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Background. Cholangiocarcinoma (CCA) is a malignancy of the cholangiocytes. One of
the major issues regarding treatment for CCA patients is the development of
chemotherapeutic resistance. Recently, the association of intratumoral bacteria with
chemotherapeutic response has been reported in many cancer types. Method. The
present study, we aimed to investigate the association between the intratumoral
microbiome and its function on gemcitabine and cisplatin response in CCA tissues using
16S rRNA sequencing and 1H NMR spectroscopic analysis. Result. The results of 16S rRNA
sequencing demonstrated that Gammaproteobacteria were significantly higher in both
gemcitabine and cisplatin resistance groups compared to sensitive groups. In addition,
intratumoral microbial diversity and abundance were significantly different compared
between gemcitabine resistant and sensitive groups. Furthermore, the metabolic
phenotype of the low dose gemcitabine-resistant group significantly differed from that of
low dose gemcitabine-sensitive group. Increased levels of acetylcholine, adenine, carnitine
and inosine were observed in the low dose gemcitabine-resistant group, while the levels of
acetylcholine, alpha-D-glucose and carnitine increased in the low dose cisplatin-resistant
group. We further performed the intergrative microbiome-metabolome analysis and
revealed a correlation between the intratumoral bacterial and metabolic profiles which
reflect the chemotherapeutics resistance pattern in CCA patients. Conclusion. Our results
demonstrated insights into the disruption of the microbiome and metabolome in the
progression of chemotherapeutic resistance. The altered microbiome-metabolome
fingerprints could be used as predictive markers for drug responses potentially resulting in
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the development of an appropriate chemotherapeutic drug treatment plan for individual
CCA patients.
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21 Abstract

22 Background. Cholangiocarcinoma (CCA) is a malignancy of the cholangiocytes. 

23 One of the major issues regarding treatment for CCA patients is the development of 

24 chemotherapeutic resistance. Recently, the association of intratumoral bacteria with 

25 chemotherapeutic response has been reported in many cancer types. 

26 Method. The present study, we aimed to investigate the association between the 

27 intratumoral microbiome and its function on gemcitabine and cisplatin response in 
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28 CCA tissues using 16S rRNA sequencing and 1H NMR spectroscopic analysis. 

29 Result. The results of 16S rRNA sequencing demonstrated that 

30 Gammaproteobacteria were significantly higher in both gemcitabine and cisplatin 

31 resistance groups compared to sensitive groups. In addition, intratumoral microbial 

32 diversity and abundance were significantly different compared between gemcitabine 

33 resistant and sensitive groups. Furthermore, the metabolic phenotype of the low dose 

34 gemcitabine-resistant group significantly differed from that of low dose 

35 gemcitabine-sensitive group. Increased levels of acetylcholine, adenine, carnitine 

36 and inosine were observed in the low dose gemcitabine-resistant group, while the 

37 levels of acetylcholine, alpha-D-glucose and carnitine increased in the low dose 

38 cisplatin-resistant group. We further performed the intergrative microbiome-

39 metabolome analysis and revealed a correlation between the intratumoral bacterial 

40 and metabolic profiles which reflect the chemotherapeutics resistance pattern in 

41 CCA patients. 

42 Conclusion. Our results demonstrated insights into the disruption of the microbiome 

43 and metabolome in the progression of chemotherapeutic resistance. The altered 

44 microbiome-metabolome fingerprints could be used as predictive markers for drug 

45 responses potentially resulting in the development of an appropriate 

46 chemotherapeutic drug treatment plan for individual CCA patients.

47

48 Introduction

49 Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelia or 

50 cholangiocytes with its highest incidence in Thailand, especially in the north eastern 

51 region (Alsaleh et al., 2019). This region has high incidence of the liver fluke; 

52 Opisthorchis viverrini (Ov) infection which is recognized as the major risk factor of 

53 cholangiocarcinoma development (Piratae et al., 2012). Nowadays, surgical 

54 resection is considered the standard treatment for the patients with CCA. However, 

Abstract
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55 surgical treatment still provides a low survival rate (Aljiffry, Walsh, & Molinari, 

56 2009), and it leads to better treatment outcomes for the CCA patients who have been 

57 diagnosed at an early stage (Khuntikeo et al., 2015). Moreover, surgical resection in 

58 combination with adjuvant chemotherapy provides a higher survival rate when 

59 compared with the surgery alone (Wirasorn et al., 2013). Common chemotherapeutic 

60 regimens used in clinical treatments for biliary tract cancer patients are gemcitabine 

61 and gemcitabine plus cisplatin (Valle et al., 2010). Okusaka et al. demonstrated that 

62 the combination of cisplatin and gemcitabine provide the best benefit in terms of 

63 extending survival for CCA patients (Okusaka, Ojima, Morizane, Ikeda, & Shibata, 

64 2014). However, the major issue regarding chemotherapeutic drug treatment for 

65 CCA patients is the development of chemotherapeutic resistance phenotypes, 

66 especially those involving multi-drug resistance (MDR) (Chan & Coward, 2013). 

