Urea fertilization and grass species alter microbial nitrogen cycling capacity and activity in a C₄ native grassland

Jialin Hu¹, Jonathan D. Richwine², Patrick D. Keyser², Fei Yao¹, Sindhu Jagadamma¹, Jennifer M DeBruyn^{Corresp. 1}

¹ Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States

² Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, Tennessee, United States

Corresponding Author: Jennifer M DeBruyn Email address: jdebruyn@utk.edu

Soil microbial transformation of nitrogen (N) in nutrient-limited native C₄ grasslands can be affected by N fertilization rate and C₄ grass species. Here, we report *in situ* dynamics of the population size (gene copy abundances) and activity (transcript copy abundances) of five functional genes involved in soil N cycling (*nifH*, bacterial *amoA*, *nirK*, *nirS*, and *nosZ*) in a field experiment with two C₄ grass species (switchgrass [*Panicum virgatum*] and big bluestem [*Andropogon gerardii*]) under three N fertilization rates (0, 67, and 202 kg N

ha⁻¹). Diazotroph (*nifH*) abundance and activity were not affected by N fertilization rate nor grass species. However, moderate and high N fertilization promoted population size and activity of ammonia oxidizing bacteria (AOB, quantified via *amoA* genes and transcripts) and nitrification potential. Moderate N fertilization increased abundances of nitritereducing bacterial genes (*nirK* and *nirS*) under switchgrass but decreased these genes under big bluestem. The activity of nitrous oxide reducing bacteria (*nosZ* transcripts) was also promoted by moderate N fertilization. In general, high N fertilization had a negative effect on N-cycling populations compared to moderate N addition. Compared to big bluestem, the soils planted with switchgrass had a greater population size of AOB and nitrite reducers. The significant interaction effects of sampling season, grass species, and N fertilization rate on N-cycling microbial community at genetic-level rather than transcriptional-level suggested the activity of N-cycling microbial communities may be driven by more complex environmental factors in native C4 grass systems, such as climatic and edaphic factors.

- ¹ Urea fertilization and grass species alter microbial
- ² nitrogen cycling capacity and activity in a C₄ native

3 grassland

4

Authors: Jialin Hu¹, Jonathan D. Richwine², Patrick D. Keyser², Fei Yao¹, Sindhu Jagadamma¹,
 Jennifer M. DeBruyn^{1*}

7

8 Affiliations:

⁹ ¹ Department of Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J.

- 10 Chapman Drive, TN 37996
- ¹¹ ² Department of Forestry, Wildlife and Fisheries, University of Tennessee, 2505 E.J. Chapman
- 12 Drive, TN 37996
- 13
- 14 *Corresponding author:
- 15 Jennifer DeBruyn
- 16 Department of Biosystems Engineering and Soil Science, University of Tennessee
- 17 2506 E.J. Chapman Drive, TN 37996
- 18 E-mail address: jdebruyn@utk.edu
- 19

20 Abstract

- 21 Soil microbial transformation of nitrogen (N) in nutrient-limited native C₄ grasslands can be
- 22 affected by N fertilization rate and C₄ grass species. Here, we report *in situ* dynamics of the
- 23 population size (gene copy abundances) and activity (transcript copy abundances) of five
- functional genes involved in soil N cycling (nifH, bacterial amoA, nirK, nirS, and nosZ) in a field
- 25 experiment with two C₄ grass species (switchgrass [*Panicum virgatum*] and big bluestem
- 26 [Andropogon gerardii]) under three N fertilization rates (0, 67, and 202 kg N ha⁻¹). Diazotroph
- 27 (*nifH*) abundance and activity were not affected by N fertilization rate nor grass species.
- 28 However, moderate and high N fertilization promoted population size and activity of ammonia
- 29 oxidizing bacteria (AOB, quantified via *amoA* genes and transcripts) and nitrification potential.
- 30 Moderate N fertilization increased abundances of nitrite-reducing bacterial genes (*nirK* and *nirS*)
- 31 under switchgrass but decreased these genes under big bluestem. The activity of nitrous oxide

reducing bacteria (nosZ transcripts) was also promoted by moderate N fertilization. In general, 32 high N fertilization had a negative effect on N-cycling populations compared to moderate N 33 addition. Compared to big bluestem, the soils planted with switchgrass had a greater population 34 size of AOB and nitrite reducers. The significant interaction effects of sampling season, grass 35 species, and N fertilization rate on N-cycling microbial community at genetic-level rather than 36 transcriptional-level suggested the activity of N-cycling microbial communities may be driven 37 38 by more complex environmental factors in native C4 grass systems, such as climatic and edaphic 39 factors.

40

41 Introduction

Grasslands account for about 46.8% of all agricultural lands in the United States (USDANASS, 2012). C₄ grasses have become the preferred grass species for regional bioenergy
development and can make valuable contributions to forage production due to their exceptional
drought-tolerance, high productivity, and low nitrogen (N) requirement. C₄ grasses are thought to
be able to meet N requirements in nutrient-limited ecosystem via their interactions with
microbial assemblages involved in N cycling (Gupta et al., 2019).

The major soil N transformations regulated by microbes include N fixation, nitrification, and 48 denitrification. Biological N fixation is the process whereby N gas in the atmosphere is 49 converted to ammonia by symbiotic, associative and free-living diazotrophs (Dixon & Kahn, 50 2004). Nitrification is the biological oxidation of ammonia to nitrate by ammonia- and nitrite-51 oxidizers, with ammonia oxidation as the first and rate-limiting step performed by ammonia-52 oxidizing bacteria (AOB) and archaea (AOA) (Frijlink et al., 1992). Denitrification is the process 53 of full or partial dissimilative reduction of NO3⁻ conducted by facultative anaerobic 54 microorganisms as a type of respiration to yield nitrous oxide (N_2O) or dinitrogen gas (N_2) 55 (Colliver & Stephenson, 2000). Grasslands mobilize large pools of N with potential for N losses 56 through N₂O emissions and nitrate leaching via nitrification and denitrification; these losses are 57 mediated in part by the population size and activity of nitrifiers and denitrifiers (Duan et al., 58

59 2017). Nitrous oxide loss is critical to understand because the global warming potential of N₂O is 296 times that of CO₂ over a 100-year period (IPCC, 2007). Approximately 100-256 kg N ha⁻¹ 60 yr¹ may be lost via nitrate leaching from grassland cultivation (Di & Cameron, 2002; Duan et al., 61 2017; Francis et al., 1995; Hansen et al., 2007). Conversely, approximately 2.3-3.1 kg N ha⁻¹ yr⁻¹ 62 can be replenished by biological N fixation to grassland ecosystems (Cleveland et al., 1999). 63 Therefore, the abundance and activity of microbes responsible for these N-cycling processes play 64 65 important roles in soil N availability and losses. These population dynamics are frequently assessed by molecular methods, in particular, by quantifying functional marker genes nifH (N 66 fixation), amoA (ammonia oxidation), nirK and nirS (nitrite reduction), and nosZ (nitrous oxide 67 reduction). 68

69 The microbially-driven N-cycling processes in soils can be affected by land management 70 practices and plant types (Lindsay et al., 2010). Fertilization with N impacts N-cycling microbial communities by altering N availability. Biological N fixation can be inhibited in N-rich 71 environments because diazotrophs prefer using easily available exogenous N over energy-72 consuming N fixation (Chapin et al., 2002). However, previous studies have reported mixed 73 responses: N fertilization decreased (Cusack et al., 2009; Hu et al., 2021c; Wang et al., 2017), 74 increased (Lindsay et al., 2010), or had no effect on *nifH* abundance (Ouyang et al., 2018). 75 Indeed, in our previous study of the C4 grasses switchgrass (Panicum virgatum, SG) and big 76 77 bluestem (Andropogon gerardii, BB), we found that high N fertilization (202 kg N ha⁻¹) resulted 78 in a decrease in activity of soil diazotrophs (Hu et al., 2021c). Nitrogen addition has long been considered to promote nitrification and denitrification rates because it provides initial substrates 79 for microbes involved in these N transformation processes (Wang, Chen et al., 2018). A meta-80 analysis of field studies reported N fertilization increased the abundance of genes associated with 81 82 nitrification and denitrification in agricultural soils, including both croplands and grasslands (Ouyang et al., 2018). Moreover, N fertilization increased nitrification potential and 83 denitrification enzyme activity by 93.7% and 27.9%, respectively (Ouyang et al., 2018). When N 84 fertilizer was applied at up to 250 kg N ha⁻¹, soil denitrification increased exponentially with N-85

rate, but did not increase further above this threshold (Wang, Chadwick et al., 2018). Long-term 86 excessive fertilization can increase soil acidity and salinity (Han, Shi et al., 2017). It has been 87 88 observed that the soil pH variation caused by N fertilization could be a dominant factor affecting the response of N-cycling populations to N fertilization (Hallin et al., 2009; Yang et al., 2017). 89 Excessive fertilization with ammonium-N can increase soil acidity due to the release of hydrogen 90 during the nitrification process, which lowers overall denitrification rates but leads to higher N₂O 91 92 emission because of the extremely sensitive of N₂O reductase to low pH (Brenzinger et al., 2015). The form of N fertilizer can also be an important factor regulating the variability of N-93 cycling microbes, with higher variability observed under organic compared to inorganic 94 fertilizers, because organic fertilizers also provide readily accessible organic C and other 95 96 nutrients that support the growth of heterotrophic microorganisms, such as diazotrophs and 97 denitrifiers (Ouyang et al., 2018).

