes in the dynamics of real-life microbial communities due to their compositional
nature. Obtained effects are specific not only for amplicon libraries, but also for any
studies of metagenome dynamics.
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INTRODUCTION
High-throughput sequencing (HTS) of marker gene amplicon libraries is by far the most
popular and accessible way to study microbial communities regardless of the environment
they inhabit. Thanks to targeted amplification, it provides unparalleled sensitivity
and competitive functional reconstructions at lower costs than shotgun metagenomic
sequencing (Langille et al., 2013), especially in low-entropy microbial communities. At
the same time, amplification is an imperfect process that adds a whole layer of noise and
variation detrimental to downstream analyses. PCR artefacts, such as erroneous copies and
chimera, are perhaps the most notorious of these side-effects and as such have received a
lot of attention in the literature and prompted the development of effective error models
and denoising algorithms (Quince et al., 2011; Rosen et al., 2012; Callahan et al., 2016; Amir
et al., 2017) that are now widely employed in microbiome analysis workflows.

Another source of perturbations in the initial taxonomic structure is selective
amplification which potentially leads to unreliable and spurious statistical results in
microbiome research based on 16S amplicon data. That is not to say that these perturbations
are a totally obscure and arbitrary phenomenon; however, it was not studies deeply enough.
A recent review of opinions on experimental biases in amplicon sequencing data (Eisenstein,
2018) shows that workflow standardisation is considered sufficient to mitigate statistical
artifacts associated with PCR (as well as other similar selective procedures). However, this
approach is based on an as yet unverified premise that similar experimental conditions
(i.e., PCR protocols) lead to reproducible perturbations across diverse communities.
While this line of reasoning might not be misguided in general (though there is growing
evidence to that end (Jones et al., 2015)), in our particular case it goes against a whole
body of published multi-template PCR simulations and molecular studies on quantitative
single-template PCR.

We can highlight four major molecular effects contributing to amplification disparity:
(i) differences in primer-template binding energies (a function of the primer binding-
site’s sequence), (ii) self-annealing probability (discriminating against highly abundant
templates) (Paliy & Foy, 2011;Chatterjee, Banerjee & Datta, 2012;Kalle, Kubista & Rensing,
2014; Kebschull & Zador, 2015; Peng et al., 2018), (i) unequal denaturation of templates as
a function of GC content (iv) and stability of secondary structures (Fan et al., 2019).
Moreover, an important effect was reported by Gonzalez et al. (2012) where it was shown
that the relative amplification efficiency for each bacterial species is a nonlinear function
of the fraction that each of those taxa represent within a community or multispecies DNA
template. Consequently, the low-proportion taxa in a community are under-represented
during PCR-based surveys. In addition to that, the first few PCR cycles are also subject
to purely stochastic variations manifesting as the so-called PCR drift. At least one of
these effects, namely self-annealing probability, cannot be invariant to initial community
composition, though it is unclear how prominent the effect is.

Experimental microbiome research in this area is largely limited to comparative studies
of different PCR protocols that offer little insight into how perturbations translate between
communities with different initial states under identical PCR conditions. These studies
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make it hard to distinguish between biases imparted by amplification and other selective
steps in an amplicon sequencing workflow (Aird et al., 2011; Kennedy et al., 2014; Jones
et al., 2015; Krehenwinkel et al., 2017). That being said, these studies do show that even
minor variations in PCR protocols result in significantly different taxonomic profiles. By
extension, these perturbations can alter perceived associations between a community’s
structure and a biological process of interest.

One of the approaches to assess the PCR bias relays on the use of the mock-mixes,
i.e., artificially prepared communities with known initial proportions of amoderate number
of taxa (Pinto & Raskin, 2012; Krehenwinkel et al., 2017; McLaren, Willis & Callahan,
2019; Silverman et al., 2021; Yeh et al., 2021). The drawback of this approach is a poor
resemblance of simulated samples to real-life extremely diverse microbiome communities.
This insufficient diversity does not allow to analyse possible sources of PCR bias, such as
heterogeneity in amplification efficiencies and the impact of the complex compositional
structure of the microbial community. In this study, we used an alternative approach.
Instead of making mock-mixes we utilized one native microbiome (human stool), and
traced dynamics of its relative abundances of taxa in the series of consecutive PCR cycles in
replicates. Our data covered a very wide taxonomic spectrum, so that both heterogenous
nature of alleles (different GC-composition and secondary structures) and complex
structure of community were incorporated in the analysis.

