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Background: Biodiversity varies in space and time, and often in response to environmental
heterogeneity. Indicators in the form of local biodiversity measures – such as species richness or
abundance – are common tools to capture this variation. The rise of readily available remote sensing
data has enabled the characterization of environmental heterogeneity in a globally robust and replicable
manner. Based on the assumption that differences in biodiversity measures are generally related to
differences in environmental heterogeneity, these data have enabled projections and extrapolations of
biodiversity in space and time. However so far little work has been done on quantitatively evaluating if
and how accurately local biodiversity measures can be predicted.

Methods: Here I combine estimates of biodiversity measures from terrestrial local biodiversity surveys
with remotely-sensed data on environmental heterogeneity globally. I then determine through a cross-
validation framework how accurately local biodiversity measures can be predicted within
(“predictability”) and across similar (“transferability“) biodiversity surveys.

Results: I found that prediction errors can be substantial, with error magnitudes varying between
different biodiversity measures, taxonomic groups, sampling techniques and types of environmental
heterogeneity characterizations. And although errors associated with model predictability were in many
cases relatively low, these results question - particular for transferability - our capability to accurately
predict and project local biodiversity measures based on environmental heterogeneity. I make the case
that future predictions should be evaluated based on their accuracy and inherent uncertainty, and
ecological theories be tested against whether we are able to make accurate predictions from local
biodiversity data.
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12 Abstract

13 Background:

14 Biodiversity varies in space and time, and often in response to environmental heterogeneity. 
15 Indicators in the form of local biodiversity measures – such as species richness or abundance – 
16 are common tools to capture this variation. The rise of readily available remote sensing data has 
17 enabled the characterization of environmental heterogeneity in a globally robust and replicable 
18 manner. Based on the assumption that differences in biodiversity measures are generally related 
19 to differences in environmental heterogeneity, these data have enabled projections and 
20 extrapolations of biodiversity in space and time. However so far little work has been done on 
21 quantitatively evaluating if and how accurately local biodiversity measures can be predicted. 
22 Methods:

23 Here I combine estimates of biodiversity measures from terrestrial local biodiversity surveys 
24 with remotely-sensed data on environmental heterogeneity globally. I then determine through a 
25 cross-validation framework how accurately local biodiversity measures can be predicted within 
26 (“predictability”) and across similar (“transferability“) biodiversity surveys. 
27 Results:

28 I found that prediction errors can be substantial, with error magnitudes varying between different 
29 biodiversity measures, taxonomic groups, sampling techniques and types of environmental 
30 heterogeneity characterizations. And although errors associated with model predictability were in 
31 many cases relatively low, these results question - particular for transferability - our capability to 
32 accurately predict and project local biodiversity measures based on environmental heterogeneity. 
33 I make the case that future predictions should be evaluated based on their accuracy and inherent 
34 uncertainty, and ecological theories be tested against whether we are able to make accurate 
35 predictions from local biodiversity data.
36