Perennial grass species can affect net N mineralization due to differences in tissue N 98 concentrations, belowground lignin concentrations, and belowground biomass of the species 99 (Wedin & Tilman, 1990a). Compared to annual grasses, perennial grasses are more conservative 100 with N, exhibiting lower nitrification rate and less nitrate leaching via a perennial root system 101 (Yé et al., 2015). Perennial C₄ grasses like switchgrass have the potential to influence the 102 diazotrophic community and form mutualistic symbioses with diazotrophs to improve N-use 103 efficiency (Smercina et al., 2020). Grass species may affect denitrification potential because of 104 differences in labile C input (Groffman et al., 1996). Within perennial C₄ grass species, previous 105 studies reported different optimum N rate for maximum dry mass yield, with 50 to 120 kg N ha⁻¹ 106 for switchgrass and 45 to 90 kg N ha⁻¹ for big bluestem (Brejda, 2000), which may affect N-107 108 cycling microbes. For example, big bluestem is more competitive than switchgrass in low-N soils and can promote a low-N environment by tying up N in their slowly decomposing litter 109 (Wedin & Tilman, 1990b), which may reduce the availability of soil inorganic N for soil 110 microbes. In addition, the content of crude protein is higher in switchgrass than big bluestem 111 (Newell, 1968), suggesting higher potential N availability for nitrifiers and denitrifiers via plant 112

residue decomposition. However, only few studies have evaluated the dynamics of N-cycling 113 microbes under perennial C₄ grass systems. For example, Mao et al. (2013) reported that the 114 115 abundance of N-fixing organisms increased in both switchgrass and miscanthus cropping systems compared to maize cropping system, but N-cycling microbial communities showed no 116 significant difference between these two perennial grass systems (Mao et al., 2013). Thompson 117 et al. (2018) found that N fertilization with 160 kg N ha⁻¹ increased *nirS* and *nosZ* gene 118 119 expression in both switchgrass and miscanthus cropping system in Ontario, Canada (Thompson et al., 2018). Kim et al. (2022) found that bacterial amoA abundance increased with N rate, but 120 nitrite reductase genes (*nrfA* and *nirS*) were more abundant under 56 kg N ha⁻¹ treatment but no 121 significant effect of grass species on abundance of N-cycle genes (Kim et al., 2022). Switchgrass 122 and big bluestem are widely planted in the Mid-South United States because of their excellent 123 124 wildlife habitat and quality forage for livestock. The dynamics of N-cycling microbes with N fertilization in these two grass cropping systems can provide valuable information for optimizing 125 fertilizer application scheme but has not been well documented. 126

Therefore, our objectives were to: 1) determine the effects of grass species and N 127 fertilization on abundance and activity of the N-cycling microbial community; and 2) identify 128 relationships among N-cycle functional microbial abundance, activity, and soil physicochemical 129 parameters. We hypothesized that: 1) compared to no fertilization, moderate N fertilization (i.e. 130 at the recommended rate) would promote both abundance and activity of N-cycling microbes, 131 but high N fertilization rate (i.e. in excess of recommended rate) would suppress N-cycling 132 microbial abundance and activity; and 2) the responses of N-cycling microbial community to 133 fertilization would be different between SG and BB because of the different optimum N rate for 134 these species. The study was conducted in a small plot experiment with two C₄ grass species and 135 three N fertilization rates, where we have previously described soil diazotroph and ammonia-136 oxidizing bacterial populations via molecular investigations of *nifH* and bacterial *amoA* genes 137 (Hu et al., 2021b; Hu et al., 2021c). Here, we expand our investigation to dynamics of other soil 138 N-cycling functional groups, using quantitative polymerase chain reaction (qPCR) and 139

140 quantitative reverse-transcription PCR (qRT-PCR) to target the gene and transcript abundances

141 *nirK*, *nirS*, and *nosZ*. The *nifH* and bacterial *amoA* targeted in our previous studies (Hu et al.,

142 2021b; Hu et al., 2021c) were also included here to provide a more comprehensive assessment.

143

144 Materials and Methods

145 2.1 Study site, experimental design, and sample collection

146 This study was conducted at the University of Tennessee East Tennessee AgResearch and Education Center (ETREC) in Knoxville, Tennessee (35.53° N, 83.06° W). Soil at this site is 147 sandy loam (fine-loamy, mixed, semiactive, thermic Typic Hapludults). This study implemented 148 a randomized complete block design with split-plot treatment arrangements. The two C₄ native 149 grass species (switchgrass [Panicum virgatum, SG] and big bluestem [Andropogon gerardii, 150 BB]) were the main plot treatment with three N application rates (0, 67, and 202 kg N ha⁻¹; 0N, 151 67N, 202N, respectively) as the sub-plot $(1.8 \times 7.6 \text{ m})$ treatment. Each treatment combination 152 had three replicates. Grasses were planted in 2013, and N was applied as urea starting in 2014. 153 The field was fertilized and harvest twice per year. For each year since 2014, the fertilization was 154 conducted in early May and early July. The grass harvest was conducted in late June and mid-155 August by using a Carter forage harvester with 91.4-cm cutting with at 20.3-cm cutting height. 156 For all the sub-plots, the fertilization or grass harvest were conducted and completed within same 157 day. Soil samples were collected three times during the growing season in 2019: grass green up 158 159 ("G", late April, one week before the first fertilization), initial grass harvest ("H1", late June, within one week after harvest and before the second N fertilization), and second grass harvest 160 ("H2", mid-August, within one week before the second harvest). Within each sub-plot, six $2.5 \times$ 161 10 cm cores were collected and composited as one sample. Field operations and soil sampling for 162 these plots, including other fertilizers (phosphorus, potassium) and lime application, weed 163 control, grass harvest, and soil sampling were previously described in detail (Hu et al., 2021c). 164

165 **2.2 Soil physicochemical properties**

Soil pH was measured using pH electrode in soil slurries with soil (g)/water (mL) ratio of

1:2. soil water content was calculated as [(fresh soil weight – dry soil weight_{(105°C, 48b}/dry soil 167 weight] \times 100%. Soil total C and N were analyzed by using dry combustion method with an 168 Elementar vario MAX cube (Elementar, Langenselbold, Germany). Dissolved organic C and N 169 were extracted in Milli-Q water and measured using the liquid mode of Elementar vario TOC 170 cube. Soil NH₄⁺-N and NO₃-N were separately quantified using Berthelot reaction-based and 171 Vanadium (III) chloride-based spectrophotometric methods with a microplate reader after 172 173 extraction with 0.5 M K₂SO₄ with soil (g)/K₂SO₄ solution (mL) ratio of 1:4. Soil nitrification potential was measured using Chlorate block method, which was fully described in our previous 174 study (Hu et al., 2021b). Static chamber method was used for soil gas sampling on the same days 175 that soil samples were collected. For each sub-plot, a static chamber was inserted into soil to a 176 depth of 8 cm. Gas was sampled through a valve on the lid at 0, 20, 40, and 60 min and collected 177 into a 12-mL pre-evacuated glass vial. One inch depth soil temperature adjacent to the chamber 178 was measured at the same time by inserting a digital thermos probe (Thermo Scientific, USA) 179 into the soil. Gas samples were measured in a gas chromatograph (Shimadzu GC-2014, Japan). 180 N₂O emission flux was determined as described in our previous study (Hu et al., 2021b). 181

