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ABSTRACT
Aims. Studies have observed changes in autophagic flux in the adipose tissue of type
2 diabetes patients with obesity. However, the role of autophagy in obesity-induced
insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD)
on autophagy and insulin signaling transduction from adipose tissue to clarify whether
altered autophagy-mediated HFD induces insulin resistance, and to elucidate the
possible mechanisms in autophagy-regulated adipose insulin sensitivity.
Methods. Eight-week-old male C57BL/6 mice were fed with HFD to confirm the
effect of HFD on autophagy and insulin signaling transduction from adipose tissue.
Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50
nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of
Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and
24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy
in insulin signaling transduction.
Results. TheHFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon
expression, and C/EBP homologous protein (CHOP) expression, yet the insulin
capability to induce Akt (Ser473) and GSK3β (Ser9) phosphorylation were reduced.
PHLPP1 and PTEN remain unchanged after CQ injection. In differentiated 3T3-
L1 adipocytes treated with CQ, although the amount of phospho-Akt stimulated by
insulin in the CQ-treated group was significantly lower, CHOP expressions and cleaved
caspase-3 were increased and bafilomycin A1 induced less accumulation of LC3-II
protein.
Conclusion. Long-term high-fat diet promotes insulin resistance, late-stage autophagy
inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not
affect insulin signaling transduction via phosphatase expression but indirectly causes
insulin resistance through ER stress or apoptosis.
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INTRODUCTION
Although studies show that interaction of genetic and lifestyle factors cause type 2
diabetes (T2D), approximately 90% of people with T2D are overweight or obese (Copps
& White, 2012). Adipocyte hypertrophy in obesity will induce the impairment of insulin
sensitivity and the overexpression of some inflammatory cytokines that make the adipocyte
dysfunctional. The pathway begins with the activation of the insulin receptor tyrosine
kinase (IR) by insulin, which phosphorylates and recruits different substrate adaptors such
as the insulin receptor substrate (IRS) family of proteins. Tyrosine phosphorylated IRS
then displays binding sites for numerous signaling partners. Among them, PI3K has a
significant role in insulin function, mainly via the activation of the Akt/PKB and the PKC
cascades. Activated Akt induces glycogen synthesis by inhibiting GSK-3, protein synthesis
viamTOR and downstream elements, and cell survival by inhibiting several pro-apoptotic
agents. Akt phosphorylates and directly inhibits FoxO transcription factors. Inactivation
of the receptor responses has been reported as the underlying cause of impaired insulin
action (Copps & White, 2012). PH domain and leucine rich repeat protein phosphatase
(PHLPP) directly dephosphorylates AKT at its hydrophobic motif (Ser473). Additionally,
mutations in PTEN have been reported to cause insulin resistance and obesity (Pal et al.,
2012). NHERF1 binds directly to PTEN and PHLPP1/2 via the PDZ domain and scaffolds
ternary complexes at the membrane to suppress the activation of the PI3K–AKT pathway
(Molina et al., 2012).

Recent studies have indicated extracellular disturbances, such as excess nutrient
inflammation or hyperinsulinemia, cause intracellular stress in adipose tissues, which may
damage these cells’ ability to perform standard metabolic actions on insulin (Fazakerley et
al., 2019). Concerning these intracellular stresses, some studies have identified autophagy
as playing a vital role in regulation. Yin et al. (2015) showed that autophagy inhibition
caused severe ER stress in adipocytes and thus induced adaptive responses to extracellular
disturbances, attenuating insulin resistance deterioration (Zhou et al., 2009). Due to its
ability to suppress insulin receptor signaling, ER stress has been proposed as an important
factor in peripheral insulin resistance and type 2 diabetes (Ozcan et al., 2004).

During autophagosome biogenesis in macroautophagy, two ubiquitin-like systems, LC3
processing and Atg5-Atg12 conjugation, are associated with expanding the phagophore
membrane (Yang & Klionsky, 2009). As for LC3, it is located on the membrane after
post-translational modifications. The C-terminal end of the cytosolic form LC3-I is
cleaved by Atg4, which is then activated by Atg7 and transferred to Atg3. Finally, a
phosphatidylethanolamine (PE)will be conjugated to LC3-I to formLC3-II byAtg3 (Kabeya
et al., 2004;Hanada et al., 2007). As for the Atg5-Atg12-Atg16 complex system, it promotes
the formation of LC3-II (Romanov et al., 2012), which, in addition to participating in
autophagosome formation, also has the function of recognizing autophagic cargos. LC3-II
acts as a receptor to interact with the adaptor on the targets to promote their uptake
and degradation. One of the best-characterized adaptor molecules is p62/SQSTM1, a
multifunctional adaptor that enables the turnover of ubiquitinated substrates (Glick, Barth
& Macleod, 2010). After expanding the phagophore membrane and cargo engulfment, the
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mature autophagosome fuses with lysosome to form autolysosome for cargo degradation
(Mizushima, 2007).

However, all of the above processes presuppose that the autophagy is still normal in the
cells, but in the study of Soussi et al. (2015), the autophagy in adipocytes from obese patients
may be damaged. The connection between impaired autophagy and insulin resistance was
observed by Guo et al. (2017), who showed that Atg7 knockdown in 3T3-L1 adipocytes
caused a reduction in the phosphorylation capacity of both the insulin receptor β subunit
and IRS-1 stimulated by insulin. As insulin resistance progresses, adipocyte autophagy
is impaired in insulin-resistant states, in which type 2 diabetics demonstrate increased
levels of autophagy-related proteins including ATG5, ATG7, BECN1, LC3-II, and LC3-I as
well as autophagosome accumulation was observed in subcutaneous and visceral adipose
tissue of non-diabetic obese and T2D patients as compared to lean individuals (Rodríguez
et al., 2012; Kosacka et al., 2015). Moreover, Cai et al. (2018) also found that Akt was not
activated by insulin in the white adipose tissue in an AdiAtg3KO mouse model, indicating
that early-stage inhibition autophagy accelerated the decline in insulin sensitivity. However,
the physiological function of damaged autophagy in adipose is unclear, including its role
played in insulin resistance development. Therefore, this study was designed to confirm
the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from
adipose tissue. We then clarified whether altered autophagy-mediated HFD induces insulin
resistance. Afterward, we elucidated the possible mechanisms in autophagy-regulated
adipose insulin sensitivity.