37 Introduction

38 Local biodiversity on land is known to vary with environmental heterogeneity (Hillebrand, 2004; 
39 Stein & Kreft, 2015; Holt et al., 2017), often quantified as difference in availability and 
40 variability of resources. These resources include the diversity of habitats and landscapes, or the 
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41 availability and structural complexity of vegetation or rocks (Stein & Kreft, 2015). Several 
42 theories have been postulated as possible source of the relationship of environmental 
43 heterogeneity with local biodiversity. These include, among others, the widely tested species-
44 energy (Hurlbert, 2004; Evans, Warren & Gaston, 2005; Duncan et al., 2015), the species 
45 spectral-heterogeneity (Oldeland et al., 2010; Rocchini et al., 2010) or the species-geodiversity 
46 hypotheses (Alahuhta, Toivanen & Hjort, 2020). However, despite a number of global meta-
47 analyses on the relationship between environmental heterogeneity and local biodiversity for 
48 plant, bird and mammal species (Stein, Gerstner & Kreft, 2014; Duncan et al., 2015), it has 
49 rarely been comprehensively investigated how predictable and transferable these relationships 
50 are, especially across taxonomic and functional groups and different biodiversity measures more 
51 generally.
52 Predictions made by statistical models are key for our understanding of the living world 
53 and for the creation of outputs relevant for conservation management (Miller et al., 2004; 
54 Houlahan et al., 2017). Because of the evermore increasing demand for scenarios and spatial 
55 maps by policy makers and land managers, biodiversity modellers often need to rely on inter- 
56 and extrapolations of model predictions across space and time (Miller et al., 2004). These 
57 predictions need to be precise and accurate enough for the context and decisions they are meant 
58 to inform (Santini et al., 2021). Thus model predictions should be investigated for their 
59 predictability, e.g. a model’s ability to accurately predict correlative relationships within the 
60 same spatial and/or temporal context by withholding some parts of the data (as in cross-
61 validation procedures), and transferability, e.g. the capacity to produce accurate predictions for 
62 conditions dissimilar to those of the data for which a model was trained (Petchey et al., 2015; 
63 Yates et al., 2018; Tredennick et al., 2021). And yet, model predictability and transferability is 
64 rarely consistently assessed and, when studied in more detail, results rarely look promising.
65 There is increasing evidence that models using variables of environmental heterogeneity, 
66 e.g. soil condition, vegetation cover or microclimate, often fail to accurately predict and transfer 
67 biodiversity environment relationships. Studies have found that the predictability of local 
68 biodiversity as function of a difference in environmental heterogeneity are highly variable 
69 between geographic regions (Phillips, Newbold & Purvis, 2017) and local contexts (Duncan et 
70 al., 2015; Jung et al., 2017). Similarly, transferability of model predictions to spatial or 
71 temporally distinct regions has long been recognized as key issue for species distribution models 
72 (Zurell, Elith & Schröder, 2012; Mesgaran, Cousens & Webber, 2014; Regos et al., 2019) or 
73 models using local and regional biodiversity measures (Parmentier et al., 2011; Schmidtlein & 
74 Fassnacht, 2017). Despite the development of techniques for assessing the novel parameter space 
75 of a model (Zurell, Elith & Schröder, 2012; Meyer & Pebesma, 2021), the limited uptake of 
76 modellers to evaluate and present model uncertainty can hinder the application and affect trust in 
77 biodiversity model predictions (Rapacciuolo, 2019).
78 An outstanding issue for assessing predictability and transferability of local biodiversity 
79 environment relationships in macroecological studies has been the various ways in which 
80 environmental heterogeneity is quantified (Stein & Kreft, 2015). Recent advances in remote 
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81 sensing and cloud-processing have enabled the robust quantification of environmental 
82 heterogeneity at high spatial and temporal resolution (Gorelick et al., 2017; Randin et al., 2020). 
83 Through repeated satellite observations, measures of environmental heterogeneity, such as 
84 differences in photosynthetic activity or spectral variability as proxies for vegetation cover, 
85 vegetation condition and structure and overall variability of land surfaces (Rocchini et al., 2010; 
86 Radeloff et al., 2019), can be robustly quantified. On their own they can be considered 
87 continuous representations of contrasts in land cover and land use (Hansen et al., 2000; Jung, 
88 Scharlemann & Rowhani, 2020), while also being related to key species population processes 
89 (Pettorelli et al., 2005). Although those measures are not the only type of environmental 
90 heterogeneity (Stein, Gerstner & Kreft, 2014), they can be exogenously quantified for different 
91 points in term and have often been incorporated in statistical models for the prediction of species 
92 distributions (Cord et al., 2013; He et al., 2015) or to infer differences in local biodiversity 
93 measures (Oldeland et al., 2010; Goetz et al., 2014; Rocchini, Hernández-Stefanoni & He, 2015; 
94 Jung et al., 2019; Jung, Scharlemann & Rowhani, 2020). Remote sensing data can therefore – 
95 opposed to study-specific predictor variables commonly included in ecological meta-analysis – 
96 serve as a globally consistent predictor for studies of biodiversity environment relationships 
97 (Duncan et al., 2015). With the availability of new global databases on local biodiversity in-situ 
98 observations (Hudson et al., 2017), it has become possible to investigate predictability and 
99 transferability of biodiversity environment relationships in greater detail than what has been done 

100 so far.
101 There are a number of shortcomings in previous analyses on the predictability and 
102 transferability of local biodiversity environment relationships. Most studies have (a) focussed on 
103 effect sizes among studies (e.g. strength of inference), rather than the predictability and 
104 transferability of this relationships (Tredennick et al., 2021), (b) tended to focus mostly on 
105 species richness (Stein, Gerstner & Kreft, 2014), thus ignoring other biodiversity measures such 
106 as abundance or differences in species assemblage composition, (c) used variables of varying 
107 origin to capture effects of changes in environmental heterogeneity on biodiversity (Supp & 
108 Ernest, 2014; Shackelford et al., 2017) or have (d) focussed only on regional extents and single 
109 taxonomic groups such as birds, butterflies or plants (Kerr, Southwood & Cihlar, 2001; Oldeland 
110 et al., 2010; Goetz et al., 2014; Schmidtlein & Fassnacht, 2017). Quantitatively addressing these 
111 issues is key, if we are to understand in which cases spatial and/or temporal predictions of local 
112 biodiversity measures are reliable and accurate. 
113 In this study I investigate the predictability and transferability of model-based predictions 
114 on local biodiversity environment relationships. The expectation is that (i) predictability is 
115 generally stronger than transferability, (ii) transferability of species-environment relationships 
116 affects some biodiversity measures and taxonomic groups are less transferable than others, and 
117 that (iii) unexplained variation is predominantly linked to differences in study design, e.g. spatial 
118 scale and sampling duration. To test this, I combine local biodiversity data from globally 
119 distributed surveys with remotely-sensed environmental predictors quantifying photosynthetic 
120 activity (Evans, Warren & Gaston, 2005; Stein, Gerstner & Kreft, 2014; Duncan et al., 2015) and 
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121 spectral variability (Rocchini et al., 2010); predictors that represent a continuous characterization 
122 of resource availability, habitat condition and land surface modifications. Using variations of 
123 linear models, I assess the predictability, quantified as overall and within-study reduction in 
124 prediction error, and transferability, quantified as reduction in prediction error between different 
125 studies of comparable study design but identical taxonomic groups (Figure 1). The aim of this 
126 work is thus to provide further insights into the generality of local biodiversity-environment 
127 relationships at a global scale, which hopefully stimulates a debate on whether predicted local 
128 biodiversity measures, such as total site-based abundance or richness, can accurately be predicted 
129 or transferred to unsampled regions.