Finally, the compositional nature of the microbial communities is usually neglected in
discussions of the PCR bias. We suppose that this topic does not receive much attention
due to the complexity of statistics required for the compositional data analysis (CoDA).
CoDA is widely applied nowadays in geology, biology, economics, and social sciences to
analyse and correctly reanalyse compositional data (https://www.coda-association.org). The
high-throughput sequencing data are inherently compositional: only relative information
between abundancies is reasonable (Gloor et al., 2017;Quinn et al., 2018), so that microbial
communities are traditionally described by proportions of its members (i.e., composition).
The obvious characteristic of a composition is that proportions of its components are not
independent, and the increase of one component in a composition leads to the decrease
of all others even the absolute amounts of the latter stay without changes. Therefore,
the analysis of proportions requires non-conventional statistical methods under specific
compositional assumptions. Here we present the model of PCR amplification under these
assumptions, revealed the composition-dependent PCR bias: complex and non-linear
changes of relative abundancies during the amplification and use the data obtained for
identification of mechanisms responsible for allele-specific bias in multi-template RCR.

METHODS
Sample acquisition
Ethics statement
This study was approved by the Institutional Review Board of Federal State Budget
Scientific lnstitution ‘‘All-Russian Research Institute of Agricultural Microbiology’’ (FSBSI
ARRIAM) #96/06 from 04.06.2020. Informed signed donor consent was obtained prior to
participation.
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Sample collection
One stool specimen was provided by an adult male in January 2018 in St.-Petersburg,
Russia, and frozen immediately at−20 ◦C until DNA extraction. The donor had no history
of enteric illness and experienced no exposure to antibiotics in the past year.

The calibration experiment
We extracted DNA using a PowerSoil DNA isolation kit (QIAGEN, Venlo, Netherlands)
following the manufacturer’s protocol. To aid our modelling efforts, we tried to minimise
all sources of experimental variance as much as possible. To avoid batch effect, all amplicon
libraries were constructed in a single run, effectively limiting the number of libraries to
the capacity of a T100 thermocycler (Bio Rad, Hercules, CA, USA) we had at our disposal,
i.e., 96. Moreover, being restricted to a single amplification run meant opening the
thermocycler’s lid and extracting a subset of strip-tubes thereby introducing unwanted
disturbances into the amplification process. Therefore, we decided to limit the number
of such extraction events and, by extension, the number of cycles to extract. In view
of these limitations, we carried out a preliminary qPCR assay mimicking our standard
amplicon library preparation procedure to select a range of cycles within the log-linear
amplification phase that yielded enough product for subsequent sequencing. The essay
were performed with qPCR-HS SYBR (Evrogen, Moscow, Russia) mix accordingly to
the manufacturer’s recommendation with universal 16S V4 rRNA primers (F515—
GTGCCAGCMGCCGCGGTAA and_R806—GGACTACVSGGGTATCTAAT) (Caporaso
et al., 2011). Accordingly to the qPCR essay cycles 22–26were selected for the deep amplicon
sequencing. Further library preparation procedures followed the Illumina MiSeq Reagent
Kit Preparation Guide. A single PCR reaction contained 0.15 µl of high-fidelity Encyclo
polymerase (Evrogen, Moscow, Russia), 1.5 µl 10X Encyclo buffer (Evrogen, Moscow,
Russia), 0.2 µl of 10 mM dNTP (Evrogen, Moscow, Russia), 5.0 pM of universal 16S V4
rRNA primers, 1.0 µl of extracted DNA (approximately 105 templates) and 11.65 µl of
PCR water (Evrogen, Moscow, Russia). To avoid temperature fluctuation associated with
the edges of the thermocycler, we decided to only fill a centred eight by 12 grid within
the thermocycler with 60 tubes covering cycles 22–26 (12 replicates per cycle). To further
minimise biases arising from spatial variations in thermodynamic conditions inside the
thermocyler, we randomised the placement of strip-tubes (assuming radial symmetry).
The libraries were sequenced on an Illumina MiSeq machine using a MiSeq Reagent Kit
v3 (600 cycles). Mean number of reads per sample was 49685 (min: 28104, max: 81,330);
after the filtration 19,179 reads per samples were remains (min: 9988, max: 31,171). After
the filtering, reads were rarefied to 9988 reads.