67 In 2019, Suksawat and team evaluated the chemotherapeutic response of CCA 

68 patients to gemcitabine and gemcitabine plus cisplatin treatments using a 

69 histoculture drug response assay (HDRA) and metabolic profiling. In their results, 

70 the TCA cycle intermediates, alpha-D-glucose and ethanol may serve as predictive 

71 biomarkers for gemcitabine and cisplatin sensitivity in the tumor tissue of CCA 

72 patients (Suksawat et al., 2019; Suksawat et al., 2022). Moreover, methyl-guanidine 

73 may be used as a serum predictive biomarker for gemcitabine sensitivity (Suksawat 

74 et al., 2022). 

75 Evidence has been presented showing that the gut microbiota can shape the 

76 efficiency of cancer therapy (Ma et al., 2019). Studies have also demonstrated that 

77 the alteration of microbiota composition have various effects on tumor biology, 

78 including the transformation process, tumor progression, and the response to anti-

79 cancer therapies such as chemotherapeutic agents (Elkrief, Derosa, Zitvogel, 

80 Kroemer, & Routy, 2019; Gopalakrishnan, Helmink, Spencer, Reuben, & Wargo, 

81 2018; Helmink, Khan, Hermann, Gopalakrishnan, & Wargo, 2019; Saus, Iraola-
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82 Guzman, Willis, Brunet-Vega, & Gabaldon, 2019; Song, Chan, & Sun, 2020; Viaud 

83 et al., 2013). Moreover, the metabolism of chemotherapeutic drugs can be altered by 

84 the gut or tissue microbiota, which could further determine the response of cancer 

85 cells to chemotherapy (Geller et al., 2017). In particular, Gammaproteobacteria 

86 could metabolize gemcitabine (2,2-di-fluorodeoxycytidine) into its inactive form 

87 (2,2-difluorodeoxyur-idine), suggesting that the presence of such bacteria in 

88 pancreatic adenocarcinoma (PDAC) tissue may be contributing to the PDAC 

89 resistance to gemcitabine treatment (Geller et al., 2017).  Recently, bacteria have 

90 been found in the tissues of several tumor types where they plausibly play roles in 

91 shaping the chemotherapeutic drug response (Nejman et al., 2020). 

92 Next-generation sequencing has been widely used to study the tumor 

93 microbiome, based on 16S rRNA gene(Flemer et al., 2017; Greathouse et al., 2018; 

94 Yan et al., 2015; Zhou et al., 2019). Currently, a wide-scale bacterial 16S rRNA 

95 analysis based on multiple variable regions has been applied. This has become a 

96 standard method in bacterial taxonomic classification and identification due to its 

97 easy and rapid procedure, and the fact that it contains enough phylogenetic 

98 information (Caporaso et al., 2012; Johnson et al., 2019). Moreover, 16S rRNA 

99 analysis in combination with metabolomics can provide the estimate of microbiota 

100 functions through the changing levels of microbial and host-microbial metabolites 

101 (Langille et al., 2013). Therefore, metabolic profiling using either nuclear magnetic 

102 resonance (NMR) spectroscopy or liquid chromatography mass spectroscopy (LC-

103 MS) can be applied to investigate the metabolic reflection of the tumor microbiota-

104 induced drug resistance (Gong et al., 2020).

105 In the current study, we performed 16S rRNA sequencing of the bacteria in 

106 the tumor tissues from the CCA patients. Furthermore, an investigation of the 

107 microbial functions through metabolomic profiling was conducted. Taken together, 

108 we hypothesize that there are microbiota that can promote chemotherapeutic drug 
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109 resistance, focusing on gemcitabine and cisplatin drugs for individual CCA patients. 

110 The association of the microbiota and their functions with the chemotherapeutic drug 

111 response patterns were investigated. 

112 Materials & Methods

113 Patient characteristics and tissue sample collection

114 Thirty-six freshly frozen tissues were obtained from CCA patients who had 

115 undergone surgery at Srinagarind Hospital, Khon Kaen University during January 

116 2017 until May 2019 and patient data have been previously described  (Suksawat et 

117 al., 2019). The protocol of the specimen collection and study were approved by the 

118 Ethic Committee for Human Research, Khon Kaen University (HE601149). In 

119 addition, written informed consent was obtained from each patient prior to surgery. 