130

131 Materials & Methods

132 Biodiversity data preparation

133 For data on biodiversity I took species assemblage data from the global Projecting Responses of 
134 Ecological Diversity In Changing Terrestrial Systems (PREDICTS) database (Hudson et al., 
135 2017), which contains records of species occurrence and abundance at spatial-explicit sites 
136 ‘sites’ as reported in published ‘studies’. PREDICTS includes only studies which differ in ‘land-
137 use’ and/or ‘land-use intensity’ and have spatial and temporal information associated with them, 
138 e.g. sampling extent and date of sampling (Hudson et al., 2014). Studies in the PREDICTS 
139 database vary widely in study properties, notably in taxonomic coverage (studies contain data on 
140 terrestrial species of invertebrates, plants, birds, mammals, reptiles and amphibians), spatial grain 
141 (0.05 – 39,150m, median = 60m), sampling start (1984 - 2013), sampling effort (>0 – 4,382 days, 
142 median = 91 days) and methodology (flight traps, transects,…). Owing to these differences, a 
143 hierarchical modelling framework is usually necessary when analysing biodiversity estimates 
144 from databases such as PREDICTS (Purvis et al., 2018).
145 For each study j and site  in the PREDICTS database, I calculated four different site-𝑖
146 based measures of local biodiversity: total Species richness ( ), total log-transformed abundance Si

147 ( , the arcsine square root transformed probability of interspecific encounter as measure log10 Ai)

148 of assemblage evenness ( ) and the logit transformed pairwise Sørensen similarity sin
‒ 1 PIEi

149 index as measure of difference in assemblage composition ( ). Similar to previous logit SIMi ‒ i
n

150 studies I assumed that, in the few cases where within-study study effort differs among sites, the 
151 abundance of species individuals increases linearly with sampling effort (Newbold et al., 2015). 
152 In cases where the sampling extent of a site is missing in the PREDICTS database, I 
153 approximated the mean sampling extent using a heuristic that fills missing estimates with the 
154 average used within studies of the same sampling method and/or taxonomic group. Earlier work 
155 has shown that this approximation can accurately fill missing sampling extents (Jung et al., 
156 2019). Lastly, I created, based on the taxonomic group and sampling method attributed to a study 
157 in the PREDICTS databased, a new factor variable that groups studies of comparable method, 
158 unit and broad taxonomic grouping (SI Table 1), such as for instance studies involving bird 

PeerJ reviewing PDF | (2022:05:73387:0:0:NEW 3 May 2022)

Manuscript to be reviewed



159 individuals that were counted using point counts. I realize that not all differences in sampling 
160 techniques can attributed to this new contrast between sites and therefore post-hoc analyse the 
161 contribution of differing sampling methods in explaining the cross-validated model error (see 
162 statistical analysis).