Data preprocessing
We used DADA2 (Callahan et al., 2016) to infer exact amplicon sequence variants (ASVs)
and remove chimera. As per DADA2 recommendations on error-model inference,
ASV reconstruction was carried out in separate PCR-cycle groups. To train an IdTaxa
taxonomy classifier (Murali, Bhargava & Wright, 2018), we downloaded and preprocessed
the SILVA Ref 132 database (Pruesse et al., 2007): we extracted the amplified region,
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truncated taxonomic descriptions at the highest ambiguous taxonomic rank and removed
sequences left without genus-level annotations. To reduce redundancy in the training
dataset without mixing different taxa together, we grouped all remaining records by their
complete taxonomic identifiers, removed duplicates within the groups using CD-HIT (Fu
et al., 2012) and subsampled them without replacement to allow at most 10 representatives
per group. The classifier was trained for 30 iterations. We predicted taxonomy and used
SEPP (Janssen et al., 2018) to insert ASVs into the reference GreenGenes 13.8 (99%)
phylogenetic tree. Amplicon sequence variants that could not be inserted into the tree
or were not identified at the genus level with a confidence level ≥ 80% were discarded.
To mitigate artifacts of zero-replacement and reduce uncertainty associated with rare
amplicon sequence variants, we discarded ASVs that were not observed over 10 times in
at least 50% of the libraries. The remaining data were treated by Bayesian-multiplicative
zero-replacement with a Dirichlet prior (Martín-Fernańdez et al., 2015).

Isometric log-ratio transform
As frequencies or proportions, HTS data has a compositional nature and requires a
particular way of analysis, compositional data analysis (CoDA). A composition is a set
of n dependent positive components under the constant sum constraint. To overcome
this constraint, a composition should be transformed into the vector of independent
components, where the standard analysis for the unconstrained data in real space can be
performed. One of these transformations is an isometric log-ratio transform (ILR), which
is based on the bipartition strategy developed by Silverman et al. (2017) and Egozcue et al.
(2003). Briefly, given a rooted binary tree of n leaves (DNA templates) and n−1 internal
nodes, we can define a sign-matrix 8 of n−1 rows and n columns such that

8ij =


−1, template j belongs to the left subclade of node i
+1, template j belongs to the right subclade of node i
0, template j does not descend from node i.

We can now scale rows in matrix8 and define contrast matrix9 of size (n−1×n) such
that

9ij =


8ij

ki
ni−

, 8ij < 0

8ij
ki
ni+

, 8ij > 0

0, 8ij = 0

(1)

where ni+ =
∑n

j=1[8ij > 0], ni− =
∑n

j=1[8ij < 0] and ki =
√

ni−ni+
ni−+ni+

. The important
property of 9 matrix is that sums of each its row is equal to zero. Let x be a composition,
i.e., vector of n positive components, then its isometric log-ratio transform is

ilr(x)= ilr(C(x))= log(x)9T
= b (2)

where C denotes compositional closure (Pawlowsky-Glahn & Buccianti, 2011), b is a vector
of so-called balances. Since ILR is an isometry on the Aitchison simplex, we can convert
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balances back into relative abundances:

x = ilr−1(b)=C(exp(b9)). (3)

PCR amplification model for one sequence
Let z be the amount of an original DNA sequence, θ ∈ (0,1]be a constant amplification
efficiency associated with the DNA template, and λ ∈ (0,1] be a constant amplification
efficiency of its PCR product. Then, the PCR reaction is expressed as the following
recurrence relation capturing a continuous generalisation of the number of PCR products,
c , available at time-step (cycle) t :

c (t )= θz+ c (t−1)+λc (t−1)= θz+ (λ+1)c(t−1),

where three terms denote amplified product from the original DNA, remained product
from the previous cycle and the amplified product. It should be highlighted, that z and θ
variables are present only as a product and are non-identifiable separately. Practically, it
means that the initial concentration of a DNA sequence is not detectable in principle, and
only an estimate with respect to amplification efficiency, θz , can be obtained.

c (t )− c (t−1)= (λ+1)c (t−1)−(λ+1)c (t−2)

⇒ c (t )= (λ+2)c (t−1)−(λ+1)c (t−2).