MATERIALS & METHODS
Animal
In this study, 8-week-old male C57BL/6 mice (obtained from the Laboratory Animal
Center, College of Medicine, National Taiwan University) were housed at 25 ± 2 ◦C, with
an approximate 50–60% relative humidity and 12-hour light/12-hour dark cycle. Diets and
water are freely accessed. Mice were acclimated for onemonth before the treatments started
and placed in the cage according to their experimental group. Each cage contained 4–6mice
and was provided with enrichment (i.e., plastic tube, shredded paper, etc.). The cage will
be cleaned and checked every week. After the treatment, the mice were anesthetized with
2.5% avertin (0.15 mL/10 g) through intraperitoneal injection and sacrificed by cervical
dislocation. All the operations on and the usage of animals followed the National Institutes
of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No.8023,
advised 1978), and were approved by the National Taiwan University Institutional Animal
Care and Use Committee (NTU105-EL-00178).

High-fat diet-induced T2D in mice
B6 mice were randomly grouped to control diet (CTD) or high-fat diet (HFD) groups
for 8 (n= 4) and 16 weeks (n= 6). The CTD and HFD were commercially available diets
purchased from Research Diets (product numbers: D12450J and D12492). Before sacrifice
at the 16th week, the mice were injected with insulin intraperitoneally for 30 min, and
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blood samples were collected from the orbital sinus. After blood sample collection, mice
were sacrificed by cervical dislocation for tissue harvest.

Local chloroquine injection in epididymal adipose
The 12-week-old male C57BL/6 mice (n= 4) were anesthetized with 2.5% avertin (0.15
mL/10 g) through intraperitoneal injection, followed by surgery. The identified epididymal
adipose tissues were injected with a 2.5 mg/kg body weight dose of chloroquine (Sigma-
Aldrich) in phosphate buffered saline (PBS) or PBS alone as the control (n= 6). As a result
of its suitability for in vivo study, chloroquine is used most frequently in mice to assess
autophagic inhibition, as well as its affordability compared to Bafilomycin A1 (Moulis &
Vindis, 2017). Mice were injected with insulin and sacrificed for tissue harvest at 10 and
24 h after surgery.

Cell culture
3T3-L1 preadipocytes were purchased from Taiwan Bioresource Collection and Research
Center (BCRC number: 60159). Cells were cultured in high glucose Dulbecco’s modified
eagle medium (DMEM) (D5648, Sigma-Aldrich; 12100046, Gibco) containing 10%
newborn calf serum (16010159; New Zealand origin, Gibco), 1% penicillin-streptomycin
(15140122; Gibco, Waltham, MA, USA) and 2.5 g/L of NaHCO3. Cells were maintained
at 37 ◦C with 5% CO2 supplement. For cell maturation, 3T3-L1 preadipocytes were
switched to a medium that contained 10% fetal bovine serum (10270106; South American
origin, Gibco) when the cells were 70% confluent. The medium was also added with 1 µM
dexamethasone, 0.5 mM methyl isobutyl xanthine (IBMX), and 1 µg/mL insulin. After
2 days of treatment, the cells were maintained in insulin-only treatment until they were
fully differentiated. 50 nM Bafilomycin (Tocris) and a dose of 2.5 mg/kg body weight of
chloroquine were added to the culture medium for 4 and 24 h in 3T3-L1 mature adipocytes
and treated insulin 15 min before sampling. A hydrophobic fluorescent dye Nile red
was used to observe the oil droplet accumulation in 3T3-L1 mature adipocytes after the
treatment. Additionally, we treated differentiated 3T3-L1 adipocytes with Bafilomycin A1
and FA. A mixture of 0.6 mM palmitic acid (PA) and 0.6 mM oleic acid (OA) was used to
treat 3T3-L1 cells for 48 h. A mixture of OA and PA was dissolved in ethanol, and 1% BSA
was added to the culture medium.

Protein sample preparation and Western blotting analysis
Adipose tissues were homogenized in Pierce IP Lysis Buffer (87787, ThermoFisher
Scientific) containing complete EDTA-free Protease Inhibitor Cocktail (04693132001;
Roche, Basel, Switzerland) and PhosSTOP (04906845001; Roche), and then centrifuged
at 4 ◦C, 16000×g for 20 min. Using Pierce BCA Protein Assay Kit (23225; Thermo Fisher
Scientific, Waltham, MA, USA), the samples were diluted and mixed with 4X Laemmli
Sample Buffer (1610747; Bio-Rad, Hercules, CA, USA) and 10 mM dithiothreitol (DTT) to
give a final concentration of 2 µg/µL. As for the cell experiment, 3T3-L1 cells were rinsed
once with PBS and collected directly in 1X Laemmli Sample Buffer plus 10 mM DTT after
treatment. All harvested samples were immediately boiled at 98 ◦C for 10 min and then
stored at−20 ◦C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
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was conducted to separate proteins with different molecular weights, depending on the
target protein’s size. Precision Plus Protein Dual Color Standards (1610374; Bio-Rad) and
protein samples were loaded into gel wells. Electrophoresis was performed using running
buffer (25 mM Tris, 192 mM glycine, 0.1% SDS), and the voltages were set at 95 V and 110
V according to the sample during the stacking and resolving stages.