182 2.3 Soil nucleic acid extraction and qPCR

The DNeasy PowerSoil Kit and RNeasy PowerSoil Total RNA Kit (Qiagen, Hilden, 183 Germany) were used for soil genomic DNA and RNA extraction respectively. cDNA synthesis 184 was conducted by using SuperScript IV Reverse Transcriptase Kit (Invitrogen, Paisley, UK). A 185 186 CFX96 Optical Real-Time Detection System (Bio-Rad, Laboratories Inc., Hercules, CA, USA) was used for the qPCR and qRT-PCR of N-cycle genes (*nifH*, AOB *amoA*, *nirK*, *nirS*, and *nosZ*) 187 and 16S rRNA genes. Amplification of N-cycle genes were performed in a 20-µL qPCR reaction 188 with 10 μ L Maxima SYBR green qPCR master mix (Thermo Scientific, USA), 2.5 μ L DNA or 189 cDNA template, 5.5 µL PCR-grade water, and 1 µL forward and reverse primer (10 µM). The 190 primer sets and thermocycling conditions used for N-cycle genes are listed in Table S1. The 191 quantification of 16S rRNA genes and 16S rRNA were performed using the Femto bacterial 192 DNA quantification kit (Zymo Research Corp., CA, USA) according to manufacturer's 193

Manuscript to be reviewed

protocols. The preparation of standards for the quantification of N-cycle genes were described in our previous study (Hu et al., 2021a). Absolute quantities of *nifH* and AOB *amoA* genes and transcripts at this site were reported in (Hu et al., 2021b; Hu et al., 2021c); in this current study we used these data to calculate relative abundances with respect to 16S rRNA gene abundances we measured.

Both absolute abundances (copies g⁻¹ dry weight soil) and relative abundances (normalized 199 200 to 16S rRNA genes or to 16S rRNA) of functional genes and transcripts were analyzed and compared to provide a more comprehensive picture of the population dynamics as we have done 201 previously (Hu et al. 2021a). Absolute abundance revealed the variation of N-cycling bacteria 202 over time with respect to management practices while relative abundance mitigated the impact of 203 204 DNA and RNA extraction efficiency on data accuracy and revealed the relative changes of Ncycling populations as a proportion of the total soil bacterial community. The relative abundance 205 of N-cycle genes and transcripts used in this study was calculated as follows: 206

207
$$RGA = \frac{N - cycle gene copies/\mu l DNA extract}{16S rRNA gene copies/\mu l DNA extract}$$

208 RTA = $\frac{\text{N - cycle transcript copies/} \mu \text{l RNA extract}}{16\text{S rRNA copies/} \mu \text{l RNA extract}}$

Where RGA is the relative abundance of the gene and RTA is the relative abundance of the genetranscript.

211 **2.4 Statistical analysis**

Our statistical analysis followed a similar approach as described in Hu et al. (2021a): A mixed model ANOVA within the GLIMMIX procedure in SAS 9.4 (SAS Inst., Cary, NC, USA) was performed to test the effects of treatments on the population size and activity of N-cycling microbes and total bacteria. Both absolute and relative abundances of genes and transcripts were log-transformed to achieve normal distributions. The fixed effects included season, N fertilization rate, and grass species as well as their interactions. Block was included as a random effect. A post-hoc least significant difference (LSD) method was used to compare the means of

groups. Sample sizes were as follows: 2 grass systems × 3 fertilization rates × 3 replicates × 3
seasons = 54 samples total. Pearson correlation analyses were performed in IBM SPSS Statistics
v26 to evaluate the correlation among the abundance and activity of N-cycling microbes, total
bacteria, and soil physicochemical parameters. A heatmap based on Pearson correlations was
performed by pheatmap package in R 3.6. to visualize the significant correlations among
measured soil properties, gene abundances, and gene transcript abundances.

225 Principal Coordinates Analysis (PCoA) based on Bray-Curtis distances was performed in R 3.6.1 with packages vegan (2.5-5) and phyloseq. Analysis of similarities (ANOSIM) was also 226 performed by R with the function 'anosim' in package vegan to compare groups and test the null 227 hypothesis that the similarity between groups was greater than or equal to the similarity within 228 the groups. Dispersion indices were calculated in R with the function 'betadisper' in package 229 230 vegan to assess the multivariate homogeneity of group dispersions. The function 'TukeyHSD.betadisper' in package vegan was used to calculate Tukey's Honest Significant 231 Differences between groups. In this study, statistically significant difference was accepted at a p-232 value < 0.05 unless otherwise noted. 233

234

235 **Results**

236 **3.1 Soil physicochemical properties**

The soil physicochemical properties, nitrous oxide emission, and nitrification potential 237 238 involved in this study have been reported in our previous studies (Hu et al., 2021b; Hu et al., 2021c) and are shown in Table S2. The effects of treatments on soil physicochemical properties 239 are shown in Table S3. To briefly summarize the findings reported in the previous studies: Soil 240 pH, NO₃--N, and DOC varied with N fertilization (Table S2; Table S3). Grass species had an 241 effect on pH and nitrification potential: both were higher under SG than BB (Table S2). Grass 242 species and N fertilization rate had an interaction effect on soil water content (SWC) and C:N 243 ratio: SWC decreased with N-rate under BB while C:N ratios were reduced by N fertilization 244 under SG (Table S2). At grass green up (G), prior to fertilization, the high N plots had decreased 245

NH₄⁺-N compared to 0N plots. Fertilization with N increased NH₄⁺-N at initial harvest (H1, June) in the fertilized plots, but by second harvest (H2, August), there were no difference in NH₄⁺-N between fertilized and unfertilized plots (Table S2). At 202N, nitrification potential increased at H1 and H2 (Table S2). Over the season, NO₃⁻-N did not change under SG, but was elevated at H1 under BB (Table S2; Table S3). The three-way interaction of season, grass species, and N fertilization rate affected N₂O-N (Table S3). A positive effect of N fertilization on N₂O emission was mainly observed at initial harvest under BB (Table S2).

253 **3.2 Functional genes and transcripts**

The abundance of total 16S rRNA genes was highest at H2 (7.62×10^9 copies g⁻¹ drv weight 254 soil) and lowest at H1 (3.65×10^9 copies g⁻¹ dry weight soil) (Fig. 1A; Table 1; Table S4). In 255 contrast, 16S rRNA abundances were similar across sampling seasons and treatments (Table 1). 256 257 The abundances of N-cycle genes and transcripts under different treatment combinations are shown in Table S4 and Table S5. In general, the changes in relative abundances (normalized to 258 16S rRNA genes and 16S rRNA) were consistent with changes in absolute abundances (g⁻¹ dry 259 weight soil) for both N-cycle genes and transcripts (Fig. 1, Fig. 2, and Fig. 3). Both absolute and 260 relative abundances of N-cycle genes changed over the season and were mostly affected by the 261 main effects or the two-way interaction of grass species and N fertilization rate (Table 1). 262 However, transcript abundances were mostly affected by N fertilization rate (Table 1). 263 Both absolute and relative abundances of N fixation gene *nifH* were highest at H2 and 264 lowest at H1 (Fig. 1; Table S4). Transcripts of nifH were lowest at H2 (Fig. 3; Table S5). Grass 265 species and N fertilization did not have a significant effect on *nifH* gene abundances or 266

transcripts (Table 1; Table S4 and S5).

Both absolute and relative abundances of bacterial ammonia oxidation gene *amoA* were impacted by all three main effects (Table 1): *amoA* abundances were lowest at H1 and highest at H2; higher under SG than BB; and higher under N fertilization compared to 0N (Fig. 1; Fig. 2; Table S4). Prior to G, there was no difference in *amoA* transcript abundances based on N treatment (Table 1). At H1, *amoA* transcript abundances were greatest under moderate N

273 fertilization (67N) and at H2, were highest at 202N (Fig. 3; Table S5).

Both absolute and relative abundances of nitrite reduction gene *nirK* were lowest at H1 and highest at H2 (Fig. 1; Table S4). Moreover, the absolute (but not relative) abundance of *nirK* was greater under SG than BB (Fig. 2; Table S4). The absolute abundance of *nirK* transcripts was highest at H1 (Table S5). The relative abundance of *nirK* transcript was highest under 67N at H1 (Table 1 and Fig. 3B; Table S5).