We now have a second-degree linear homogeneous recurrence relation, where the
initial conditions are c(1)= θz and c (2)= (λ+1)θz+θz . The relation has the following
characteristic equation:

x2−(λ+2)x+(λ+1)= 0⇒

{
x1= (λ+1)
x2= 1.

The general solution to this equation is a linear combination of both roots

c (t )= ξ(λ+1)t +ζ1t

Then, from initial conditions we have{
c (1)= θz
c (2)= (λ+1)θz+θz

⇒

{
ξ (λ+1)+ζ = θz
ξ(λ+1)2+ζ = (λ+1)θz+θz

⇒


ξ =

θz
λ

ζ =−
θz
λ
.

Therefore, under our model the number of PCR products associated with a template at
cycle t is given by

c (t )=
θz
λ
(λ+1)t −

θz
λ
. (4)
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PCR model for composition data
We model PCR as a discrete-time process parametrised by amplification efficiencies and
initial template concentrations, z = (z1,...,zn). We distinguish amplification efficiencies
associated with original DNA sequences extracted from an environment, θ = (θ1,...θn), and
their amplicons, λ= (λ1,...λn), due to stochastic nature of early PCR cycles and differences
in template lengths, primer binding-site composition (and, by extension, primer-template
complex stability). We assume constant efficiencies (though there is much theoretical
and empirical evidence to the contrary (Paliy & Foy, 2011; Chatterjee, Banerjee & Datta,
2012; Kalle, Kubista & Rensing, 2014)) and implicitly restrict our model to the log-linear
amplification phase (thereby ignoring potential inter-template competition for substrates
at later stages). Under this model (see derivation for Eq. (1)) the number of PCR products
associated with template i at cycle t is given by

ci(t )=
θizi
λi
(λi+1)t −

θizi
λi

(5)

where zi> 0 and λi,θi ∈ (0,1]. Assuming θi= λi and including the initial concentrations of
DNA sequencies, the Expression 5 becomes equivalent to the traditional monoparametric
PCR count approximation:

ci(t )= zi(λi+1)t . (6)

Assuming large values of t (i.e, PCR cycles >5), we approximate the Expression 5 as
follows:

ci(t )=
θizi
λi
(λi+1)t −

θizi
λi
=
θizi
λi
(λi+1)t

(
1−

(
1

λi+1

)t)
≈
θizi
λi
(λi+1)t . (7)

While it is impossible to detect absolute amplicon counts, ci(t ), the observed values after
the PCR amplification have a compositional nature. Consequently, we use the isometric
log-ratio transform (ILR) and model compositions as balances defined on internal nodes
of the amplicon phylogenetic tree (see Eqs. (1) and (2)).

Let c ′i (t ) be an observed value of ith template in a sample after t PCR cycles, then the
relation between observed and actual amplicon counts is linear, c ′i (t )=Aci(t ), where A is
sample-specific factor and the same for all templates of the sample. This factor crucially
influences the comparison of amplicon counts between samples, and normalization
procedures bring an additional source of bias. To overcome the problem with sample-
specific factors, ILR transformation (Eq. (2)) is applied to observed values:

ilr
(
c ′(t )

)
= logc ′(t )9T

= log(Ac (t ))9T
= log(c (t ))9T

+
(
logA,...logA

)
9T

=
[
using property of9

]
= log(c (t ))9T

= ilr(c (t )).