120 Fresh tumor tissues were obtained from the resection of the primary tumor and stored 

121 in Hank's balanced salt solution (HBSS) with antibiotic (Ciproflaxin, Cefazolin and 

122 Amphotericin B) at -80 oC. As the present study, we further explored the tumor 

123 tissues based on the HDRA result from the study of Suksawat et al. (Suksawat et al., 

124 2019) which divided patients into subgroups based on chemotherapeutic response 

125 patterns. The chemotherapeutic response characteristics of CCA patients whose the 

126 intratumoral microbiota profile were analyzed using 16S rRNA sequencing and 

127 whose metabolic signature were analyzed using NMR spectroscopy are shown in 

128 Table 1.

129

130

131 Histoculture drug response assay (HDRA)

132 Fresh tumor tissues were obtained from the resection of the primary tumor and 

133 storage in Hank�s Balanced Salt Solution (HBSS) at 4 oC. Then, the tumor tissues 

134 were minced into small pieces of approximately 9-12 mg and placed onto sponge 

135 in 24 well plates. Each well of the 24 well plates contained RPMI-1640 medium 
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136 and a varying concentration of the gemcitabine and cisplatin drugs. The medium 

137 was supplemented with 20% fetal craft serum (FCS), 100 U/mL penicillin and 100 

138 mg/mL streptomycin. After that, the tumor tissues were incubated at 37 C in 5% 

139 CO2 for 4 days. Then, 100 μL of HBSS containing 0.1 mg/mL of collagenase type 

140 I and 100 μL of MTT solution were added into each well and further incubated for 

141 4 hours. The cell viability was then measured using an MTT assay. After that, the 

142 MTT formazan products are dissolved in DMSO and subjected to absorbance 

143 measurement at 540 nm (TECAN sunrise ELISA Reader, Triad Scientific, USA). 

144 Finally, the percent cell growth inhibition rate was calculated as previously 

145 described.(Suksawat et al., 2019) The criteria for classification sample into 

146 sensitive and resistant were previously reported.(Suksawat et al., 2019) A total of 

147 thirty-six CCA tumor tissues were treated with chemotherapy in five conditions , 

148 including low dose gemcitabine (LDGem) at 1,000 ug/mL, high dose gemcitabine 

149 (HDGem) at 1,500 ug/mL, low dose cisplatin (LDCis) at 20 ug/mL, high dose 

150 cisplatin (HDCis) at 25 ug/mL and combined treatment composed of 1000 ug/mL 

151 of gemcitabine and 20 ug/mL cisplatin, and evaluated using HDRA. Tissues were 

152 then sub-classified into sensitive (S) and resistant (R) groups to a particular 

153 chemotherapeutic condition. 

154

155 DNA extraction and 16s rRNA sequencing

156 Total DNA was isolated from approximately 50 mg fresh frozen tumor tissues 

157 following the manufacture�s protocol (QIAGEN, Germany). For quantification of 

158 the DNA extracted a spectrophotometer (Nanodrop) was used and with 1.5% agarose 

159 gel electrophoresis for visualization. Amplification and sequencing of the V1-V2 

160 region were conducted. Briefly, 7.5 μL of genomic DNA from tissues were amplified 

161 using the 16 rRNA gene at the variable region V1-V2 incorporating Illumina 

162 adapters and a barcode sequence amplified (Forwardprimer:5�-
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163 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATCMTGGC

164 TCAG-3�and 

165 Reverseprimer:5�GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTG

166 CCTCCCGTAGGAGT-3�) using polymerase chain reaction (PCR) (T100TM 

167 Thermal Cycler, Bio-Rad) with the specific primer using Hotstar Master Mix 

168 (QIAGEN, Germany). The PCR cycling conditions used were: initial denaturation 

169 at 95 oC for 3 min; 25 cycles of denaturation at 95 oC for 30 s, annealing at 55 oC for 

170 30 s, and extension at 72 oC for 30 s; and the final extension step at 72 oC for 5 min. 

171 The negative control (DNase free water) was applied in DNA extraction and 16S 

172 amplification steps. The absent band of the negative control was observed. 

173 Sequencing was performed on the Illumina MiSeq platform (Illumina®, Macrogen, 

174 Korea), with read length of 301 base pair, paired-end.

175

176 16S rRNA data processing

177 Following standard quality control and demultiplexing, the reads were processed 

178 using the QIIME2 (version 2021.11) pipeline (Hall & Beiko, 2018). First, paired-

179 end reads were joined and size selected to reduce non-specific amplification. These 

180 reads were then grouped into operational taxonomic units (OTUs) based on 

181 sequence similarity using the SILVA database (version 132) (Quast et al., 2013) 

182 and classified at  99% identity of reads. Data were rarefied to the minimum 

183 library size using total sum scaling (TSS). The alpha diversity and richness of CCA 

184 tissues between resistant and sensitive groups were calculated by using Chao1 and 

185 the Shannon and Simpson diversity indices. In addition, the edgeR algorithm was 

186 applied in order to compare and classify of differential abundance between 

187 resistant and sensitive groups to chemotherapeutic treatments. To evaluate the 

188 intratumoral microbial community between resistant and sensitive groups, we used 

189 the abundance data and calculated the differential microbial composition using 
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190 Bray-Curtis dissimilarity and visualized by non-metric multidimensional scaling 