The abundance of nitrite reduction gene *nirS* was elevated at H2 (Fig. 1; Table S4). The absolute abundance of *nirS* genes was promoted by 67N under SG but reduced by 67N under BB (Fig. 2A; Table S4). The relative abundance of *nirS* gene was higher under SG than under BB (Table S4). Absolute abundances of *nirS* transcript were lower at H2 (Table 1; Table S5). Grass species had no significant effect on *nirS* transcript abundance (Table S5). However, both absolute and relative abundances of *nirS* transcripts were affected by N fertilization rate (Table 1), with highest abundances under 67N and lowest under 202N (Table S5).

The abundances of nitrous oxide reduction gene *nosZ* varied over the season (Table 1; Table S4), with both absolute and relative abundances lowest at H1, but were unaffected by grass species or fertilization rate (Fig. 1; Table S4). Absolute abundances of *nosZ* transcript were higher under 67N but lower under 0N and 202N (Fig. 3A; Table S5). Relative abundances of *nosZ* transcripts were not affected by any treatment (Table 1).

291 **3.3** Variability of N cycling microbial functional potential and activity

292 As expected, the statistical dispersion or variability of the populations by activity (transcripts) was higher than by functional potential (genes) (dispersion index = 0.307 for 293 transcripts and 0.178 for genes; P < 0.001), which can be visualized by principal coordinate 294 analysis (PCoA) (Fig. 4). Analysis of similarities (ANOSIM) testing showed that the population 295 distribution by functional potential was affected by the three-way interaction of sampling season, 296 grass species, and N fertilization rate (R = 0.384; P = 0.001) (Fig. 4A, Table 2). Although not 297 significant, the difference in communities was most apparent at G and H1, whereas communities 298 converged and were more similar by H2 (Fig. 4A). The population distribution by activity was 299

only affected by sampling season (R = 0.060; P = 0.029), with no apparent patterns by grass species or N fertilization rate (Fig. 4B).

302 3.4 Relationship of soil properties with functional gene and transcript abundance

In general, the abundances of N-cycle genes and 16S rRNA gene were more closely 303 correlated to soil properties than their transcripts (Fig. 5). The 16S rRNA gene abundance was 304 positively correlated to DOC (R = 0.553; P < 0.05) but negatively correlated to SWC (R = -305 0.578; P < 0.01) and NH₄⁺-N (R = -0.562; P < 0.01) and NO₃⁻-N (R = -0.503; P < 0.05), whereas 306 16S rRNA abundance was only positively correlated to SWC (R = 0.306; P < 0.01). The N-cycle 307 genes were negatively correlated with SWC whereas their transcripts were positively correlated 308 with SWC (Fig. 5). Nitrification potential was positively correlated to amoA gene abundance (R 309 = 0.530; P < 0.01) but not to *amoA* transcript abundance (Fig. 5). The abundances of *nirK* and 310 *nirS* genes were both positively correlated to DOC (R = 0.593, P < 0.01 for *nirK*; R = 0.606, P < 0.01311 0.01 for *nirS*) and DON (R = 0.295, P < 0.05 for *nirK*; R = 0.345, P < 0.05 for *nirS*), a pattern 312 not observed for their transcripts (Fig. 5). N_2O emission rate was negatively correlated to the 313 abundances of all five N-cycle genes but had no correlation with their gene transcripts (Fig. 5). 314 315

316 **Discussion**

We found that the N-cycling microbial population size changed seasonally regardless of 317 grass species and N fertilization rates. The total bacteria, diazotrophs, AOB, and denitrifying 318 bacteria were all most abundant at H2 and least abundant at H1, which may have been influenced 319 320 by variability of DOC and DON. We sampled soils after mowing at H1 but before mowing at H2. Mowing decreases C-substrate supply from photosynthesis and grass residues and, therefore, 321 may have decreased decomposition rates and DOC released by soil microbes (Luo et al., 2019). 322 The lower SWC in August may also have reduced the potential loss of DOC and DON through 323 leaching (Poll et al., 2008), providing easily accessible C to support the growth of heterotrophic 324 diazotrophs and denitrifiers. Denitrifying bacteria are widespread in soils, accounting for about 325 0.5-5.0% of the total bacterial population and include both autotrophic and heterotrophic bacteria 326

Manuscript to be reviewed

which are strongly influenced by soil C (Levy-Booth et al., 2014). Accordingly, we found that
the abundance of soil *nirK* and *nosZ* gene quantities are positively correlated to DOC and/or
DON, which was consistent with previous findings (Bárta et al., 2010; Rasche et al., 2011). The
positive correlation of AOB abundance with DOC and DON concentrations in grasslands
observed in our study was also found in other agroecosystems (Hu et al., 2021a; Sun et al.,
2019), providing strong evidence that C and N mineralization by heterotrophs can provide C and
N sources for AOB growth.

334 The higher soil oxygen content due to significantly lower SWC in August could explain the lowered activity of diazotrophs and nitrate reducing bacteria, as indicated by reduced nifH, nirS 335 and nirK transcript abundances; nitrogenase and nitrite reductase activities are sensitive to 336 oxygen (Dobereiner et al., 1972; Eady & Postgate, 1974). Because ammonia oxidation is an 337 338 aerobic process, we expected to see increased *amoA* transcripts in August when SWC was reduced, however, this was not the case. One explanation is that AOB increased the expression 339 of *amoA* genes under oxygen stress (Theodorakopoulos et al., 2017; Yu & Chandran, 2010). 340 Another possible reason is that the exudates containing compounds released by roots of some 341 grasses can inhibit nitrification (Subbarao et al., 2009). Moreover, because autotrophic AOB are 342 not as competitive as heterotrophs for NH₄⁺ under labile C-rich conditions, they may have been 343 outcompeted (Strauss & Lamberti, 2002). 344

345 Fertilization with N had no effect on the abundance of diazotrophs, which was in accordance 346 with results from a previous meta-analysis (Ouyang et al., 2018). Compared to 0N, moderate (67N) and high (202N) urea fertilization similarly increased AOB abundance. The increased 347 AOB abundance by urea addition has also been observed in previous studies (Rudisill et al., 348 2016; Xiang et al., 2017). The positive effect of N fertilization on AOB activity and nitrification 349 potential was only observed after N fertilization (H1 and H2), indicating that urea fertilization 350 may only have short-term rather than year-over-year influence on nitrification process in this 351 system. Other studies have reported that lower pH caused by urea fertilization can inhibit amoA 352 expression and reduce nitrification potential (Rudisill et al., 2016). However, we did not observe 353

Manuscript to be reviewed

this in our study; pH was reduced at 202N, but there was no reduction in *amoA* expression. 354 The response of *nirS*-type nitrite reducing bacterial absolute abundance to N fertilization rate 355 depended on grass species, with 67N promoting *nirS* abundance under SG but decreasing *nirS* 356 abundance under BB, which might be related to different soil conditions caused by species-357 specific characteristics (e.g., N-use efficiency, photosynthetic N-use efficiency, C:N ratio of 358 litter, root exudates) of these grasses. Fertilization with N also had an impact on the activity of 359 360 denitrifying bacteria. Compared to 0N, 67N increased the activity of *nirS*-type nitrite-reducing 361 bacteria and N₂O-reducing bacteria, but 202N did not increase and even slightly suppressed the activity of denitrifiers, perhaps because of the sensitivity of denitrifiers to high nitrate levels 362 caused by high N inputs (Kastl et al., 2014; Wallenstein et al., 2006) and/or the increased soil 363 acidity/lower pH caused by the application of high ammonium-N fertilizer. The inhibition effect 364 of pH on the transcriptional activity of denitrifiers has been documented (Brenzinger et al., 365 2015). 366

We found that 202N increased N₂O emissions. One of the possible reasons is the lower pH 367 caused by high N fertilization rate. Compared to nitrite reductase, N₂O reductase is more 368 sensitive to low pH, leading to higher net N₂O production (Bergaust et al., 2010). Although 369 previous studies have suggested that ammonia oxidizers and/or denitrifiers were the primary 370 contributors to N₂O emissions in soils (Kastl et al., 2014; Soares et al., 2016), N₂O emission 371 rates were negatively correlated to N-cycle gene abundances and not to N-cycle gene transcript 372 abundances in our study. The lack of a clear relationship between N-cycling bacterial population 373 size/activity and N₂O emission rates may be due to climatic factors, edaphic properties, and the 374 abundance and activity of fungi. Fungi have been considered to be responsible for a large portion 375 of soil N_2O emissions because they do not contain an ortholog to the enzyme nitrous oxide 376 reductase (NOS) (Kobayashi et al., 1996; Laughlin & Stevens, 2002). For example, it has been 377 reported that fungal denitrification produced up to 89% of N₂O in a grassland soil (Laughlin & 378 Stevens, 2002). 379

380 Compared to BB, SG had higher absolute and relative abundances of AOB and *nirS*-type

nitrite-reducing bacteria as well as the absolute abundance of *nirK*-type nitrite-reducing bacteria,
which may have been due to the higher pH under SG observed in our study. Differences in SOC
quality due to different grass root exudates may also result in altered distribution of N-cycling
microbial populations (Strauss & Lamberti, 2002).