Thus, ILR values of observed amplicon counts equal to ILR values of actual counts. We
then substitute Eq. (7) into ILR transformation

ilr(c (t ))=
(
log(λ+1)t− logλ+ logθz

)
·9T
= t log(λ+1)9T

− logλ ·9T

+logθz ·9T , (8)
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where λ= (λ1,...λn), θz = (θ1z1,...θnzn).
In the Eq. (8), θz is present only once and in the product with 9T , so that the term

logθz ·9T forms the vector of size (n−1), and n elements of θz become unidentifiable.
This is not surprising due to the fact, that θz reflect biased initial concentrations, which
have the compositional nature too. We introduce a= logθz ·9T

= ilr(θz), and balances
of amplicon counts are treated as follows:

b(t )= t log(λ+1)9T
− logλ ·9T

+a. (9)

Eq. (9) demonstrate that the growth of PCA products is linear over t in the space of
balances. When all parameters of Eq. (8) are estimated (λ̂ and â), one can assess relative
amplicon counts at any PCR cycle t as follows:

ĉ (t )=C

(
ẑ1
λ̂1

((
λ̂1+1

)t
−1
)
,...,

ẑn
λ̂n

((
λ̂n+1

)t
−1
))
, (10)

where ẑ = ilr−1(â).

Bayesian inference
Let x tj = (x tj1 ,...,x

tj
n ) be a vector of nmeasured amplicon counts for jth replicate at cycle t .

Then vector of balances of this observation is btj = ilr(x tj). The whole set of observations
in our study is

{
btj
}
t=22,26,j=1,12. We assume that btj follows the multivariate Gaussian

distribution and take a part in the following hierarchical Bayesian model:

btj ∼N(b(t ),6),

b(t )= t log(λ+1) ·9T
− logλ ·9T

+a,

λ∼Beta(4,1),

a∼N(0,2),

6= diag(σ 2
i )

σi∼N+(0,1).

The model was implemented in Python using the probabilistic modelling package
PyMC3 (Salvatier, Wiecki & Fonnesbeck, 2015). Parameters were inferred using the No-
U-Turn Sampler (Hoffman & Gelman, 2014), a self-tuning variant of Hamiltonian Monte
Carlo, over 5000 tuning samples and 20,000main samples repeated across 4MCMC chains.
We used leave-one-out cross-validation to optimise parameters of prior distributions.
We used the Gelman–Rubin statistic and the effective number of samples to monitor
convergence and autocorrelation.

Energy estimations
Free energies of secondary structures of 16S rRNA sequencies were calculated at Mfold
server (Zuker, 2003; SantaLucia Jr, 1998) with the salt correction (Peyret, 2000). PCR
elongation parameters used: temperature 72 ◦C, salt 50 mM. From a set of alternative
structures, we chose those with maximal values of free energies.
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Figure 1 Dynamic of community over 5 cycles. (A) Shift of the microbial taxonomic structure with the
increase of cycles. (B) A comparison between high-level temporal community dynamics in experimen-
tal and inferred data. Inferred dynamics appear to be a smoothed version of observed variations. In both
cases we observe a rapid expansion of Bacteroides at the expense of Firmicutes. Relative groupabundances
are estimated from 500 samples from the posterior-predictive distribution.

Full-size DOI: 10.7717/peerj.13888/fig-1

Data and code availability
Raw sequencing data were deposited in the NCBI Sequence Read Archive (SRA): BioProject
PRJNA545409. All code and metadata required to reproduce the study are openly available
on GitHub (https://github.com/arriam-lab2/pcr_bias_publication). We used package
ggplot2 (Wickham, 2011) to generate visualisations.

RESULTS
Shift of the microbial community in the PCA amplification
The dataset of amplicon counts consists of 60 observations: five PCR cycles and 12 repeats
for each cycle. We performed the amplicon sequence variants picking, and standard PCoA
showed the clear shift of the microbial taxonomic structure with the increase of cycles
(Fig. 1A). This dynamic is also distinct at the phylum level of the microbial compositions:
a rapid expansion of Bacteroides and a much slower growth of Actinobacteria and
Proteobacteria at the expense of Firmicutes (Fig. 1B). While, at the resolution of five
cycles, these shifts are not very dramatic visually, the PCR bias between the first and 20-th
cycles could be significant.