191 (NMDS) on projection in MicrobiomeAnalyst (Chong, Liu, Zhou, & Xia, 2020; 

192 Dhariwal et al., 2017). 

193

194 Metabolite extraction and metabolomics analysis

195 Approximately 100 mg of each fresh frozen tumor tissue was used for metabolite 

196 extraction. The tumor tissues were then homogenized using a Dounce homogenizer 

197 and extracted by adding 400 μL of methanol and 85 μL of HPLC grade water, 

198 followed vortex mixing. Then, 200 μL of chloroform and 200 μL of HPLC grade 

199 water were added followed by vortex mixed. Next, the tissue extracted solutions 

200 are transferred into 15 mL tubes and sonicated 3 times using the following 

201 parameters: sonicate on 30 s and sonicate off 10 s at amplitude 40% and 

202 temperature of 4 °C. After that, the 15 mL tubes were subjected to centrifugation at 

203 1,000 g at 4°C for 15 min. The aqueous phase was subjected to nuclear magnetic 

204 resonance (NMR) spectroscopy or global profiling analysis. The NMR spectra data 

205 acquisition from NMR used peak alignment, normalization with probablistic 

206 quotient normalization and scaling using matrix laboratory software (MATLAB) 

207 (MathWorks Inc., US). The significant metabolites were identified using statistical 

208 total correlation spectroscopy (STOCSY), human metabolome database (HMDB) 

209 (Wishart et al., 2018; Wishart et al., 2013; Wishart et al., 2009; Wishart et al., 

210 2007) and the Chenomx NMR suite (Chenomx Inc., Canada). The pairwise 

211 comparison of the log2 transformed data of metabolites between the resistant and 

212 sensitive groups was conducted with a paired non-parametric test (Mann�Whitney 

213 U test) and adjusted p value was calculated with a Benjamini-Hochberg procedure. 

214 The data was illustrated using Graph Pad prism 5 (GraphPad Software, Inc., CA, 

215 US). The network analysis was performed using Metscape (Gao et al., 2010) for 

216 visualizing metabolic pathways. 
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217

218 Correlation analysis

219 The correlation analysis was performed with Spearman�s correlation coefficient at 

220 the genus level and metabolites using the M2IA pipeline (Ni et al., 2020) for the 

221 integrated microbiome and metabolome dataset.

222

223 Results

224 Difference of intratumoral microbiota composition between resistant and 

225 sensitive group of chemotherapeutic treatment in cholangiocarcinoma 

226 patients

227 Out of 36 tumor tissues, amplification for V1-V2 regions was successful for 

228 18 samples. These samples were sequenced and a total read of 3,504,888 were 

229 acquired for microbial profiling. Following quality trimming and merging of 

230 overlapping paired-end reads, total read counts of 540,202 counts were retained 

231 from 18 samples, average counts per sample 30,011 counts. These reads could be 

232 assigned into a total of 890 bacterial OTUs. Overall, the intratumoral microbiome 

233 profile revealed a common pattern with the Phyla Proteobacteria, Actinobacteria 

234 and Firmicutes dominating in both the resistant and sensitive groups in all 

235 conditions of chemotherapeutic treatment (Figure 1A and 1D). The top three most 

236 abundant Classes were Gammaproteobacteria, Actinobacteria and 

237 Alphaproteobacteria (Figure 1B and 1E). The intratumoral microbiome profile in 

238 genera were showed (Figure 1C and 1F). We then compared the alpha diversity 

239 between the resistant and sensitive groups. The Shannon and Simpson indexes 

240 revealed that tumor tissues treated with LDGem and HDGem had significant 

241 differences in microbial diversity between the resistant and sensitive groups. In 

242 contrast, Chao1 index demonstrated no difference in species richness between the 

243 resistant and sensitive groups (Figure 2). A comparison of taxonomic profiles at 
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244 the Phylum level revealed that LDGem resistant group, HDGem resistant group, 

245 LDCis resistant group and HDCis resistant group showed higher abundance of 

246 Proteobacteria. A comparison of the taxonomic profiles at the Class level 

247 demonstrated that tumor tissues which were resistant to LDGem, HDGem and 

248 LDCis exhibited higher abundances of Gammaproteobacteria, whereas the 

249 abundances of Actinobacteria was found to be lower in LDGem resistant group 

250 and HDGem resistant group (Figure 3).

251 To explore whether the intratumoral microbial composition of CCA patients 

252 was different between the resistant and sensitive groups, non-metric 

253 multidimensional scaling (NMDS) was performed. NMDS is based on Euclidean 

254 distance and can reveal a shift of centroid (indicated by arcs) and variation in the 

255 microbiota community profiles of each chemotherapeutic drug treatment condition 

256 (circled area). The NMDS analysis at the Class level demonstrated the overlap of 

257 the circle areas in each plot between the sensitive and resistant groups, showing 

258 some similar bacterial communities between the sensitive and resistant groups in 

259 all chemotherapeutic treatment conditions except, the resistant group of HDCis 

260 showed the smallest variance in the bacterial community (Figure 4).