The seasonal dynamics of N-cycling microbial community at the genetic level was affected 385 by grass species and N fertilization rate, but the N-cycling microbial community at 386 387 transcriptional level only varied with growing season, which may reflect functional stability/redundancy of N-cycling populations in native C₄ grass systems. However, the higher 388 statistical dispersion of the N-cycling microbial community at the transcriptional level rather 389 than at the genetic level suggested that the activity of N-cycling microbial communities may be 390 driven by more complex environmental factors in this native C₄ grass system, such as climatic 391 392 and edaphic factors. The lack of significant correlation between gene expression and biochemical processes observed in our study was reported in a previous study as well (Rocca et al., 2015). 393 The lack of relationship may be due to 1) the faster degradation and turnover of RNA compared 394 to DNA in environment; 2) expression of functional genes is strongly dependent on the complex 395 environmental conditions encountered by the organism. Therefore, both genetic level and 396 transcriptional level study are essential because gene abundance at genetic level can reflect long-397 term functional potential whereas gene expression at transcriptional level can be used to track 398 short-term/real-time processes. 399

400

401 **Conclusions**

In summary, our results showed that the dynamics, distribution patterns, abundances, and expression of some key N-cycle functional genes were affected by N fertilization rate and C_4 grass species. Excessive N fertilization did not promote the abundance and activity of N-cycling microbes, except for ammonia oxidizing bacteria (AOB), and instead, may have negative effects compared to moderate N addition. Compared to BB, the soils associated with SG contained a higher population size of AOB and nitrite-reducing bacteria. In addition, the significant

408 interaction of sampling season, grass species, and N fertilization rate on N-cycling population

distribution by functional potential (genetic-level) rather than by functional activity

410 (transcriptional-level) indicated relative stability in the functional capacity of N-cycling

411 populations in native C_4 grass systems.

412

413 Acknowledgements

The authors are grateful to B.J. Delozier, Cody Fust, Nicholas Tissot, Charles Summey, and
Bobby Simpson and the staff of the East Tennessee Research and Education Center who
managed and maintained the field trials, Sreejata Bandopadhyay for field sampling, Sutie Xu,
Shikha Singh and Surendra Singh for data collection, and Mallari Starrett and Tori Beard for
assistance in the laboratory.

Manuscript to be reviewed

420 **References**

421	Bárta, J., Melichová, T., Vaněk, D., Picek, T., & Šantrůčková, H. (2010). Effect of pH and dissolved organic matter on
422 423	the abundance of <i>nirK</i> and <i>nirS</i> denitrifiers in spruce forest soil. <i>Biogeochemistry, 101</i> (1-3), 123-132. https://doi.org/10.1007/s10533-010-9430-9
424	Bergaust, L., Mao, Y., Bakken, L. R., & Frostegård, Å. (2010). Denitrification Response Patterns during the Transition
425	to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrous Oxide Reductase in
426	Paracoccus denitrificans. Applied and Environmental Microbiology, 76(24), 8285.
427	https://doi.org/10.1128/AEM.02434-10
428	Brejda, J. J. (2000). Fertilization of native warm-season grasses. <i>Native warm-season grasses: research trends and</i>
429	issues, 177-200. https://doi.org/10.2135/cssaspecpub30.c12 (CSSA Special Publications)
430	Brenzinger, K., Dörsch, P., & Braker, G. (2015). pH-driven shifts in overall and transcriptionally active denitrifiers
431	control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Frontiers
432	<i>in microbiology</i> , 6, 961. https://doi.org/10.3389/fmicb.2015.00961
433	Chapin, F. S., Matson, P. A., & Mooney, H. A. (2002). <i>Principles of terrestrial ecosystem ecology</i> . Springer, New
434	York, NY. https://doi.org/10.1007/b97397
435	Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S., Latty, E. F.,
436	Von Fischer, J. C., & Elseroad, A. (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in
437	natural ecosystems. Global Biogeochemical Cycles, 13(2), 623-645.
438	Colliver, B. B., & Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers.
439	Biotechnology Advances, 18(3), 219-232. https://www.ncbi.nlm.nih.gov/pubmed/14538109
440	Cusack, D. F., Silver, W., & McDowell, W. H. (2009). Biological nitrogen fixation in two tropical forests: ecosystem-
441	level patterns and effects of nitrogen fertilization. Ecosystems, 12(8), 1299-1315.
442	https://doi.org/10.1007/s10021-009-9290-0
443	Di, H. J., & Cameron, K. C. (2002). Nitrate leaching in temperate agroecosystems: sources, factors and mitigating
444	strategies. Nutrient Cycling in Agroecosystems, 64(3), 237-256. https://doi.org/10.1023/A:1021471531188
445	Dixon, R., & Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews: Microbiology, 2(8),
446	621-631. https://doi.org/10.1038/nrmicro954
447	Dobereiner, J., Day, J. M., & Dart, P. J. (1972). Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-
448	Azotobacter paspali association. Journal of general microbiology, 71(1), 103-116.
449	https://doi.org/10.1099/00221287-71-1-103
450	Duan, YF., Kong, XW., Schramm, A., Labouriau, R., Eriksen, J., & Petersen, S. O. (2017). Microbial N
451	transformations and N_2O emission after simulated grassland cultivation: effects of the nitrification
452	inhibitor 3,4-dimethylpyrazole phosphate (DMPP). Applied and Environmental Microbiology, 83(1),
453	e02019-02016. https://doi.org/10.1128/AEM.02019-16
454	Eady, R. R., & Postgate, J. R. (1974). Nitrogenase. Nature, 249(5460), 805-810. https://doi.org/10.1038/249805a0
455	Francis, G. S., Haynes, R. J., Speir, T. W., & Williams, P. H. (1995). The effects of a nitrification inhibitor on leaching
456	losses and recovery of mineralized nitrogen by a wheat crop after ploughing-in temporary leguminous
457	pastures. Fertilizer Research, 41(1), 33-39. https://doi.org/10.1007/BF00749518
458	Frijlink, M., Abee, T., Laanbroek, H., Boer, W., & Konings, W. (1992). The bioenergetics of ammonia and
459	hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Archives of Microbiology,