163 Environmental predictors

164 In this work I exclusively used remotely-sensed environmental predictors, photosynthetic 
165 activity and spectral variability, which are (1) available at medium to high spatial resolution, (2) 
166 consistently quantified at global extent in comparable units, (3)temporally explicit, often 
167 differing between years, (4) correlate with differences in local biodiversity (Duncan et al., 2015; 
168 Jung et al., 2019) and land use (Mueller et al., 2014; Yin et al., 2014). These predictors can be 
169 considered proxies of resources available to species (Pettorelli et al., 2005) as well as 
170 characterizing differences in local habitat and land surface conditions on a continuous scale 
171 (Rocchini et al., 2010; Jung et al., 2019; Randin et al., 2020). It should be noted that the aim of 
172 this work is not identify best possible predictors of local biodiversity, but rather to evaluate most 
173 commonly used ones for their predictability and transferability.
174 For each site in the PREDICTS databases, I calculated two different remotely sensed 
175 predictors that reflect environmental heterogeneity. First, 16-day time series of atmospherically 
176 corrected spectral observations (MCD43A v006, [Schaaf et al. 2002]) from the Moderate 
177 Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites 
178 were downloaded for each PREDICTS site from Google Earth Engine (Gorelick et al., 2017). 
179 Time series of remotely sensed spectral observations often have data gaps caused by clouds or 
180 sensor errors. To reduce the number of data gaps, I first aggregated (arithmetic mean) the 
181 obtained time series to monthly estimates for each spectral observation (band 1 to 7). The overall 
182 proportion of missing data in the aggregated time series was low (mean: 5.9% ± 10.5 SD), 
183 nevertheless I subjected the aggregated time series to a missing value imputation using a Kalman 
184 smoother on the whole time series (Hyndman & Khandakar, 2008) as implemented in the 
185 ‘imputeTS’ R package (Moritz & Bartz-Beielstein, 2017). Whenever the imputation did not 
186 converge, a linear interpolation was used to impute missing observations among years. Only data 
187 gaps smaller than five months were filled in that manner and sites with six or more missing 
188 months were excluded from subsequent analyses. From the full time series, I then selected for 
189 each site the first year (12 months) of data preceding biodiversity sampling as representation of 
190 environmental heterogeneity (Jung et al., 2019). 
191 Second, I calculated from the remaining time series of spectral observations, as proxy of 
192 overall photosynthetic activity, the arithmetic mean of the two-band Enhanced Vegetation Index 
193 (EVI, Jiang et al. 2008). Photosynthetic activity approximates the condition, structure and 
194 availability of plant biomass. Variations in photosynthetic activity have previously been shown 
195 to reflect continuous gradients in land cover (Huete et al., 2002; Radeloff et al., 2019) and 
196 directly influence local biodiversity measures and life history (Pettorelli et al., 2005; He, Zhang 
197 & Zhang, 2009; Oldeland et al., 2010; Jung et al., 2019; Jung, Rowhani & Scharlemann, 2019). 
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198 Furthermore, I also calculated a measure of overall spectral variability from the satellite sensor 
199 data (Rocchini et al., 2010; Rocchini, Hernández-Stefanoni & He, 2015; Randin et al., 2020). 
200 Spectral variability is expected to give a more nuanced view on land surface conditions than any 
201 single vegetation index, given that it utilizes not two but all spectral bands of the satellite 
202 (Rocchini et al., 2010). To capture spectral variability, I first calculated a principal component 
203 analysis of all spectral observations (bands 1-7) and then calculated from the first two axes, 
204 which on average explained 93% ± 5.92 SD of all variation, the centroid of the resulting 
205 bivariate scatter plot. Spectral variability per site was then summarized as the mean Euclidean 
206 distance to this centroid. Both environmental predictors, photosynthetic activity and spectral 
207 variability are only weakly correlated (Pearson’s r = -0.21, SI Figure 1). In total 21821 sites had 
208 suitable remote sensing data for subsequent analyses, with the remainder (4028 sites) being 
209 sampled either too long ago for sufficient remote sensing coverage from MODIS (2000 onwards) 
210 or having too many data gaps.

211 Statistical analysis

212 In the context of this work, ‘predictability’ is defined as the ability to accurately infer a 
213 biodiversity measure  based on the environmental covariates  among the sites i of a 𝑦𝑖𝑗 𝑥𝑖𝑗
214 PREDICTS study j (Figure 1b), and ‘transferability’ as the ability to accurately predict  based 𝑦𝑖
215 on the environmental covariates  across studies of the same sampling methodology and 𝑥𝑖
216 taxonomic group (Figure 1c). 
217 In both predictability and transferability variants prediction accuracy is assessed by 

218 calculating for each study the symmetric mean absolute percentage error (  = sMAPEj

100

n
 

219 ) between the observed biodiversity measures ( ) and the ones ∑I

i = 1|
ypredicted ‒  yobserved

(|yobserved| +  |ypredicted|)| yobserved

220 predicted by the model (  for a given site i. The sMAPE quantifies the percentage error ypredicted)

221 in a model prediction and is bounded between 0 and 100%. Alternative metrics to quantify 
222 prediction precision and accuracy exists, however in this case the sMAPE is preferrable for 
223 PREDICTS style data owing to its simplicity and inter-comparability between studies that use 
224 biodiversity measures of different units and value ranges.
225 I constructed separate models for each study j and biodiversity measure  in site i, by assuming 𝑦
226 that , where  is the study specific intercept,  a slope coefficient, x the yi =  αi +  βixi + ϵ α 𝛽
227 environmental predictor and  an error term. Models of  were assumed to have Poisson ϵ Si

228 distributed errors and a log-link function ( ), while models of ,  and were log y Ai PIEi SIMi ‒ i
n

229 assumed to have Gaussian distributed errors. Pairwise similarities in species composition 
230 (Sorensen Index) were related to differences in environmental predictors x in addition to pairwise 
231 distance between sites, calculated as ) from great circle distances between log10(x + 0.05 km