261

262 Metabolic alteration associated with chemotherapeutic responses

263 1H NMR metabolic signatures from the CCA tissues are represented in Table 

264 2. The metabolic differences between resistant and sensitive groups of CCA 

265 patients can be distinguished on univariate analysis (Mann�Whitney U test) using a 

266 log2 transformation of maximum intensity. Significantly higher levels of 

267 acetylcholine, adenine, carnitine and inosine were observed in the LDGem 

268 resistant group. For the LDCis treatment, the levels of acetylcholine, alpha-D-

269 glucose and carnitine were significantly increased in the resistant group compared 

270 to the sensitive group (Figure 5). Towards the understanding of host-bacterial 
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271 altered metabolic profiles, we performed metabolic pathway analysis executed on 

272 Metscape using KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, to 

273 investigate the most relevant pathways triggered by the chemotherapeutic response 

274 conditions. In addition to the upregulated acetylcholine metabolism and carnitine 

275 metabolism in both LDGem and LDCis groups, LDGem group exhibited the 

276 enhanced inosine and adenine metabolism and glucose metabolism (Figure 6). 

277 Therefore, adenine and inosine involved in nucleotide metabolism also promote 

278 cancer cell proliferation (Newman & Maddocks, 2017). In addition, carnitine 

279 indicated cancer development and progression (Kawai et al., 2017). In term of 

280 glucose, glucose serve as inducer of progression of CCA (Saengboonmee, 

281 Seubwai, Pairojkul, & Wongkham, 2016). Furthermore, acetylcholine can promote 

282 cancer stem cell proliferation (Nguyen et al., 2018).

283

284 Correlation of metabolic profile and intratumoral microbiota composition

285 To examine the overall correlation between tissue microbial and metabolic 

286 profiles and to identify the accountable microbiota and metabolite(s), we 

287 performed a Spearman-rank correlation analysis between the genus-level relative 

288 abundances of tissues microbiota and the log2 transformed relative concentrations 

289 of metabolites. In LDGem, Deinococcus was negatively correlated with 

290 homocarnosine and L-methionine, and Escherichia-Shigella was negatively 

291 correlated with homocarnosine (Figure 7A). In HDGem, Deinococcus and 

292 Pseudomonas were negatively correlated with acetic acid and L-methionine; 

293 Atopostipes and Paracoccus were negatively correlated with acetic acid; and 

294 Streptococcus was negatively correlated with L-methionine (Figure 7B). Finally, in 

295 HDCis, Cutibacterium was found to be positively correlated with L-leucine and L-

296 isoleucine (Figure 7C). There was no observable correlation between microbiome 

297 and metabolites in the LDCis and combined groups.
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298

299 Discussion

300 Host metabolism has been known to interact with the gut microbiota, which can, in 

301 turn, affect host disease status (Elia & Haigis, 2021; Zhao, 2013). In the present 

302 study, we performed metabolome analysis in 36 tumor tissues and microbiome 

303 analysis in 18 tumor tissues of CCA patients. We elucidated the microbial 

304 community using 16S rRNA sequencing and metabolic profiles using NMR-based 

305 metabolomics. The exploration of intratumoral microbiome of CCA tumor with 

306 16S rRNA sequencing allows us to compare resistant and sensitive groups of 

307 chemotherapeutic treatment condition. Based on our results using 16S rRNA 

308 sequencing, a significant difference occurred in α-diversity and β-diversity in 

309 gemcitabine treatment responses comparing resistant and sensitive subgroups. 

310 Interestingly, the intratumoral microbiota shift was found in the CCA tissues which 

311 resisted the chemotherapeutic drug treatment.  Our findings are consistent with the 

312 previous study in which the microbiota dysbiosis was correlated with CCA 

313 progression and pathogenesis (Saab et al., 2021). Microbial community at the 

314 phylum level demonstrated a common pattern of microbiota composition between 

315 the resistant and sensitive groups of chemotherapeutics treatment. However, the 

316 relative abundance of the class Gammaproteobacteria was significantly higher in 

317 the resistant group to gemcitabine treatment. Our results conform with a previous 

318 study in pancreatic ductal adenocarcinoma (PDAC)(Geller et al., 2017). The 

319 Gammaproteobacteria, the most common bacteria found in gemcitabine resistant 

320 PDAC tissues, can express cytidine deaminase (CDD) enzyme in its long form 

321 (CDDL) which can metabolize the active form of gemcitabine into the inactive 

322 form (Choy et al., 2018). The present work was limited by the low amount of 

323 bacterial DNA extracted from tumor tissues, resulting in some difficulties during 
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324 the amplification, which may affect the power in finding more candidate phyla 

325 from the microbial profiles. 