460	157(2), 194-199. https://doi.org/10.1007/BF00245290
461	Groffman, P. M., Eagan, P., Sullivan, W. M., & Lemunyon, J. L. (1996). Grass species and soil type effects on
462	microbial biomass and activity. <i>Plant and Soil, 183</i> (1), 61-67. https://doi.org/10.1007/BF02185565
463	Gupta, V. V. S. R., Zhang, B., Penton, C. R., Yu, J., & Tiedje, J. M. (2019). Diazotroph diversity and nitrogen fixation in
464	summer active perennial grasses in a Mediterranean region agricultural soil. Frontiers in Molecular
465	<i>Biosciences</i> , 6. https://doi.org/10.3389/fmolb.2019.00115
466	Hallin, S., Jones, C. M., Schloter, M., & Philippot, L. (2009). Relationship between N-cycling communities and
467	ecosystem functioning in a 50-year-old fertilization experiment. <i>The ISME Journal</i> , <i>3</i> (5), 597-605.
468	https://doi.org/10.1038/ismej.2008.128
469	Han, J., Shi, J., Zeng, L., Xu, J., & Wu, L. (2017). Impacts of continuous excessive fertilization on soil potential
470	nitrification activity and nitrifying microbial community dynamics in greenhouse system. <i>Journal of Soils</i>
471	and Sediments 17, 471–480. https://doi-org.prox.lib.ncsu.edu/10.1007/s11368-016-1525-z
472	Hansen, E. M., Eriksen, J., & Vinther, F. P. (2007). Catch crop strategy and nitrate leaching following grazed grass-
473	clover. Soil use and management, 23(4), 348-358. https://doi.org/10.1111/j.1475-2743.2007.00106.x
474	Hu, J., Jin, V. L., Konkel, J. Y. M., Schaeffer, S. M., Schneider, L. G., & DeBruyn, J. M. (2021a). Soil health
475	management enhances microbial nitrogen cycling capacity and activity. <i>mSphere</i> , 6(1), e01237-01220.
476	https://doi.org/10.1128/mSphere.01237-20
477	Hu, J., Richwine, J. D., Keyser, P. D., Li, L., Yao, F., Jagadamma, S., & DeBruyn, J. M. (2021b). Ammonia-oxidizing
478	bacterial communities are affected by nitrogen fertilization and grass species in native C4 grassland soils.
479	PeerJ, 9. https://doi.org/10.7717/peerj.12592
480	Hu, J., Richwine, J. D., Keyser, P. D., Li, L., Yao, F., Jagadamma, S., & DeBruyn, J. M. (2021c). Nitrogen fertilization
481	and native C_4 grass species alter abundance, activity, and diversity of soil diazotrophic communities.
482	<i>Frontiers in Microbiology</i> , 12, 675693. https://doi.org/10.3389/fmicb.2021.675693
483	Kastl, EM., Schloter-Hai, B., Buegger, F., & Schloter, M. (2014). Impact of fertilization on the abundance of
484	nitrifiers and denitrifiers at the root-soil interface of plants with different uptake strategies for nitrogen.
485	Biology and Fertility of Soils, 51(1), 57-64. https://doi.org/10.1007/s00374-014-0948-1
486	Kim, H., Lee, D. K., Voigt, T. B., Tian, G., & Yannarell, A. C. (2022). Agricultural practices of perennial energy crops
487	affect nitrogen cycling microbial communities. Applied Soil Ecology : A Section of Agriculture, Ecosystems
488	& Environment, 172, 104366. https://doi.org/10.1016/j.apsoil.2021.104366
489	Kobayashi, M., Matsuo, Y., Takimoto, A., Suzuki, S., Maruo, F., & Shoun, H. (1996). Denitrification, a novel type of
490	respiratory metabolism in fungal mitochondrion. The Journal of biological chemistry, 271(27), 16263-
491	16267. https://doi.org/10.1074/jbc.271.27.16263
492	Laughlin, R. J., & Stevens, R. J. (2002). Evidence for fungal dominance of denitrification and codenitrification in a
493	grassland soil. Soil Science Society of America Journal, 66(5), 1540-1548.
494	https://doi.org/10.2136/sssaj2002.1540
495	Levy-Booth, D. J., Prescott, C. E., & Grayston, S. J. (2014). Microbial functional genes involved in nitrogen fixation,
496	nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry, 75, 11-25.
497	https://doi.org/10.1016/j.soilbio.2014.03.021
498	Lindsay, E. A., Colloff, M. J., Gibb, N. L., & Wakelin, S. A. (2010). The abundance of microbial functional genes in
499	grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or
500	livestock exclusion. Applied and Environmental Microbiology, 76(16), 5547-5555.

501	https://doi.org/10.1128/AEM.03054-09
502	Luo, Y., Wang, C., Shen, Y., Sun, W., & Dong, K. (2019). The interactive effects of mowing and N addition did not
503	weaken soil net N mineralization rates in semi-arid grassland of Northern China. Scientific Reports, 9(1),
504	13457-13411. https://doi.org/10.1038/s41598-019-49787-6
505	Mao, Y., Yannarell, A. C., Davis, S. C., & Mackie, R. I. (2013). Impact of different bioenergy crops on N-cycling
506	bacterial and archaeal communities in soil. Environmental Microbiology, 15(3), 928-942.
507	https://doi.org/10.1111/j.1462-2920.2012.02844.x
508	Newell, L. (1968). Chemical composition of two warm-season prairie grasses in three environment 1. Crop Science,
509	8(3), 325-329. http://dx.doi.org/10.2135/cropsci1968.0011183X000800030019x
510	Ouyang, Y., Evans, S. E., Friesen, M. L., & Tiemann, L. K. (2018). Effect of nitrogen fertilization on the abundance of
511	nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biology and Biochemistry,
512	127, 71-78. https://doi.org/10.1016/j.soilbio.2018.08.024
513	Poll, C., Marhan, S., Ingwersen, J., & Kandeler, E. (2008). Dynamics of litter carbon turnover and microbial
514	abundance in a rye detritusphere. Soil Biology and Biochemistry, 40(6), 1306-1321.
515	Rasche, F., Knapp, D., Kaiser, C., Koranda, M., Kitzler, B., Zechmeister-Boltenstern, S., Richter, A., & Sessitsch, A.
516	(2011). Seasonality and resource availability control bacterial and archaeal communities in soils of a
517	temperate beech forest. The ISME Journal, 5(3), 389-402. https://doi.org/10.1038/ismej.2010.138
518	Rocca, J. D., Hall, E. K., Lennon, J. T., Evans, S. E., Waldrop, M. P., Cotner, J. B., Nemergut, D. R., Graham, E. B., &
519	Wallenstein, M. D. (2015). Relationships between protein-encoding gene abundance and corresponding
520	process are commonly assumed yet rarely observed. The ISME Journal, 9(8), 1693-1699.
521	https://doi.org/10.1038/ismej.2014.252
522	Rudisill, M. A., Turco, R. F., & Hoagland, L. A. (2016). Fertility practices and rhizosphere effects alter ammonia
523	oxidizer community structure and potential nitrification activity in pepper production soils. Applied Soil
524	Ecology, 99, 70-77. https://doi.org/10.1016/j.apsoil.2015.10.011
525	Smercina, D. N., Evans, S. E., Friesen, M. L., & Tiemann, L. K. (2020). Impacts of nitrogen addition on switchgrass
526	root-associated diazotrophic community structure and function. FEMS Microbiology Ecology, 96(12).
527	https://doi.org/10.1093/femsec/fiaa208
528	Soares, J. R., Cassman, N. A., Kielak, A. M., Pijl, A., Carmo, J. B., Lourenco, K. S., Laanbroek, H. J., Cantarella, H., &
529	Kuramae, E. E. (2016). Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation
530	options from N fertilization in a tropical soil. <i>Scientific Reports, 6</i> , 30349.
531	https://doi.org/10.1038/srep30349
532	Strauss, E. A., & Lamberti, G. A. (2002). Effect of dissolved organic carbon quality on microbial decomposition and
533	nitrification rates in stream sediments. Freshwater Biology, 47(1), 65-74. https://doi.org/10.1046/j.1365-
534	2427.2002.00776.x
535	Subbarao, G. V., Nakahara, K., Hurtado, M. P., Ono, H., Moreta, D. E., Salcedo, A. F., Yoshihashi, A. T., Ishikawa, T.,
536	Ishitani, M., Ohnishi-Kameyama, M., Yoshida, M., Rondon, M., Rao, I. M., Lascano, C. E., Berry, W. L., Ito,
537	O., & William, H. S. (2009). Evidence for biological nitrification inhibition in Brachiaria pastures.
538	Proceedings of the National Academy of Sciences, USA, 106(41), 17302-17307.
539	https://doi.org/10.1073/pnas.0903694106
540	Sun, R., Myrold, D. D., Wang, D., Guo, X., & Chu, H. (2019). AOA and AOB communities respond differently to
541	changes of soil pH under long-term fertilization. <i>Soil Ecology Letters</i> , 1(3-4), 126-135.