After electrophoresis, the separated proteins were transferred onto methanol-pre-wetted
and transfer buffer-pre-equilibrated PVDF membrane (1620177; Bio-Rad) via the transfer
buffer (25 mM Tris, 192 mM glycine, 20% methanol). The protein size was determined
by either Trans-Blot Turbo Semi-dry Transfer System (170-4155; Bio-Rad) or Criterion
Wet Transfer Blotter (170-4070; Bio-Rad). The proteins were transferred at 25 V constant
voltage with 0.4 A for 35 min for semi-dry transfer. For wet transfer, gels were equilibrated
in transfer buffer for 15min to remove excessive SDS, and then the proteins were transferred
at 70 V with 250 mA for 1 h.

Polyvinylidene fluoride (PVDF) membranes were washed with methanol and stained
with Ponceau S solution to visualize the transferred proteins. The fragment membranes
cut at the target position were blocked with 5% non-fat milk in tris buffered saline with
tween (TBST) and incubated with target protein-specific primary antibodies (Table 1),
which were diluted with 1% BSA in TBST overnight at 4 ◦C. Membranes were washed with
TBST three times for 15, 10, and 10 min each and then incubated with the species-specific
horseradish peroxidase (HRP)-conjugated secondary antibodies (1:2500 to 1:5000 diluted
with 5% non-fat milk in TBST) for 1 h at room temperature. Membranes were washed
with TBST three times for 10, 5, and 5 min each, and then the blotting images were
visualized with Bio-Rad (1705061) and GE (RPN2235) enhanced chemiluminescence
(ECL) substrates reagents using a Bio-Rad ChemiDoc Touch Imaging System. Blotting
quantification was performed using Bio-Rad Image Lab software. Table 1 presents details
about the antibodies.

RNA extraction
The RNA from mouse adipose tissues was extracted using TRIzol reagent (15596018;
Thermo Fisher Scientific), which was homogenized at 4 ◦C. Afterward, the lysates were
added to 100 µL of chloroform and then shook for 15 s. After being incubated for 2–3 min
at room temperature, mixed lysates were centrifuged at 12,000×g for 15 min at 4 ◦C.
Thereafter, the RNA-containing colorless upper aqueous phase was transferred to a new
tube. The RNAwas precipitated by adding 250 µL of isopropyl alcohol, mixing the solution
for 10 min at room temperature, and then centrifuging it at 12,000×g for 10 min at 4 ◦C
to spin down the RNA pellets. After centrifugation, the supernatant was removed, and the
pellets were washed twice with 500 µL of 75% ethanol. Finally, the pellets were air-dried
and dissolved in UltraPure DNase/RNase-Free Distilled Water (10977023; Thermo Fisher
Scientific) by incubating them in a water bath at 60 ◦C. The RNA concentration was
measured using a biophotometer.

Reverse transcription and real-time PCR
Total RNA was reverse transcribed to cDNA using a PrimeScripTM RT reagent Kit
(RR037Q; TaKaRa). First, 200–500 ngRNAwasmixedwith PrimeScript buffer, PrimeScript
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Table 1 The antibodies used in the study.

Antibody name Company product Number

Anti-Akt Cell Signaling Technology 4691S
Anti-phospho-Akt Ser 473 Cell Signaling Technology 4060S
Anti-ATG5 Cell Signaling Technology 12994S
Anti-CHOP Cell Signaling Technology 2895S
Anti-cleaved caspase 3 Cell Signaling Technology 9664S
Anti-GAPDH Cell Signaling Technology 2118S
Anti-GSK-3 β Cell Signaling Technology 3915S
Anti-phospho-GSK-3 β S9 Cell Signaling Technology 5558S
Anti-LC3 Cell Signaling Technology 2775S
Anti-PHLPP1 Merck Millipore 07-1341
Anti-PTEN Cell Signaling Technology 9559S
Anti-Rubicon Cell Signaling Technology 8465S
Anti-SQSTM1/p62 Abcam ab109012
Goat anti-rabbit IgG-HRP Santa Cruz Biotechnology sc-2004

Table 2 The primer pairs used in qPCR analysis.

Gene Name Forward (5′ to 3′) Reverse (5′ to 3′)

Map1lc3b GGAGCTTTGAACAAAGAGTGGAA GGTCAGGCACCAGGAACTTG
Actb GTGCGTGACATCAAAGAG CAAGAAGGAAGGCTGGAA

RT enzyme mix I, 25 pmol oligo dT primer, and 50 pmol random 6 mers, and then it was
incubated at 37 ◦C for 30 min followed by inactivation of reverse transcriptase at 85 ◦C
for 10 s. The cDNA products were diluted with DNase/RNase-free distilled water to give a
final concentration of 10–20 ng/µL, and then stored at −20 ◦C.

We used QuantStudio 3 System (Applied Biosystems, Foster City, CA, USA) for
quantitative real-time PCR (qPCR) analysis to measure the level of target gene mRNA
expression. A 10–20 ng of cDNA template was mixed with Fast SYBR Green Master Mix
(Applied Biosystems) and 0.4 µM target gene-specific primer pairs in a total volume of
10 µL. The reaction mixtures were transferred to well plates and then centrifuged. The
samples were denatured for 20 s at 95 ◦C followed by 40 cycles of the PCR stage, with the
denaturing step at 95 ◦C for 3 s and the annealing and extension step at 60 ◦C for 30 s.
Finally, a melting curve analysis was conducted. The expression levels of Actb were used as
a loading control, and the gene-specific primer pairs are listed in Table 2.