326 We further investigated the metabolic differences and their biological 

327 relevance in the chemotherapeutic drug response pattern. In regards with the 

328 NMR-based metabolomics, the levels of acetylcholine, adenine, carnitine and 

329 inosine were increased with gemcitabine resistance, while the levels of 

330 acetylcholine, alpha-D-glucose and carnitine were increased with cisplatin 

331 resistance. Expectedly, we found significantly increased amino acid levels in the 

332 resistant group of gemcitabine and cisplatin treatment, that is consistent with a 

333 previous study showing the elevated amino acid levels in a resistant group of both 

334 chemotherapeutic drugs (Ciccarone, Vegliante, Di Leo, & Ciriolo, 2017). 

335 Moreover, we found a significantly higher levels of nucleotides in CCA that were 

336 resistant to gemcitabine. The previous study indicated that nucleotide metabolites 

337 also promote cancer cell proliferation (Newman & Maddocks, 2017). We also 

338 found a significantly higher glucose level in the cisplatin resistant group, which is 

339 consistent with previous studies that demonstrated lung cancer patients who 

340 resistant to platinum-based combination chemotherapy shown elevated of glucose 

341 level was found in serum and increased of glucose level in CCA patients associated 

342 with progression of CCA in an in vitro study (Saengboonmee et al., 2016; Xu et 

343 al., 2017). Acetylcholine may also serve as an inducer of cancer stem cell 

344 proliferation (Nguyen et al., 2018). Even though the evidence of carnitine in 

345 chemotherapy response has not been widely studied, In a previous study, it was 

346 shown that when patients responding to cisplatin therapy resulted in lower levels of 

347 carnitine in gastric cancer patients and it has been defined as an oncometabolite 

348 that is involved in cancer development and progression(Kawai et al., 2017). In 

349 conclusion, the metabolic profiles could reflect the drug response patterns of CCA 
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350 patients� tissues and may serve as predictive biomarkers for chemotherapeutic drug 

351 response. 

352 Based on an integration analysis between intratumoral microbiota and 

353 metabolites data related to the drug response pattern, Streptococcus and 

354 Deinococcus were negatively correlated with L-methionine.  Previous work 

355 showed that Streptococcus could take up L-methionine through ABC transport 

356 lipoprotein, which reflects the decreased level of L-methionine (Basavanna et al., 

357 2013). We also found that Cutibacterium was positively correlated with L-

358 isoleucine and L-leucine in the cisplatin treatment group. Bacteria in the 

359 Cutibacterium phyla (formerly Propionibacterium) have been reported to be able 

360 to trigger the catabolism of leucine and isoleucine metabolic pathway from 

361 substrates available in the colon environment (Saraoui et al., 2013). Escherichia-

362 Shigella was negatively correlated with homocarnosine. Presently, there is no 

363 study, to our knowledge, that demonstrates the interaction between homocarnosine 

364 and Escherichia-Shigella. Furthermore, Pseudomonas, Atopostipes, Paracoccus 

365 and Deinococcus were negative correlated with acetic acid in the high dose 

366 gemcitabine treatment group, reflecting the alteration of intestinal microbiota as 

367 evident by a previous study in colorectal cancer patients (Yusof, Ab-Rahim, 

368 Suddin, Saman, & Mazlan, 2018) . However, there is no report on the association 

369 of acetic acid, which could induce microbiota composition change in 

370 cholangiocarcinoma.

371

372 Conclusions

373 An integration of the omics studies potentially provides an understanding of the 

374 alteration of host metabolic changes and microbiota composition shifts during 

375 disease progression. The present study provides an insight into the correlation 

376 between the metabolic changes and microbial alterations in the CCA tissues and its 
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377 potential effects on the chemotherapeutic treatments. The disruption of the 

378 intratumoral microbiome, metabolites, functional analysis and the clinical 

379 chemotherapy outcomes could be further validated in a larger cohort to improve 

380 the stratified treatment regimen for individual patients. Moreover, the drug 

381 resistance biomarker detection of biological fluids including plasma, serum, urine, 

382 bile fluid needs to be explored in order to find a quick, effective and less invasive 

383 strategy to be eventually applied in the clinical application.
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555 Figure 1 Taxonomic composition of the intratumoral bacteria in 

556 cholangiocarcinoma tissues. Stacked bar plot of taxonomic relative abundance (A) 

557 Phylum level (B) Class level (C) Genus level. The heatmap and hierarchical 

558 clustering represent the relative abundance of intratumoral microbiota, which each 

559 row demonstrated the taxonomic unit and each column represent the sample at (D) 

560 Phylum level (E) Class level (F) Genus level. The resistant and sensitive groups were 

561 color-coded in red and blue, respectively, and indicated on top of heatmap. The 

562 heatmap color spectrum (blue to darked) represents the relative abundance of each 

563 taxon. The clustering was constructed based on Euclidean distance. 