Manuscript to be reviewed

542	https://doi.org/10.1007/s42832-019-0016-8
543	Theodorakopoulos, N., Lognoul, M., Degrune, F., Broux, F., Regaert, D., Muys, C., Heinesch, B., Bodson, B., Aubinet,
544	M., & Vandenbol, M. (2017). Increased expression of bacterial <i>amoA</i> during an N ₂ O emission peak in an
545	agricultural field. Agriculture, Ecosystems & Environment, 236, 212-220.
546	https://doi.org/10.1016/j.agee.2016.12.002
547	Thompson, K. A., Deen, B., & Dunfield, K. E. (2018). Impacts of surface-applied residues on N-cycling soil microbial
548	communities in miscanthus and switchgrass cropping systems. Applied Soil Ecology : A Section of
549	Agriculture, Ecosystems & Environment, 130, 79-83. https://doi.org/10.1016/j.apsoil.2018.06.005
550	Wallenstein, M. D., Myrold, D. D., Firestone, M., & Voytek, M. (2006). Environmental controls on denitrifying
551	communities and denitrification rates: insights from molecular methods. Ecological Applications, 16(6),
552	2143-2152. https://www.ncbi.nlm.nih.gov/pubmed/17205893
553	Wang, C., Zheng, M., Song, W., Wen, S., Wang, B., Zhu, C., & Shen, R. (2017). Impact of 25 years of inorganic
554	fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil
555	Biology and Biochemistry, 113, 240-249. https://doi.org/10.1016/j.soilbio.2017.06.019
556	Wang, F., Chen, S., Wang, Y., Zhang, Y., Hu, C., & Liu, B. (2018). Long-term nitrogen fertilization elevates the activity
557	and abundance of nitrifying and denitrifying microbial communities in an upland soil: implications for
558	nitrogen loss from intensive agricultural systems. Frontiers in Microbiology, 9, 2424.
559	https://doi.org/10.3389/fmicb.2018.02424
560	Wang, J., Chadwick, D. R., Cheng, Y., & Yan, X. (2018). Global analysis of agricultural soil denitrification in response
561	to fertilizer nitrogen. Science of the Total Environment, 616-617, 908-917.
562	https://doi.org/10.1016/j.scitotenv.2017.10.229
563	Wedin, D. A., & Tilman, D. (1990a). Species effects on nitrogen cycling: A test with perennial grasses. Oecologia, 84,
564	433-441. https://doi.org/10.1007/BF00328157
565	Wedin, D. A., & Tilman, D. (1990b). Nitrogen cycling, plant competition, and the stability of tallgrass prairie
566	Proceedings of the twelfth North American prairie conference,
567	Xiang, X., He, D., He, JS., Myrold, D. D., & Chu, H. (2017). Ammonia-oxidizing bacteria rather than archaea
568	respond to short-term urea amendment in an alpine grassland. Soil Biology and Biochemistry, 107, 218-
569	225. https://doi.org/10.1016/j.soilbio.2017.01.012
570	Yang, Y., Zhao, J., Jiang, Y., Hu, Y., Zhang, M., & Zeng, Z. (2017). Response of bacteria harboring <i>nirS</i> and <i>nirK</i> genes
571	to different N fertilization rates in an alkaline northern Chinese soil. <i>European Journal of Soil Biology</i> , 82,
572	1-9. https://doi.org/10.1016/j.ejsobi.2017.05.006
573	Yé, L., Abbadie, L., Bardoux, G., Lata, JC., Nacro, H. B., Masse, D., de Parseval, H., & Barot, S. (2015). Contrasting
574	impacts of grass species on nitrogen cycling in a grazed Sudanian savanna. Acta Oecologica, 63, 8-15.
575 576	https://doi.org/10.1016/j.actao.2015.01.002
576	Yu, R., & Chandran, K. (2010). Strategies of <i>Nitrosomonas europaea</i> 19718 to counter low dissolved oxygen and
577	high nitrite concentrations. BMC Microbiology, 10, 70. https://doi.org/10.1186/1471-2180-10-70
578	

Table 1(on next page)

Effects of grass species and N fertilization rates on N-cycling gene and transcript abundances.

Results (*F* values) of mixed model ANOVAs (based on GLIMMIX procedure in SAS) testing effects of sampling time (Season), grass species (Grass), and N fertilization rate (N) on the relative (R) and absolute (A) abundances of N-cycle genes and transcripts. Significant models are indicated with bold font and asterisks.

- 1 **Table 1.** Results (*F* values) of mixed model ANOVAs (based on GLIMMIX procedure in SAS) testing effects of sampling time
- 2 (Season), grass species (Grass), and N fertilization rate (N) on the relative (R) and absolute (A) abundances of N-cycle genes and

3	transcripts. Significant models are indicated with bold font and asterisks.

		nifH		AOB ^a an	noA	nirK		nirS		nosZ		16S	
Factor		Gene	Transcrip t	Gene	Transcrip t	Gene	Transcrip t	Gene	Transcrip t	Gene	Transcrip t	Gene	Transcrip t
	R	32.70** *	12.87***	82.01 **	9.03***	23.59***	6.22**	21.44***	2.46	17.64***	1.82	-	-
Season	А	57.42** *	17.20***	91.22** *	17.20***	40.79** *	13.13***	61.48** *	5.38**	37.91** *	20.12***	16.63** *	2.23
	R	2.30	0.00	5.44*	0.33	1.82	1.10	4.18*	0.16	0.30	0.73	-	-
Grass	A	0.73	0.02	8.33**	0.67	5.88*	0.71	13.31** *	0.24	2.11	1.50	3.78	0.06
	R	0.62	2.26	24.39** *	8.97***	0.77	0.39	0.45	4.84*	0.68	0.59	-	-
Nitrogen (N)	А	0.43	2.31	15.72** *	8.30**	0.04	0.72	0.90	4.29*	0.00	4.39*	0.24	0.14
GC	R	0.48	1.75	0.79	1.89	0.17	1.08	0.27	0.63	0.37	1.36	_	_
Season×Grass	Α	0.41	1.15	1.56	0.92	0.93	0.44	0.84	0.83	1.95	0.81	1.30	0.59
CassanyN	R	0.44	2.61	0.86	4.37**	0.57	2.84*	0.58	1.53	0.21	1.34	-	-
Season×N	Α	0.17	1.88	0.34	3.33*	0.79	1.62	0.34	1.21	0.51	1.00	1.12	0.65
Courses	R	0.18	0.76	1.63	2.75	1.03	1.60	2.82	0.27	1.72	1.81	-	-
Grass×N	Α	1.55	0.13	1.13	1.44	3.05	0.07	7.51**	0.45	3.01	0.23	1.96	1.26
Season×Grass×	R	0.67	2.01	0.26	0.74	2.08	0.74	0.65	1.34	1.44	0.58	-	-
Ν	Α	0.44	1.22	0.25	0.48	0.48	0.46	0.52	0.90	0.28	0.57	0.35	0.34

4 Significance level: * *p*-value ≤ 0.05 ; ** *p*-value ≤ 0.01 ; *** *p*-value ≤ 0.001 .

5 ^aAOB, Ammonia oxidizing bacteria.

6

7

Table 2(on next page)

Effects of grass species and N fertilization on N-cycling communities.

Results of ANOSIM (Analysis of Similarities) examining the importance of the effects of sampling time (season), N application rate (nitrogen), and grass species (grass) on N-cycling microbial community functional potential, based on a Bray-Curtis distance matrix of abundances of 5 functional genes (*nifH*, *AOB amoA*, *nirK*, *nirS*, and *nosZ*).

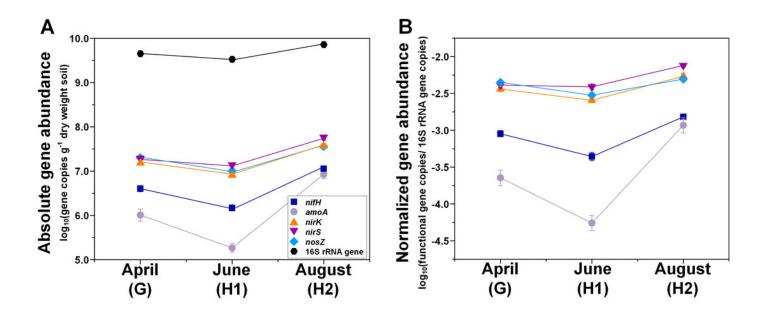
- 1 Table 2. Results of ANOSIM (Analysis of Similarities) examining the importance of the effects
- 2 of sampling time (season), N application rate (nitrogen), and grass species (grass) on N-cycling
- 3 microbial community functional potential, based on a Bray-Curtis distance matrix of abundances
- 4 of 5 functional genes (*nifH*, *AOB amoA*, *nirK*, *nirS*, and *nosZ*).

Factor	Genes		Transcripts		
	R	<i>p</i> -value [†]	R	<i>p</i> -value [†]	
Season	0.475	0.001	0.060	0.029	
Nitrogen	-0.018	0.700	0.017	0.220	
Grass	0.021	0.189	0.026	0.106	
Season×Grass	0.425	0.001	0.055	0.053	
Season×Nitrogen	0.342	0.001	0.069	0.068	
Nitrogen×Grass	-0.004	0.469	0.039	0.122	
Season×Nitrogen×Grass	0.384	0.001	0.051	0.199	

5 [†]Bold values indicate *p*-value ≤ 0.05 .

6

7


8

PeerJ

Figure 1

Seasonal dynamics of abundances of N-cycle genes (*nifH*, *amoA*, *nirK*, *nirS*, *nosZ*), and 16S rRNA genes.