Serum free fatty acid content analysis
To compare serum free fatty acid levels of the CTD-fed and HFD-fed mice, we used a
commercial assay kit: the Free Fatty Acid Quantification Kit from BioVision (K612-100).
Fifty µL of serum samples were mixed with a 100 µL Reaction Mix. Then, the reactions
were incubated at 37 ◦C for 30 min in the dark and the OD 570 nm value was measured.
The sample readings were applied to the standard curve to obtain free fatty acid levels in
the serum.
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Statistical analysis
Each experiment was replicated at least three times and data were expressed as mean
± standard error of the mean (SEM). Data were analyzed by Student’s t -test or one-way
ANOVA followed by the least significant difference test (LSD) with Statistics Analysis
System (Version 9.4; SAS Institute Inc., Cary, NC, USA); P < 0.05 indicated statistically
significant differences.

RESULTS
HFD induces autophagy impairment, insulin resistance, endoplasmic
reticulum (ER) stress, and apoptosis in adipose tissue
The mice treated with 8 weeks of HFD significantly increased SQSTM1/p62 and Rubicon
expression, but the expression levels of LC3-II and Atg5 were unaltered (Figs. 1A, 1B).
Meanwhile, the mice treated with 16 weeks of HFD had a significantly increased expression
of LC3-II and Atg5 (Figs. 1C, 1D), which suggests that the late stage of autophagy might
have been inhibited and that the autophagosomes accumulated in a large amount to elevate
the expression of LC3-II on the autophagosome membrane. Further, p62 was degraded
primarily by autophagy, and if the lysosomal degradation of autophagosome is blocked,
an accumulation of p62 is expected, and so the expression of Rubicon also significantly
increased.

There was no significant difference in serum total (free fatty acids) FFAs between the
HFD and CTD groups at 8 and 16 weeks from the blood sample (Fig. 1E). The western
blotting data show that insulin injection might fail to induce Akt phosphorylation (Ser473)
in adipose tissue from mice fed HFD for 16 weeks (Figs. 1F, 1G). Meanwhile, we also
observed the marker of endoplasmic reticulum (ER) stress, C/EBP homologous protein
(CHOP), was significantly increased. One of the key executioners of apoptosis, caspase-3,
was activated as cleaved caspase-3 in adipose tissues from mice fed with HFD (Figs. 1H,
1I) (Kadowaki & Nishitoh, 2013; Crowley & Waterhouse, 2016).

We used differentiated 3T3-L1 adipocytes for FA treatment to reinforce the conclusion
that autophagy was inhibited in the in vivo experiment. This was done by treating 3T3-L1
cells with a mixture of 0.6 mM palmitic acid (PA) and 0.6 mM oleic acid (OA) for 48 h. We
observed that Bafilomycin A1 treatment given 4 h before sampling induces less expression
of LC3-II protein in FA-treated cells than that in the BSA control group (Figs. 2A, 2B).

Impaired late-stage autophagy may lead to insulin resistance indirectly
by ER stress or apoptosis
To investigate whether autophagy inhibition can induce insulin resistance in a cell-
autonomous manner, we conducted in vitro experiments using differentiated 3T3-L1
adipocytes. By treating differentiated 3T3-L1 with 40 µMof CQ for 24 h, we first addressed
whether the autophagy in 3T3-L1 cells was inhibited. After treatment with CQ, we observed
increased LC3-II and SQSTM1/p62 protein levels in 3T3-L1 cells (Figs. 3A, 3B, 3C). We
found that hosphor-Akt (Ser473) in the CQ-treated group was significantly lower than that
in the control (Figs. 3A, 3D).
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Figure 1 Altered autophagy, insulin resistance, and ER stress in adipose tissues frommice fed with
8- and 16-week HFD. The 12-week-old male B6 mice were fed with either the control diet or HFD for 8
weeks (A, B) and 16 weeks (C, D). T t he figure shows the immunoblots and the densitometric qua n tifi-
cations of SQSTM1/p62, LC3, Rubicon, and Atg5 expression by Western blotting. Values are mean± SEM
(n= 4). The serum-free fatty acid levels between CTD-fed and HFD-fed mice were analyzed using a com-
mercial assay kit (E). Values are mean± SEM (8 weeks: n = 4 and 16 weeks: n = 6). n.s.: no significant
difference. The phospho-Akt (Ser473) levels of adipose tissues from mice injected with or without insulin
(0.5 IU/kg body weight I.P., 30 min) were analyzed at the 16th week using Western blotting (F, G). Val-
ues are mean± SEM (n= 6). Different letters are considered statistically significant difference by one-way
ANOVA and least significant difference (LSD) test, P < 0.05. Male B6 mice were fed with either the con-
trol diet or HFD for 16 weeks (H, I). The figure shows the immunoblots and the densitometric quantifica-
tions of C/EBP homologous protein (CHOP) and cleaved caspase-3 expression by Western blotting. Val-
ues are mean± SEM (n= 6). An asterisk (*) indicates statistical significance, P < 0.05.

Full-size DOI: 10.7717/peerj.13867/fig-1

Interestingly, our Western blotting data showed that CQ-treated adipocytes had
significantly higher CHOP levels and cleaved caspase-3 than those in the control (Figs. 3E,
3F), which echoed the in vivo experiment results observed in the adipose from mice fed
with HFD. To further clarify whether insulin resistance was directly affected by autophagy
inhibition or by concomitant ER stress or apoptosis, we excluded the effects of apoptosis
on cells by reducing CQ concentrations. The protein levels in LC3-II in the treatment
group were higher than those the control group, while the levels of SQSTM1/p62 were
significantly increased at concentrations of 20 and 30 µM when compared to those of the
control group (Figs. 4A–4C).

Moreover, the expression of cleaved caspase-3 did not change (Figs. 4A, 4D). Hence,
we chose 20 µM dosage to determine if autophagy inhibition per se can induce insulin
resistance; it did not influence insulin-stimulated Akt phosphorylation in 3T3-L (Figs. 4E,
4F).
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The correlation between the late-stage autophagy inhibition with
insulin resistance in adipose tissue
The results indicate that 10 h after CQ injection, the phosphorylation level induced
by insulin was not significantly different from that of the control group (Figs. 5A,
5B). However, the capability of insulin to generate Akt (Ser473) and GSK3 β (Ser9)
phosphorylation was reduced 24 h after CQ injection (Figs. 5C–5E).