564

565 Figure 2 The microbial alteration in cholangiocarcinoma based on 

566 chemotherapeutic treatments. The alpha diversity index of the relative abundance 

567 from cholangiocarcinoma tissues was analysed by the Kruskal-Wallis (pairwise) 

568 test. An adjusted P-value less than 0.05 was considered as statistically significant. 

569

570 Figure 3 Intratumoral bacteria between the resistant and sensitive groups at 

571 the Phylum and Class levels. The significant difference of log2 fold differential 

572 abundance was analysed by edgeR algorithm of microbiomeanalyst based on 

573 adjusted P values.

574

575 Figure 4 The non-metric multidimensional scaling (NMDS) plot based on 

576 Euclidean distance (β-diversity) at Class level. (A) LDGen (B) HDGem (C) 

577 LDCis (D) HDCis (E) Combined

578

579 Figure 5 Significantly changed metabolites in LDGem and LDCis from tumor 

580 tissues of CCA patients. The blue color shows sensitive group and red color shows 

581 resistant group. * indicates statistically significant (adjusted P value < 0.05).  
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582

583 Figure 6 The metabolic pathway constructed by Metscape. (A) the metabolic 

584 network of LDGem resistance group (B) the metabolic network of LDCis resistance 

585 group. The red box represents significantly increased metabolites in resistance group 

586 (adjusted P value < 0.05).     

587

588 Figure 7 Spearman-rank correlation analysis between the genera of the 

589 intratumoral microbiome and metabolites by chemotherapeutic treatments by 

590 (A) LDGem (B) HDGem (C) HDCis. * Indicates significant correlation. The color 

591 is based on the Spearman-rank correlation coefficient between significant changes 

592 for genera and metabolites; blue represents a significantly negative correlation 

593 (adjusted P < 0.05), red a significantly positive correlation (adjusted P < 0.05).
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Table 1(on next page)

The characteristics of CCA patients from whom the tumor tissues were taken for the
microbiome and metabolomics studies
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1 Table 1 The characteristics of CCA patients from whom the tumor tissues 

2 were taken for the microbiome and metabolomics studies

V�������

16S rRNA 

sequencing 

(n = 11�

1H NMR 

based 

metabolomics 

(n = 36)

1,��� ugu�	 gemcitabine (LDGem)

     Sensitive 6 11

     Resistant 12 25

1,5�� ugu�	 gemcitabine (HDGem)

     Sensitive 4 11

     Resistant 14 25

2� ugu�	 cisplatin (LDCis)

     Sensitive 7 15

     Resistant 11 21

25 ugu�	 cisplatin (HDCis)

     Sensitive 9 16

     Resistant 9 20

1,��� ugu�	 gemcitabine plus 2� ugu�	 

cisplatin (Combined) 

     Sensitive 13 23

     Resistant 5 13

3
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Table 2(on next page)

List of all metabolites that were found in NMR spectra of CCA tumor samples.
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1 Table 2 List of all metabolites that were found in NMR spectra of CCA tumor 

2 samples.