232 sites. Here I calculated pairwise absolute difference in mean photosynthetic activity or between 
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233 spectral centroids of each site (see environmental predictors). For each constructed full model I 
234 furthermore calculate an R² measure as indication of overall variance explained.
235 To evaluate the predictability and transferability of local biodiversity environment 
236 relationships, I constructed in total ten permutation sets, in each of which sites were split into 
237 testing (33%) and training (66%) datasets. For evaluating predictability, I removed one third of 
238 sites (33%) at random (Figure 1b), but weighted them by the mean distance to the study centroid, 
239 therefore placing extra weight on sites that are less likely to be in close proximity (Roberts et al., 
240 2017). For transferability, instead of individual sites, I sampled and removed 33% of entire 
241 studies and their sites from each set of comparable methodology in the PREDICTS database 
242 (Figure 1c, methods above). However across all ten permutation sets, I iteratively weighted (0-1) 
243 this sampling by whether a given study has been sampled before, therefore ensuring that each 
244 study is part of both testing and training dataset at least once. 
245 For each respective permutation set, predictability and transferability was then evaluated 
246 by using the remaining training data to estimate the regression specified above for each study or 
247 group of comparable methodology. I excluded combinations of taxonomic groups, sampling 
248 method and sampling unit for which fewer than 2 studies where available. In total 77.3% of all 
249 studies had a matching study of comparable methodology and unit for the same taxonomic 
250 group. A table with all recategorized combinations (43) can be found in the supplementary 
251 materials (SI Table 1). Using the fitted models I predicted y for the excluded ‘hold-out’ 33% 
252 sites and then calculated the average sMAPE for each study in the permutation sets. 
253 Lastly, I explored possible correlates of why sMAPE for some studies is larger than for others 
254 for each of the four considered biodiversity measures. I considered a series of variables 
255 commonly related to differences in sampling design, species and individual detectability and 
256 errors in remotely-sensed environmental predictors. Specifically, I calculated for each study in 
257 the permutation sets, the median sampling extent (m) as measure of sample grain, the median 
258 sampling duration (days) of the study, the number of sites with a study as measure of effort for 
259 the whole study, the average number of samples across sites as effort for area-based sampling 
260 effort or the average time sampled (hours) for time-based sampling effort, average accessibility 
261 to sites in the study (distance to nearest city in meters) from Weiss et al. (2018), and finally 
262 factors related to possible errors in remotely-sensed environmental variables, including the 
263 amount of missing data (before gap filling) and the average topographic ruggedness per study 
264 using data from Amatulli et al. (2018). To make comparisons across these different units and 
265 scales, I standardized all variables before model fitting by subtracting the mean and dividing by 
266 one standard deviation. 
267 I fitted linear models allowing partial pooling among studies j (Harrison et al., 2018) by 
268 adding a random intercept  in addition to the overall intercept, e.g. αk 𝑆𝑀𝐴𝑃𝐸j =  α +  αk +  βj

269 . These kind of models can borrow strength among studies by shrinking individual xj + ϵ
270 estimates towards an overall population-wide average (Purvis et al., 2018; Harrison et al., 2018). 
271 As random intercept k I used the methodology specific grouping (see methods and SI Table 1) 
272 thus pooling possible correlates among studies of similar methodology. I fitted all possible 
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273 combinations between the above mentioned variables, including an interaction between sampling 
274 extent and sampling effort, finally constructing an average ensemble model of the 5% best 
275 performing models. Models were fitted in lme4 (Bates et al., 2015) using the ‘MuMIn’ package 
276 in R for model averaging (Bartoń, 2015).

277

278 Results

279

280 The explanatory power of environmental predictors – photosynthetic activity and spectral 
281 variability – in explaining differences in biodiversity varied across biodiversity measures and 
282 individual studies. Models fitted with photosynthetic activity explained on average slightly more 
283 variance than models fitted with spectral variability, the former having an average R² of 0.21 (± 
284 0.285 SD) compared to an average R² of 0.19 (± 0.284 SD) in the latter. There was considerable 
285 variation of R² values across studies and biodiversity measures (Figure 2), with species richness 
286 on average being best explained by photosynthetic activity (R²=0.246 ± 0.311 SD) or spectral 
287 variability (R²=0.22 ± 0.306 SD). Notably, correlations with species abundance were particularly 
288 low, with the R² being close to 0 (R² < 0.001) for more than a quarter of all studies (Figure 2). 
289 Meanwhile the difference in explained variance between models using photosynthetic activity 
290 compared to spectral variability was lowest for differences in assemble composition (Pearson’s R 
291 = 0.922). There were no obvious spatial (SI Figure 2) or directional patterns (SI Figure 3) in the 
292 average explained variance, although some studies notably had high explanatory power 
293 regardless of the considered biodiversity measure (SI Figure 2).
294