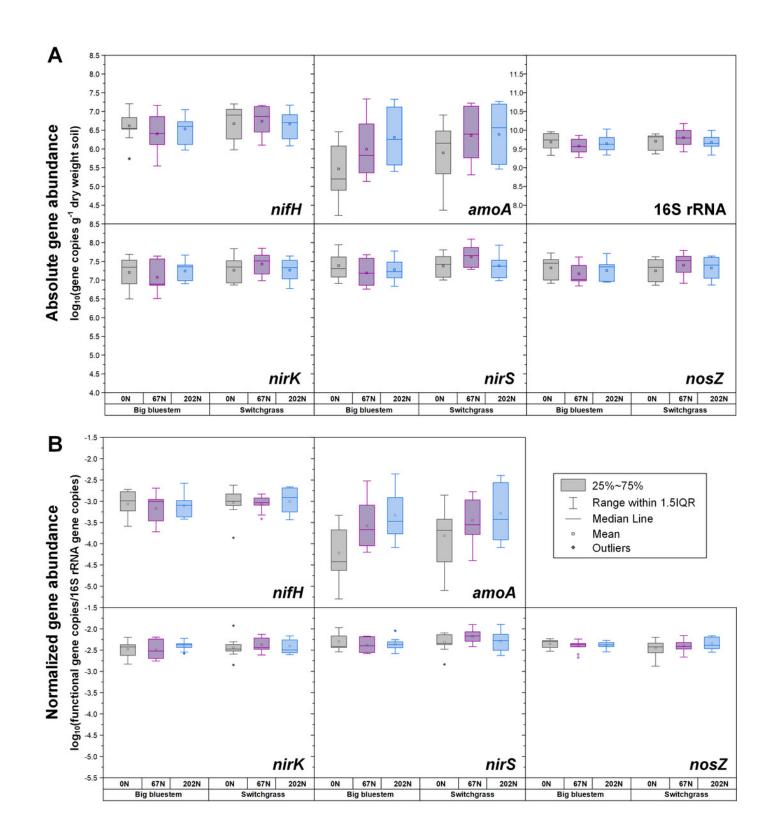
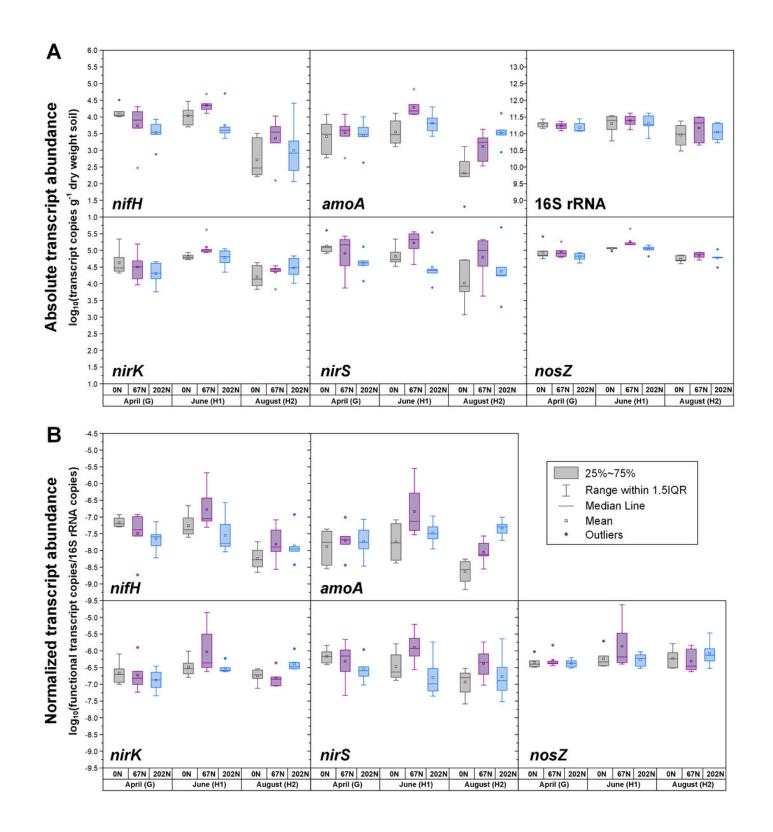

(A) Absolute abundances (per gram dry weight soil). (B) Relative abundances (normalized to 16S rRNA gene). Points represent the mean \pm standard error (n = 18). G, grass green up; H1, initial grass harvest; H2, second grass harvest.

Figure 2

Abundances of *nifH*, *amoA*, *nirK*, *nirS*, *nosZ*, and 16S rRNA genes in relation to N fertilization rate under two different grass species.

(A) Absolute abundances (per gram dry weight soil). *nifH* and *amoA* data are from Hu et al. 2021b and 2021c. (B) Relative abundances (normalized to 16S rRNA gene). 0N, no N fertilization; 67N, 67 kg N ha⁻¹ fertilization; 202N, 202 kg N ha⁻¹ fertilization.

PeerJ

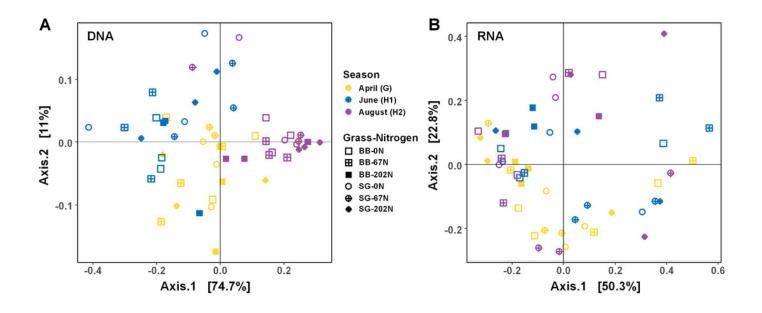

Figure 3

Seasonal dynamics of transcript abundances of *nifH*, *amoA*, *nirK*, *nirS*, *nosZ*, and 16S rRNA genes.

(A) Absolute abundances (per gram dry weight soil). *nifH* and *amoA* data are from Hu et al. 2021b and 2021c. (B) Relative abundances (normalized to 16S rRNA gene). 0N, no N fertilization; 67N, 67 kg N ha⁻¹ fertilization; 202N, 202 kg N ha⁻¹ fertilization; G, grass green up; H1, initial grass harvest; H2, second grass harvest.

PeerJ

Manuscript to be reviewed



PeerJ

Figure 4

Principle coordinate analysis (PCoA) of Bray-Curtis distances between N-cycling community functional profiles.

Functional profiles were based on relative abundances of five N-cycle genes (A) and transcripts (B). BB, big bluestem; SG, switchgrass; ON, no N fertilization; 67N, 67 kg N ha⁻¹ fertilization; 202N, 202 kg N ha⁻¹ fertilization.

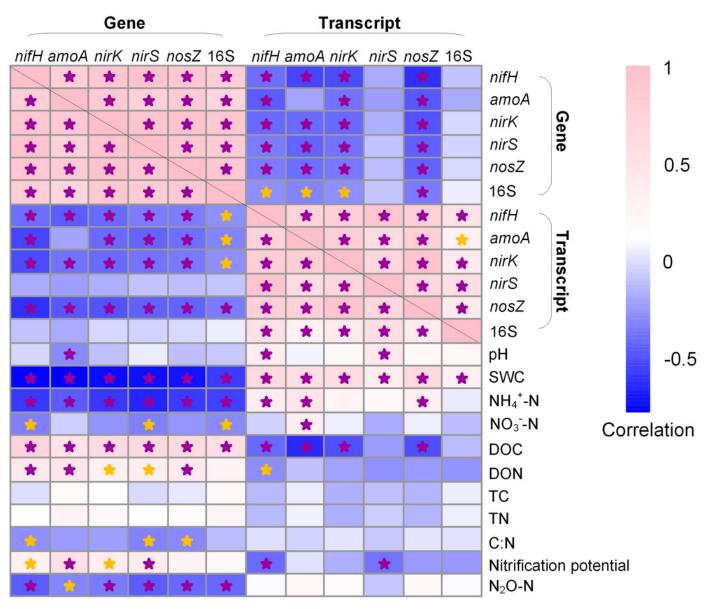


Figure 5

Heatmap showing Pearson correlation among genes, gene transcripts, and soil properties.

Soil physicochemical property data are from Hu et al. (2021b). SWC, soil water content; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; TC, total organic carbon; TN, total nitrogen. Stars indicate singificant correlations.

Manuscript to be reviewed

★ Correlation is significant at the 0.01 level

★ Correlation is significant at the 0.05 level