Additionally, although the protein levels of SQSTM1/p62 and LC3-II were no difference
between CQ-treated and control groups (Figs. 6A, 6B), the LC3 mRNA expression was
significantly decreased in adipose tissues with CQ injection (Fig. 6C). These data suggested
that at the 24-hour post-injection of CQ, the suppression of late stage autophagy may have
feedback effect which resulted in reduced mRNA level of LC3.

The phosphorylation of insulin signaling blocked by autophagy is not
associated with the expression of PHLPP1 and PTEN
After confirming that the inhibition of late-stage autophagy is related to the occurrence of
insulin resistance, we further investigated the molecular mechanisms that may be involved.
As it was previously reported that the expression of PHLPP1 is elevated in adipose tissue
of obese patients and mice, which in turn leads to a decrease in phosphorylation of Akt
and affected insulin sensitivity (Andreozzi et al., 2011), we first checked the protein level of
PHLPP1 in mouse adipose treated with CQ. According to the Western blotting data, the
CQ injection did not increase the expression of PHLPP1 compared to that in the control
group. The amount of PTEN after CQ treatment was also not changed (Figs. 7A, 7B).
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Figure 3 Autophagy inhibition, insulin resistance, ER stress and apoptosis were found in 3T3-L1 af-
ter CQ treatment for 24 h. The differentiated 3T3-L1 adipocyte was treated with 40 µMCQ for 24 h, and
with 40 nM insulin for 15 min before sampling. SQSTM1/p62, (continued on next page. . . )
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Figure 3 (. . .continued)
LC3 and p-Akt/Akt immunoblots (A) and densitometric quantifications (B, C, D). The differentiated 3T3-
L1 adipocyte was treated with 40 µMCQ for 24 h. CHOP and cleaved caspase-3 immunoblot (E) and
densitometric quantifications (F). For densitometric analyses of Western blotting data, GAPDH was used
as the loading control. Values are mean± SEM (n= 3). Different letters are considered statistically signif-
icant difference by one-way ANOVA and least significant difference (LSD) test, P < 0.05.
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Figure 4 Dose–response experiment of CQ treatment in 3T3-L1 cells and insulin resistance, ER stress,
and apoptosis were observed in 3T3-L1 after 20µMCQ treatment for 48 h. The differentiated 3T3-L1
adipocyte was treated with 10, 20, and 30 µMCQ, for 24 h (A). The figure shows SQSTM1/p62 (B), LC3
(C), and cleaved caspase-3 (D) immunoblots and densitometric quantifications. The differentiated 3T3-L1
adipocyte was treated with 20 µMCQ for 24 h and with 40 nM insulin for 15 min before sampling. The
phospho-Akt (Ser473) and total Akt levels of 3T3-L1 adipocyte were analyzed using Western blotting (E,
F). GAPDH was used as the loading control. Values are mean± SEM (n= 3). Different letters are consid-
ered statistically significant difference by one-way ANOVA and least significant difference (LSD) test, P <
0.05. n.s.: no significant difference.

Full-size DOI: 10.7717/peerj.13867/fig-4

DISCUSSION
Insulin resistance is considered one of the crucial factors in early-stage T2D development,
which can cause metabolic dysfunction in tissues. As cellular functions that may be
involved in insulin resistance, studies have pointed out that autophagy plays a critical
role in the progression of T2D, which is related to the adaptive response to intracellular
stress. In particular, Cai et al. (2018) observed that autophagy ablation can damage the
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Figure 5 The insulin signaling pathway after chloroquine (CQ) treatment for 10 h and 24 h. B6 mice
were injected with PBS or CQ into epididymal adipose tissue for 10 h (A, B) and 24 h (C, D, E) mice in-
jected with or without I.P. insulin (0.5 IU/kg body weight, 30 min) before sacrifice. The phospho-Akt
(Ser473) and total Akt levels of adipose tissues were analyzed with Western blotting. Blotting and quanti-
tative data of p-Akt/Akt and p-GSK3 β/ GSK3 β were presented. Values are mean± SEM (n= 4) (A) (n=
6) (C). Different letters are considered statistically significant difference by one-way ANOVA and least sig-
nificant difference (LSD) test, P < 0.05. GAPDH was used as the loading control. The LC3B mRNA level
in 24-hour PBS- and CQ-treated adipose was measured using qPCR analysis. For data quantification, the
housekeeping gene ACTB was used as the internal control. Values are mean± SEM (n = 6). An asterisk
(*) indicates statistical significance, P < 0.05. n.s.: no significant difference.
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Figure 6 The suppression of late-stage autophagy may have feedback effect which resulted in reduced
mRNA level of LC3B. B6 mice were injected with PBS or CQ into epididymal adipose tissue for 24 h. Rep-
resentative SQSTM1/p62 and LC3 immunoblots and densitometric quantifications (A, B). For densito-
metric analyses of Western blotting data, GAPDH was used as loading control. The LC3B mRNA level in
24-hour PBS- and CQ-treated adipose was measured using qPCR analysis (C). For data quantification, the
housekeeping gene ACTB was used as the internal control. Values are mean± SEM (n = 6). An asterisk
(*) indicates statistical significance, P < 0.05. n.s.: no significant difference.

Full-size DOI: 10.7717/peerj.13867/fig-6

insulin signaling transduction in adipose tissues. However, the role of autophagy in adipose
function and the molecular mechanisms of how autophagy inhibition affects the insulin
signaling pathway remain unclear.