295 When applying local biodiversity models to known (‘Predictability’) or different 
296 (‘Transferability’) contexts, the main issue is how accurately such models can predict local 
297 biodiversity measures in unknown situations based on the covariates of interest (Figure 3). 
298 Regardless of whether remotely-sensed photosynthetic activity or spectral variability was used as 
299 covariate, linear models were reasonably accurate for known contexts in inferring species 
300 richness (sMAPE of 19.1%), abundance (11.8%) and evenness (10.3%), but less so when 
301 inferring differences in species assemblages (49.3%). Errors in predicting local biodiversity to 
302 different contexts were expectedly larger (Figure 3), whereas particular species richness could be 
303 extrapolated relatively poorly (relative error 43.3%) similarly to differences in species 
304 assemblages (67.9%), compared to abundance (25.4%) or evenness (14.3%). Notably, when 
305 local biodiversity models are used to extrapolate richness to different contexts, the sMAPEwas 
306 larger than 50% in 35% of all studies, compared to 8.1% and 4.7% for abundance and evenness 
307 (Figure 3).  
308 There were also considerable differences in prediction error, as quantified by the sMAPE, among 
309 taxonomic groups. Across taxonomic groups and biodiversity measures the sMAPE was larger 
310 when predictions were extrapolated to novel contexts compared to predictability, particularly so 
311 for reptiles (ΔsMAPE=21.3%) and mammals (ΔsMAPE=20.8%), with the greatest difference 
312 being for reptile species richness (ΔsMAPE=33%) and abundance (ΔsMAPE=28%). The 
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313 transferability of fungi (sMAPE=7.5%), and bird (sMAPE=9.1%) assemblage evenness was 
314 overall the lowest, while predictability was best for evenness and abundance of fungi 
315 (sMAPE=5.11%) and plants (sMAPE = 9.65%). Fungi and Plants had across biodiversity 
316 measures the lowest sMAPE in predictability and transferability (Figure 4). Overall, assemblage 
317 composition of vertebrates was the most poorly predicted with sMAPE estimates well over 50% 
318 throughout (Figure 4).
319 I also explored across studies which factors helped explain differences in prediction error, as 
320 quantified by the sMAPE (Figure 5). Across biodiversity measures, having a greater number of 
321 samples per site most effectively reduced the sMAPE (Δβ=-3.14) for transferability, and so did 
322 sample duration but to a lesser degree (Δβ=-0.98). Meanwhile a greater number of sites per study 
323 on average increased the sMAPE (Δβ=2.23). Patterns of comparison results were broadly similar 
324 between transferability (Figure 5) and predictability (SI Figure 5), although notably a study being 
325 more accessible resulted in an average larger reduction in the sMAPE (Δβ=-1.02) for 
326 predictability (SI Figure 5). Overall variance explained by these factors in the average model was 
327 relatively low (  = 0.08, ).𝑅²𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅²𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =  0.14