NN
 1H chemical shift Metabolites

1� 0.942 (t)a, 0�00� (d)a, 1.039 (d)a, 1.261 (m)b, 1.478(m)a, 1.963 

(m)b, 3.615 (d)a

Isoleucine

2. 0.955 (t)a, 1.671 (m)b, 3.73 (m)a Leucine

3. 0.987 (d)a, 1.038 (d)a, 2.247 (m)a, 3.614 (d)a Valine

4. 1.327 (d)a, 4.103 (q)a Lactate

5. 1.478 (d)a, 3.754 (q)a Alanine

6. 1.923 (s)a Acetate

7. 2.105 (m)a, 2.358 (dt)a, 3.763 (t)a Glutamate

8. 2.113 (m)a, 2.635 (t)b, 3.832 (dd)a Methionine

9. 2.340 (m)a, 2.077 (m)a, 3.329 (dt)a, 3.401 (m)a, 4.120 (dd)b Proline

10. 2.408 (s)a Succinate

11. 2.520 (d)a ,2.664 (d)a Citrate

12. 3.040 (s)a, 3.935 (s)a Creatine

13. 3.188 (s)a, 3.514 (dd)a, 4.063 (m)a Choline

14. 2.163 (s)a, 3.230 (s)a, 3.74(t)a, 4.56 (m)b Acetylcholine

15. 2.421(s)a, 3.215(s)b, 3.231 (s)a, 3.414(s)a, 4.555(s)b Carnitine

16. 3.258 (t)a, 3.414 (t)a Taurine

17. 3.033 (dd)a, 3.280(dd)a, 3.289(dd)a, 3.304 (dd)a, 3.554 (dd)a, 

3.720(dd)a, 4.103 (dd)a

Cysteate

18. 2.730 (s)b, 3.614 (s)a Sarcosine

19. 2.142 (m)a, 2.446 (m)a, 3.754 (t)a Glutamine

20. 3.029 (s)b, 3.934 (s)a Phosphocreati

ne

21. 2.827 (d)a, 2.853 (s)a, 2.874(s)a, 2.930 (d)b, 2.960 (d)b, 3.973 

(dd)a

Asparagine

22. 3.239 (dd)a, 3.396 (m)a, 3.456 (m)a, 3.532 (dd)a, 3.720 (m)a, 

3.820 (m)a, 4.648 (d)b, 5.240 (d)a

Alpha-

glucose

23. 6.524 (s)a Fumarate

24. 3.037 (d)a, 3.062 (d)a, 3.205 (dd)a, 3.935 (dd)a, 6.914 (d)a, 

7.191 (d)a 

Tyrosine
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25. 5.803 (d)a, 7.542 (d)a Uracil

26. 2.470(s)b, 7.688 (s)a Pyridoxine

27. 3.140(dd)a, 3.247(dd)a, 3.972 (dd)a, 7.900 (s)b, 7.08 (s)b, 7.841 

(s)a

Histidine

28. 2.827(m)a, 3.140 (m)a, 3.515(s)a, 7.130(m)b, 7.840 (m)a Thyroxine

29. 3.487(s)a, 3.783(d)a, 3.917(d)a, 4.108(dd)b, 4.620(td)b, 6.070 

(d)a, 6.097(d)a, 9.580(d)b

Uridine

30. 1.893(m)a, 2.340(m)a, 2.900(m)a,3.003(dd)a, 

3.188(dd)a,4.480(m)a, 7.901 (s)a

Homocarnosi

ne

31. 8.245 (s)a Adenine

32. 3.823(dd)a,3.900(dd)a,4.259(dd)a, 4.420(dd)b, 6.098 (d)a, 

8.187(s)a, 8.351 (s)a

Inosine

33. 8.461 (s)a Formate

3

4 s: Singlet, d: Doublet, dd: Doublet of doublet, t: Triplet, q: Quartet, m: Multiplet 

5 a: Resonances that were identified in both STOCSY and HMDB

6 b: Resonances that were identified only in HMDB

7 Bold text represents chemical shift that were selected to analysis

8

9

10
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Figure 1
Taxonomic composition of the intratumoral bacteria in cholangiocarcinoma tissues.

Figure 1 Taxonomic composition of the intratumoral bacteria in

cholangiocarcinoma tissues. Stacked bar plot of taxonomic relative abundance (A)
Phylum level (B) Class level (C) Genus level. The heatmap and hierarchical clustering
represent the relative abundance of intratumoral microbiota, which each row demonstrated
the taxonomic unit and each column represent the sample at (D) Phylum level (E) Class level
(F) Genus level. The resistant and sensitive groups were color-coded in red and blue,
respectively, and indicated on top of heatmap. The heatmap color spectrum (blue to darked)
represents the relative abundance of each taxon. The clustering was constructed based on
Euclidean distance.
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Figure 2
The microbial alteration in cholangiocarcinoma based on chemotherapeutic treatments.

The alpha diversity index of the relative abundance from cholangiocarcinoma tissues was
analysed by the Kruskal-Wallis (pairwise) test. Anadjusted P-value less than 0.05 was
considered as statistically significant.
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Figure 3
Intratumoral bacteria between the resistant and sensitive groups at the Phylum and
Class levels.

The significant difference of log2 fold differential abundance was analysed by edgeR
algorithmof microbiomeanalyst based on adjusted P values.
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Figure 4
The non-metric multidimensional scaling (NMDS) plot based on Euclidean distance (β-
diversity) at Class level. (A) LDGen (B) HDGem (C) LDCis (D) HDCis (E) Combined

(A) LDGen (B) HDGem (C) LDCis (D) HDCis (E) Combined
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Figure 5
Significantly changed metabolites in LDGem and LDCis from tumor tissues of CCA
patients. The blue color shows sensitive group and red color shows resistant group. *
indicates statistically significant (adjusted P value < 0.05).

The blue color shows sensitive group and red color shows resistant group. * indicates
statistically significant (adjusted P value < 0.05).
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Figure 6
The metabolic pathway constructed by Metscape.

(A) the metabolic network of LDGem resistance group (B) the metabolic network of LDCis
resistance group. The red box represents significantly increased metabolites in resistance
group (adjusted P value < 0.05).
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Figure 7
Spearman-rank correlation analysis between the genera of the intratumoral microbiome
and metabolites by chemotherapeutic treatments

Spearman-rank correlation analysis between the genera of the intratumoral

microbiome and metabolites by chemotherapeutic treatments by (A) LDGem (B)
HDGem (C) HDCis. * Indicates significant correlation. The color is based on the Spearman-
rank correlation coefficient between significant changes for genera and metabolites; blue
represents a significantly negative correlation (adjusted P< 0.05), red a significantly positive
correlation (adjusted P< 0.05).
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