HFD treatment for 8 weeks led to a blockade of late-stage autophagy in adipose, and
the inhibition of autophagy was observed even at the 16th week (Figs. 1B, 1D). Rubicon’s
increased expression was the prominent cause of suppression at the late stage, which was
similar to the results of Tanaka et al. (2016) and Wang et al. (2017) in hepatocytes. Fatty
acid-treated cells showed a significant decrease in autophagic flux (Fig. 2), which doubly
confirmed that autophagy was inhibited and is also consistent with the clinical findings of
Soussi et al. (2015)Meanwhile, endoplasmic reticulum (ER) stress and apoptosis were also
identified in adipose tissue (Fig. 1I). Studies have demonstrated that these are two effects
of HFD, and Kawasaki et al. (2012) further clarified that ER stress is induced by reactive
oxygen species (ROS) generation and inflammatory cytokines. However, Feng et al. (2011)
showed that the inflammatory response does not cause apoptosis. Our study brings new
information that HFD might cause late-stage autophagy suppression in adipose associated
with Rubicon upregulation. At the same time, a series of complex reactions, including
insulin resistance, ER stress, and apoptosis, also occur.
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Figure 7 Autophagy may regulate insulin-stimulated signal transduction without associated with
PHLPP1 and PTEN. The PHLPP1 and PTEN level of PBS- and CQ-injected mouse adipose via Western
blotting. An asterisk (*) indicates statistical significance, P < 0.05. Quantitative data (A) and Western blot-
ting (B) of PTEN were presented. For densitometric analyses of Western blotting data, GAPDH was used
as the loading control. Values are mean± SEM (n= 3). n.s.: no significant difference.
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The suppression of late-stage autophagy may damage insulin signaling transduction
(Fig. 5D). This might be associated with the time point of sampling, or that the local
injection did not allow the drug to spread throughout the tissue. Interestingly, the mRNA
expression of LC3 in early-stage autophagy was reduced (Fig. 6C), thus suggesting that the
inhibition of late-stage autophagy may cause feedback to decrease the mRNA level of LC3
and subsequently block the early-stage autophagy. According to previous studies, if the
early-stage autophagy is sometimes suppressed, insulin resistance may worsen (Guo et al.,
2017; Cai et al., 2018).

We hypothesized that some phosphatases could not be degraded because of the blocked
autophagic degradation, which would increase their expression and hinder the cascade of
phosphorylation events in the insulin signaling pathway. The protein levels of PH domain
and leucine-rich repeat protein phosphatase 1 (PHLPP1) and protein-tyrosine phosphatase
1B (PTP1B), in adipose from obese mice or patients exhibit a significant increase compared
to lean animals (Andreozzi et al., 2011; Zabolotny et al., 2008). In this study, the amount
of PHLPP1 did not elevate as expected in the CQ-treated group but instead decreased
significantly (Fig. 7A). It shows that autophagy suppression may not directly cause Akt
phosphorylation to be restricted due to increased expression of PHLPP1; conversely, it
reduced the protein level of PHLPP1. In this regard, we suppose that autophagy which
mediated the degradation of Mir6981 was inhibited, thereby leading to the abundance of
Mir6981 that mitigated the protein translation of PHLPP1 (Peng et al., 2019). In addition,
there was no significant difference in phosphatase and tensin homolog (PTEN) between
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the CQ-treated and control groups (Fig. 7A). This indicates that PTEN may also not
be involved in the insulin signaling transduction blocked by autophagy inhibition. In
summary, autophagy inhibition at late stages blocked insulin signaling downstream
independent of PHLPP1 and PTEN. However, more experiments are required to establish
this.

At a high dose (40 µM) of CQ, the insulin sensitivity in 3T3-L1 adipocytes was reduced
and accompanied by ER stress and apoptosis (Fig. 3), which was almost identical to the
findings from the in vivo experiments. However, insulin signaling was still transduced
normally in 3T3-L1 treated with CQ, thus suggesting that autophagy suppression may not
directly contribute to insulin resistance. However, it is also possible that the abnormality
of the insulin signaling pathway did not occur at the time of sampling. After CQ treatment
for 24 h, the 3T3-L1 adipocytes developed insulin resistance as expected, but ER stress
and apoptosis were also induced (Fig. 3F). These results demonstrate that inhibition of
late-stage autophagy per se did not directly cause insulin resistance in the adipocyte. Studies
have indicated that CQ blocks the fusion of autophagosome and lysosome, which leads to
the accumulation of a large number of damaged proteins in the cytoplasm and induces
ER stress.; persistent ER stress eventually results in cell death (Jia et al., 2018). Moreover,
van der Kallen et al. (2009) showed that the relation of ER stress with insulin resistance
is more evident than its relation with apoptosis. In adipose, ER stress triggers activation
of c-Jun N-terminal kinase (JNK) through activated inositol requiring 1 alpha (IRE1
α), thereby inhibiting serine phosphorylation of IRS1, and resulting in insulin resistance
(Zhang & Kaufman, 2008). In addition, adipocyte apoptosis contributes to macrophage
infiltration into adipose tissues, which increases the production of inflammatory cytokines.
And these cytokines can affect the insulin signaling, such as TNF α which also inhibits
IRS1 phosphorylation (Alkhouri et al., 2010). In summary, the suppression of late-stage
autophagy caused by HFD may lead to a large accumulation of impaired proteins in
adipocytes, which in turn leads to ER stress and apoptosis. And the latter two will eventually
induce insulin resistance in adipose tissue.

CONCLUSIONS
A long-term high-fat diet promotes insulin resistance in adipose tissue and leads to the
increased protein levels of Rubicon, which blocks late-stage autophagy and is accompanied
by endoplasmic reticulum (ER) stress and apoptosis. Among these conditions, inhibition of
late-stage autophagy is associated with a decrease in insulin sensitivity. However, autophagy
suppression may not affect the insulin signaling transduction via the pathway of PHLPP1
and PTEN but instead causes insulin resistance indirectly through ER stress or the apoptosis
pathway.