Comparing observed and predicted community dynamics
High-level community dynamics predicted by the PCR amplification model were visually
consistent (albeit smoothed out)with observed variations in experimental data (Fig. 1B).On
a finer level, experimental log-ratios between relative abundances of individual amplicon
sequence variants measured at cycles 26 and 22 were strongly correlated with inferred
log-ratios (Pearson r = 0.87, 95% CI= [0.67, 0.95], p= 0). These observations suggest that
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Figure 2 Estimates of dynamics. (A) Inferred high-level community dynamics at cycles 0–35. Commu-
nity composition at cycle 0 corresponds to approximated initial community profile. PCR bias resulted in
a dramatic overrepresentation of Bacteroides and a corresponding shrinkage of Firmicutes. Relative group
abundances are estimated from 500 samples from the posterior-predictive distribution. (B) Estimated log-
ratio distributions between relative abundances of individual amplicon sequence variants (ASVs) inferred
at cycles 0 (that is approximated initial template proportions) and 35. Vertical lines inside the boxes rep-
resent medians. Boxes represent interquartile distances. Log-ratios were estimated from 500 samples from
the posterior-predictive distribution. Most relative abundances changed by a factor of 2–8. The plot con-
tains the subset of amplicon sequence variants classified at the genus level. Numbers in parentheses are
used to disambiguate ASVs classified into the same genera.
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the amplification model was able to capture and reproduce experimental PCR-induced
variations.

Characterising and mitigating amplification bias
We used our model to predicted large-scale community dynamics from cycle 0 to cycle 35
for all ASVs (amplicon sequence variants). PCR bias leads to a dramatic over-representation
of Bacteroides and shrinkage of Firmicutes (Fig. 2A). To better visualize the magnitude
of amplification biases introduced by a standard amplicon library preparation workflow,
we selected amplicon sequence variants (ASVs) classified at the genus level and estimated
log-ratio distributions between their relative abundances inferred at cycles 1 (that is,
approximated initial template proportions) and 35 (Fig. 2B). Most relative abundances
changed by a factor of 2-8. One particularly unfortunate amplicon sequence variant in the
Eubacterium eligens group was affected by a factor of 215. The distribution of log-ratios
between two distant cycles makes it tempting to view amplification biases as a linear
phenomenon.
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Figure 3 Non-linear changes of abundances. (A) Predicted relative abundance dynamics of five ma-
jor and minor amplicon sequence variants smoothed by the local polynomial regression method. Grey
boundaries denote confidence intervals. (B) Association between amplicon efficiencies and the energy of
secondary structures.
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While the temporal dynamics at the genus level is monotonic, the behaviour of
individual ASVs is not that straightforward (Firmicutes’ composition in Fig. 2A). For
example, temporal dynamics of individual relative abundances for the top five rare and
abundant variants are described by nonlinear curves (Fig. 3A). More importantly, these
curves intersect at some PCR cycles and diverge in others, which means the spurious
similarity/difference between ASVs abundancies depending on the cycle number. This
observation further stresses, that it is absolutely crucial to account for the compositional
nature of HTS data.

Investigating putative sources of amplification bias
As we have mentioned in the introduction, it is believed that differences in GC content
or secondary structure of DNA templates could be responsible for the amplification bias
(Paliy & Foy, 2011; Kalle, Kubista & Rensing, 2014; Kebschull & Zador, 2015; Fan et al.,
2019). We also tested the assumption that sequence similarity is a good predictor of
effectivity of amplification. But the Mantel test showed no significant correlation between
pairwise sequence similarity (measured as Levenstein edit distance) and difference in
log-transformed amplification efficiencies.

To evaluate the remaining potential predictors, we fitted a robust linear model for
amplification efficiencies λ parametrised by GC content and the energy of secondary
structure E :

log(λ)∼GC+E.
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We observed that GC content was not associated with amplification efficiencies, while
the energy of secondary structure demonstrated significant association with efficiencies
(p-value = 0.0002).