328

329 Discussion

330 In this work I comprehensively evaluate the predictability and transferability of biodiversity-
331 environment relationships, e.g. the ability of models to infer local biodiversity measures in 
332 known and novel contexts. Particular emphasis is placed on differences among biodiversity 
333 measures, taxonomic groups and sampling circumstances. I found that the explanatory power of 
334 biodiversity-environment was relatively low for most studies (Figure 2). This aligns with a 
335 previous meta-analysis that found that relationships between biodiversity measures and 
336 photosynthetic activity cannot always be established (Duncan et al., 2015). I also discovered that 
337 prediction errors are on average lowest for evenness and abundance, and, maybe unsurprisingly, 
338 generally larger when models predictions are transferred to novel contexts (Figure 3). 
339 Biodiversity measures of sessile organisms were on average more precisely predicted (Figure 4), 
340 although not by much with predictions errors generally larger than 25% compared to observed 
341 values, particularly so for differences in species assemblage composition. Overall these results 
342 shed some doubts on the predictability and transferability of biodiversity measures, although 
343 they have to be interpreted in the context of the individual studies (Figure 5) and ultimately in 
344 what is an acceptable accuracy to achieve with such predictions.
345 Indeed, it is not formerly defined what makes a prediction better or worse based on 
346 quantitative measures such as the cross-validated error metrics used in this study. According to 
347 Yates et al. (2018) ‘transferability’ is broadly defined as the capacity of a model to produce 
348 predictions for a new set of predictor values that differ from those on which the model was 
349 trained. Similarly predictability can be understood as the capacity of a model to infer held-out 
350 observations (Figure 1). In this context a good precision could be understood as a model that 
351 demonstrates transferability errors smaller or comparable to errors inherent in model inferences 
352 or that don’t exceed an apriori set threshold. I found that the predictability of local biodiversity 
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353 measures was overall reasonable good with errors being smaller than 25% in most cases (Figure 
354 3), although particularly differences in assemblage composition were poorly predicted. This 
355 might indicate that photosynthetic activity and spectral variability are useful predictors for 
356 quantifying differences in local biodiversity measures, although the variance explained varied 
357 considerably across studies (Figure 2). In contrast I found that errors associated with 
358 transferability of biodiversity measures can be considerable, exceeding 50% relative to the 
359 original measure for species richness and differences in assemblage composition in many studies 
360 (Figure 3). This is especially relevant, since a number of studies spatially extrapolated local 
361 biodiversity estimates, e.g. species richness or abundance, to unsampled areas based on 
362 environmental predictors (König, Weigelt & Kreft, 2017; Phillips et al., 2019; van den Hoogen et 
363 al., 2019). These approaches assume that local biodiversity-environment relationships are 
364 transferable to new, unsampled environments and the results by this work indicate that this often 
365 entails considerable errors. Ideally models are evaluated on their ability to accurately reproduce 
366 their data in novel contexts (Jung et al., 2017), quantify the uncertainty in doing so, or 
367 alternatively limit predictions to areas within the models applicability (Mesgaran, Cousens & 
368 Webber, 2014; Meyer & Pebesma, 2021). 
369 Biodiversity measures for certain taxonomic groups might be easier to predict than others owing 
370 to the dynamics, drivers and mechanisms underlying them (Magurran, 2004). Indeed previous 
371 studies have found species abundance to be stronger correlated with photosynthetic activity than 
372 other measures (Oldeland et al., 2010; Duncan et al., 2015). Similarly, I found that abundance-
373 based biodiversity measures – e.g. abundance and evenness – had overall lowest precision errors 
374 (Figure 3). A potential mechanism could be that a greater photosynthetic activity or spectral 
375 variability is indicative of resources available to species populations, facilitating population 
376 growth (Hurlbert, 2004; Pettorelli et al., 2006). While species richness had the largest average 
377 explained variance compared to other biodiversity measures, it performed considerably poorer 
378 when evaluated in predictions (Figure 3). Possibly, the processes underlying patterns of local 
379 species richness, such as colonization and extinction, might cause simple predictions to fail 
380 (Chase, 2003), unless the spatial-temporal dynamics of environmental predictors are taken into 
381 account (Fernández, Román & Delibes, 2016). Similarly, the fact that both predictability and 
382 transferability errors were on average lowest for more sessile organisms such as Fungi and Plants 
383 (Figure 4), likely indicates that similar important processes mediate biodiversity-environment 
384 relationships. Overall this study highlights the benefit of comparing relationships across a range 
385 of studies and biodiversity measures (Stein, Gerstner & Kreft, 2014; Duncan et al., 2015), 
386 revealing that biodiversity-environment relationships are not universally strong. 
387 Investigating as to what factors best explain prediction errors can help to improve future 
388 monitoring and modelling efforts. Among the most important factors that resulted in overall 
389 smaller prediction errors was the average number of samples per sites (Figure 5), which can be 
390 considered a simplified metric of sampling completeness. Given that errors were smaller for sites 
391 with many samples, it could be that many species communities in the PREDICTS database have 
392 not been comprehensively sampled, if one assumes that biodiversity-environment relationships 
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393 are strongest in equilibrium. There are ways to account for detectability and observation biases 
394 (Royle, Nichols & Kéry, 2005), which however was not feasible for the studies in the 
395 PREDICTS database given the heterogeneity of sampling information. Thus better standards for 
396 sampling techniques and monitoring are advisable to enable better comparability (Montgomery 
397 et al., 2021).
398 Interestingly, and in contrast to previous studies (Chase & Knight, 2013), differences in 
399 sample grain, e.g. the linear scale of sampling, did not help to explain why biodiversity measures 
400 could be better predicted in some studies. A likely explanation is that the contrasts between 
401 sampling extents are relatively small (most studies in the PREDICTS database were sampled at 
402 scales between ~1m and 4000m). Scale-dependent effects might only become apparent at spatial 
403 scales that go beyond the local scale. A spatial mismatch at the lower end, e.g. that the grain of 
404 the used MODIS data is too coarse to be matched to the extent of sampling in PREDICTS 
405 studies, could be another explanation, however previous studies that used very-high resolution 
406 satellite imagery (<10m) did not find much more accurate predictions than presented here 
407 (Dalmayne et al., 2013; Hofmann et al., 2017). Other, non-explored factors could further explain 
408 differences in prediction error, such as for instance preceding changes in environmental 
409 predictors (Jung et al., 2019; Jung, Rowhani & Scharlemann, 2019) or a better accounting of 
410 differences in species traits (Duncan et al., 2015; Regos et al., 2019). Future efforts could 
411 evaluate if inter- and intra-specific variability of species traits can be more precisely linked to 
412 differences in environmental heterogeneity.
413 In this work I used photosynthetic activity and spectral availability as measures of 
414 environmental heterogeneity, acknowledging that other characterizations of environmental 
415 variability (e.g. soil, micro-climate) could be more important (Stein & Kreft, 2015). The finding 
416 that prediction errors were lowest for plants and fungi could be related to the fact that 
417 photosynthetic activity is more closer related to the abundance of these taxa, than for other 
418 taxonomic groups, where only indirect correlations (resources for herbivores, differences in land 
419 cover) could be the most likely explanation. However focussing solely on remotely-sensed 
420 variables ensures global consistency and is frequently used to predict local biodiversity measures 
421 (Dalmayne et al., 2013; Hofmann et al., 2017; Randin et al., 2020). The key limitation is that 
422 environmental heterogeneity is not necessarily related to differences in land use and land-use 
423 intensity, for which the PREDICTS database was explicitly designed (Purvis et al., 2018). Indeed 
424 it could be that the potential of remotely sensed environmental heterogeneity in predicting local 
425 biodiversity measures has been exaggerated, and better characterizations of land use and its 
426 management from remote sensing have to be developed. Further, given the complexities of local 
427 species community assembly (Chase, 2003; Leibold et al., 2004), any claim that a direct 
428 prediction of ‘biodiversity’ through remotely-sensed proxies (Rocchini et al., 2016; Randin et al., 
429 2020) should thus be taken with a grain of salt. Remote sensers are at best able to measure 
430 changes in habitat extent or condition; and those changes do not necessarily correlate strongly 
431 with changes in biodiversity measures. Future work should ideally focus on the principal 
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432 mechanisms of species community assembly, their practical incorporation into models and how 
433 remote sensing can assist in capturing relevant predictors.