ACKNOWLEDGEMENTS
We thank Nigel Daly for his diligent proofreading of this article.

Budi et al. (2022), PeerJ, DOI 10.7717/peerj.13867 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.13867


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was supported by grants from the Ministry of Science and Technology (109-
2320-B-002 -038 -MY3) (to Yi-Fan Jiang, National Taiwan University) and (106-2320-
B-002-040-MY3 and 109-2314-B-002-099-MY3) (to Chih-Hsien Chiu, National Taiwan
University). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ministry of Science and Technology: 109-2320-B-002 -038 -MY3.
National Taiwan University: 106-2320-B-002-040-MY3, 109-2314-B-002-099-MY3.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yovita Permata Budi performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Yi-Hsuan Li conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Chien Huang performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.
• Mu-En Wang performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.
• Yi-Chun Lin conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• De-Shien Jong conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• Chih-Hsien Chiu conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.
• Yi-Fan Jiang conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The Institutional Animal Care and Use Committee (IACUC) approved the study with
the IACUC Approval No: NTU105-EL-00178.

Data Availability
The following information was supplied regarding data availability:

Raw data is available in the Supplementary Files.

Budi et al. (2022), PeerJ, DOI 10.7717/peerj.13867 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.13867#supplemental-information
http://dx.doi.org/10.7717/peerj.13867


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13867#supplemental-information.

REFERENCES
Alkhouri N, Gornicka A, BerkMP, Thapaliya S, Dixon LJ, Kashyap S, Schauer PR,

Feldstein AE. 2010. Adipocyte apoptosis, a link between obesity, insulin resis-
tance, and hepatic steatosis. Journal of Biological Chemistry 285(5):3428–3438
DOI 10.1074/jbc.M109.074252.

Andreozzi F, Procopio C, Greco A, Mannino GC, Miele C, Raciti GA, Iadicicco C,
Beguinot F, Pontiroli AE, Hribal ML, Folli F, Sesti G. 2011. Increased levels of
the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase
(PHLPP)-1 in obese participants are associated with insulin resistance. Diabetologia
54(7):1879–1887 DOI 10.1007/s00125-011-2116-6.

Cai J, Pires KM, Ferhat M, Chaurasia B, Buffolo MA, Smailling R, Sargsyan A,
Atkinson DL, Summers SA, Graham TE, Boudina S. 2018. Autophagy abla-
tion in adipocytes induces insulin resistance and reveals roles for lipid peroxide
and Nrf2 signaling in adipose-liver crosstalk. Cell Reports 25(7):1708–1717.e5
DOI 10.1016/j.celrep.2018.10.040.

Copps KD,White MF. 2012. Regulation of insulin sensitivity by serine/threonine
phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia
55(10):2565–2582 DOI 10.1007/s00125-012-2644-8.

Crowley LC,Waterhouse NJ. 2016. Detecting cleaved caspase-3 in apoptotic cells by flow
cytometry. Cold Spring Harbor Protocols 2016:11 DOI 10.1101/pdb.prot087312.

Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James DE. 2019.Muscle and
adipose tissue insulin resistance: malady without mechanism? Journal of Lipid
Research 60(10):1720–1732 DOI 10.1194/jlr.R087510.

Feng D, Tang Y, KwonH, Zong H, Hawkins M, Kitsis RN, Pessin JE. 2011.High-fat
diet-induced adipocyte cell death occurs through a Cyclophilin D intrinsic signaling
pathway independent of adipose tissue inflammation. Diabetes 60(8):2134–2143
DOI 10.2337/db10-1411.

Glick D, Barth S, Macleod KF. 2010. Autophagy: cellular and molecular mechanisms.
The Journal of Pathology 221(1):3–12 DOI 10.1002/path.2697.

Guo Q, Xu L, Li H, Sun H,Wu S, Zhou B. 2017. 4-PBA reverses autophagic dysfunction
and improves insulin sensitivity in adipose tissue of obese mice via Akt/mTOR
signaling. Biochemical and Biophysical Research Communication 484(3):529–535
DOI 10.1016/j.bbrc.2017.01.10616.

Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi
Y. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lip-
idation in autophagy. Journal of Biological Chemistry 282(52):37298–37302
DOI 10.1074/jbc.C700195200.

Budi et al. (2022), PeerJ, DOI 10.7717/peerj.13867 17/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.13867#supplemental-information
http://dx.doi.org/10.7717/peerj.13867#supplemental-information
http://dx.doi.org/10.1074/jbc.M109.074252
http://dx.doi.org/10.1007/s00125-011-2116-6
http://dx.doi.org/10.1016/j.celrep.2018.10.040
http://dx.doi.org/10.1007/s00125-012-2644-8
http://dx.doi.org/10.1101/pdb.prot087312
http://dx.doi.org/10.1194/jlr.R087510
http://dx.doi.org/10.2337/db10-1411
http://dx.doi.org/10.1002/path.2697
http://dx.doi.org/10.1016/j.bbrc.2017.01.10616
http://dx.doi.org/10.1074/jbc.C700195200
http://dx.doi.org/10.7717/peerj.13867


Jia B, Xue Y, Yan X, Li J, Wu Y, Guo R, Zhang J, Zhang L, Li Y, Liu Y, Sun L. 2018.
Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma
cells via endoplasmic reticulum stress. Oncology Letters 16(3):3509–3516
DOI 10.3892/ol.2018.9131.

Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshi-
mori T. 2004. LC3, GABARAP and GATE16 localize to autophagosomal mem-
brane depending on form-II formation. Journal of Cell Science 117:2805–2812
DOI 10.1242/jcs.01131.