DISCUSSION
The null hypothesis in PCR amplification is the stability of starting alleles abundances
in a series of successive amplification cycles in which the absolute number of DNA
copies doubles each time. If the amplification efficiencies of alleles are not the same,
their abundances in the process of amplification can change in different directions. This
effect, sometimes resulting in drastically distorted initial abundances, is one of the possible
mechanisms of PCR bias. But the problem gets harder because of compositional effects
(roots of which lay entirely in the area of statistics), which make the dynamic of allele
abundances nonlinear. If in the case of PCR bias, much has been done on the issue, much
less done in the area of compositional effects in metagenomics, but there is literally nothing
about their interplay with PCR bias, where these effects pose almost intractable problems
for the researcher. We have tried to suggest an appropriate way to deal with that in this
work.

Themodel proposed in this work does not account for temporal changes in amplification
efficiencies and, thus, might not be flexible enough to accurately reconstruct unbiased
community compositions, though it would take more studies involving calibration
experiments on a large set of diverse mock communities to verify these suspicions. It
is perhaps more important to consider the practical side of the question. The calibration
experiment we have designed and demonstrated is laborious and cost-consuming to
become a widely used routine solution to the amplification bias problem. It is, of course,
possible to reduce the number of replicates per cycle and, by extension, cut costs by
improving innate model robustness (for example, model balances as a heavier-tailed
multivariate t-distribution instead of a less robust multivariate Gaussian) and pooling PCR
samples (to reduce inter-reaction variance), but these shortcutsmight introduce unforeseen
complications of their own.With or without anymodifications, it would still take dozens of
libraries and a lot of extra effort to mitigate PCR bias in a single biological sample effectively
negating the two major selling points of amplicon sequencing: simplicity and accessibility.
A more pragmatic route to follow might be predicting amplification efficiencies and then
utilising them to estimate, in line with ourmodel, the initial composition of the community
(Expression 6).

As shown earlier, in addition to the obvious reasons for the differences in amplification
efficiency (e.g., GC-content, target sequence length, sequence base composition, primer
sequences, and specificity, buffer compositions, presence of PCR inhibitors in the template
DNA solution, cycling conditions, and thermostable DNA polymerase), there are some
inconspicuous reasons, for example, the composition of the initial community (Gonzalez
et al., 2012). It was shown that ‘‘rare biosphere’’ taxa tend to be lost at the final steps of
PCR. The present work does not directly work with this phenomenon because the design
of the experiment deals only with late PCR cycles, where the ‘‘rare taxa’’ probably have
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already been undetectable. However, we may speculate that if the amplification efficiency
of rare taxa is high enough, these taxa could still be detectable at late PCR steps.

The energy of the secondary structure was demonstrated as significantly associated with
amplification efficiency, and this factor could indeed be of the primary importance. If we
go through the above-mentioned list of other factors, we can find a foundation that almost
all of them, one way or another, can act through the influence of secondary structures. Only
the initial taxa composition, as a factor of amplification efficiency (Gonzalez et al., 2012),
has nothing in common with secondary structure energy and may act like the positive
frequency-dependent selection in evolution.

Ultimately, the data obtained inspire some optimism—both bias and compositional
effects can be worked on, but the issue still requires careful study.

CONCLUSIONS
Here we have presented a calibration experiment and a model to evaluate, characterise and
mitigate amplification biases in amplicon sequencing libraries. Our model is in line with
the theory of compositional data analysis, which is most suitable nowadays to describe
changes in proportions of components in a microbial community. Using a human gut
microbial community, we demonstrated that the model was capable of accurate capturing
and reconstructing temporal dynamics of a 16S rRNA community profile undergoing
multi-template ‘‘biased’’ PCR. We have shown that biases dramatically disturb ratios
between community components, and these changes are non-linear across the cycles.
The approximated unbiased community profile shows that standard library preparation
workflows can alter most individual relative abundances by a factor of 2-8 and dramatically
perturb high-level community composition. With the model proposed in this work, we
showed the significant association of the PCR-bias with energies of secondary structures of
DNA templates through the amplification efficiencies of templates. Finally, it is important
to highlight that the compositional effects are universal for metagenomic studies and affect
dynamics of all types, whether it be PCR amplification or natural changes.
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