434

435 Conclusions

436

437 The findings presented in this study have particular implications for spatial projections of local 

438 biodiversity-environment relationships. Ecological models can and should be used for 

439 predictions (Houlahan et al., 2017; Tredennick et al., 2021), however caveats and limitations 

440 should be better identified, communicated and hopefully build upon. We need to create models 

441 that enable biodiversity-environment relationships to be more predictable across scales and 

442 novel contexts, especially when applied to conservation contexts (Santini et al., 2021). Given 

443 the considerable drops in precision for transferability, key recommendations from this work 

444 could be that spatial projections of local biodiversity measures at least provide estimates of 

445 uncertainty or limit their projections to areas of model applicability (Meyer & Pebesma, 2021). 

446 To improve future biodiversity predictions I further propose that models (a) should be evaluated 

447 comprehensively based on their ability to create accurate predictions, (b) account better for 

448 underlying hierarchies and sampling effects, (c) ensure that environmental predictors are 

449 quantified in a globally replicable and transparent way. Quantitative correlative models might not 

450 be the most precise in many situations, 451 but that does not invalidate their use if 

452 shortcomings are appropriately 453 communicated.

454
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Figure 1
Schematic of the analysis framework showing the distribution of two hypothetical
studies and their sites at which a biodiversity measure and environmental predictor has
been calculated.

(a) Hypothetical studies are coloured in orange and red and the Normalized Difference
Vegetation Index (NDVI) is shown as example of a remotely sensed environmental predictor.
Shown is a simplified procedure for investigating the (b) predictability and (c) transferability
of local biodiversity-environment relationships. For (b) ‘testing’ sites within a studies are
removed at random, regressions refitted and the within-study prediction error quantified in
relation to study properties. Contrastingly, in (c) regression fits from one study (orange) are
used to predict permuted biodiversity estimates in another study (red) that have been
removed (beige), with the prediction error quantified in relation to study properties.
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Figure 2
Explained variance (R²) calculated from models fitted between different biodiversity
measures and either photosynthetic activity or spectral variability.

Each point is an individual study in the PREDICTS database with point size indicating the
number of sites per study and the colour being a visual indication of density in the plot. A
map of the average R² per study and biodiversity measure can be found in SI Figure 2.
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Figure 3
Distribution of the symmetric mean absolute percentage error (sMAPE) of biodiversity
measures calculated from models using photosynthetic activity or spectral variability

Larger values (range 0 to 100) indicate a larger prediction error. Colours differentiate
between models that evaluate Predictability and Transferability (see Methods). Point error
ranges show the arithmetic mean and standard deviation of the sMAPE.
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Figure 4
Average error (sMAPE) across models for predictability and transferability.

Errors were averaged (lines indicating standard deviation) across models with different
biodiversity measures (shapes) and taxonomic group (colours). Shown only for models using
photosynthetic activity as predictor as spectral variability results were broadly comparable in
overall patterns (SI Figure 4).
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Figure 5
Averaged and standardized model coefficients of variables that best explain differences
in sMAPE.

Standardized coefficients smaller than zero indicate that increases in a given variable reduce
study-specific prediction errors, while coefficients greater than zero increase the error.
Shapes distinguish different biodiversity measures (as in Figure 3). Standardized coefficients
shown for transferability permutations only as predictability results follow similar patterns (SI
Figure 5).
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