Kadowaki H, Nishitoh H. 2013. Signaling pathways from the endoplasmic reticulum and
their roles in disease. Genes 4(3):306–333 DOI 10.3390/genes4030306.

Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. 2012. Obesity induced endo-
plasmic reticulum stress causes chronic inflammation in adipose tissue. Scientific
Reports 2:799 DOI 10.1038/srep00799.

Kosacka J, KernM, Klöting N, Paeschke S, Rudich A, Haim Y, Gericke M, Serke H,
Stumvoll M, Bechmann I, Nowicki M, Blüher M. 2015. Autophagy in adipose tissue
of patients with obesity and type 2 diabetes.Molecular and Cellular Endocrinology
409:21–32 DOI 10.1016/j.mce.2015.03.015.

Mizushima N. 2007. Autophagy: process and function. Genes and Development
21(22):2861–2873 DOI 10.1101/gad.1599207.

Molina JR, Agarwal NK, Morales FC, Hayashi Y, Aldape KD, Cote G, GeorgescuMM.
2012. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled
in glioblastoma. Oncogene 31(10):1264–1274 DOI 10.1038/onc.2011.324.

Moulis M, Vindis C. 2017.Methods for measuring autophagy in mice. Cells 6(2):14
DOI 10.3390/cells6020014.

Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C,
Glimcher LH, Hotamisligil GS. 2004. Endoplasmic reticulum stress links obesity,
insulin action, and type 2 diabetes. Science 306(5695):457–461
DOI 10.1126/science.1103160.

Pal A, Barber TM, VandeBunt M, Rudge SA, Zhang Q, Lanchlan , Cooper NS, Linden
H, Levy JC,WakelamMJO,Walker L, Karpe F, Gloyn AL. 2012. PTEN mutations
as a cause of constitutive insulin sensitivity and obesity. The New England Journal of
Medicine 367(11):1002–1011 DOI 10.1056/NEJMoa1113966.

PengM,Wang J, Tian Z, Zhang D, Jin H, Liu C, Xu J, Li J, Hua X, Xu J, Huang C,
Huang C. 2019. Autophagy-mediated Mir6981 degradation exhibits CDKN1B
promotion of PHLPP1 protein translation. Autophagy 15(9):1523–1538
DOI 10.1080/15548627.2019.1586254.

Rodríguez A, Gómez-Ambrosi J, Catalán V, Rotellar F, Valentí V, Silva C, Mugueta
C, PulidoMR, Vázquez R, Salvador J, MalagónMM, Colina I, Frühbeck G. 2012.
The ghrelin O-acyltransferase-ghrelin system reduces TNF- α-induced apoptosis
and autophagy in human visceral adipocytes. Diabetologia 55(11):3038–3050
DOI 10.1007/s00125-012-2671-5.

Romanov J, WalczakM, Ibiricu I, Schüchner S, Ogris E, Kraft C, Martens S. 2012.
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16

Budi et al. (2022), PeerJ, DOI 10.7717/peerj.13867 18/19

https://peerj.com
http://dx.doi.org/10.3892/ol.2018.9131
http://dx.doi.org/10.1242/jcs.01131
http://dx.doi.org/10.3390/genes4030306
http://dx.doi.org/10.1038/srep00799
http://dx.doi.org/10.1016/j.mce.2015.03.015
http://dx.doi.org/10.1101/gad.1599207
http://dx.doi.org/10.1038/onc.2011.324
http://dx.doi.org/10.3390/cells6020014
http://dx.doi.org/10.1126/science.1103160
http://dx.doi.org/10.1056/NEJMoa1113966
http://dx.doi.org/10.1080/15548627.2019.1586254
http://dx.doi.org/10.1007/s00125-012-2671-5
http://dx.doi.org/10.7717/peerj.13867


complex during autophagosome formation. EMBO Journal 31(22):4304–4317
DOI 10.1038/emboj.2012.278.

Soussi H, Reggio S, Alili R, Prado C, Mutel S, Pini M, Rouault C, Clément K, Dugail
I. 2015. DAPK2 downregulation associates with attenuated adipocyte autophagic
clearance in human obesity. Diabetes 64(10):3452–3463 DOI 10.2337/db14-1933.

Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, Shiode Y, Nakabori
T, Saito Y, Hiramatsu N, Tabata K, Kawabata T, Hamasaki M, Eguchi H, Nagano
H, Yoshimori T, Takehara T. 2016. Rubicon inhibits autophagy and accelerates
hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in
mice. Hepatology 64(6):1994–2014 DOI 10.1002/hep.28820.

vander Kallen CJH, van GreevenbroekMMJ, Stehouwer CDA, Schalkwijk CG.
2009. Endoplasmic reticulum stress-induced apoptosis in the development of
diabetes: is there a role for adipose tissue and liver? Apoptosis 14(2):1424–1434
DOI 10.1007/s10495-009-0400-4.

WangME, Singh BK, HsuMC, Huang C, Yen P,Wu LS, Jong D, Chiu C. 2017.
Increasing dietary medium-chain fatty acid ratio mitigates high-fat diet induced
non-alcoholic steatohepatitis by regulating autophagy. Scientific Reports 7:13999
DOI 10.1038/s41598-017-14376-y.

Yang Z, Klionsky DJ. 2009.Mammalian autophagy: core molecular machinery
and signaling regulation. Current Opinion in Cell Biology 22(2):124–131
DOI 10.1016/j.ceb.2009.11.014.

Yin J, Wang Y, Gu L, Fan N, Ma Y, Peng Y. 2015. Palmitate induces endoplasmic
reticulum stress and autophagy in mature adipocytes: implications for apoptosis
and inflammation. International Journal of Molecular Medicine 35(4):932–940
DOI 10.3892/ijmm.2015.2085.

Zabolotny JM, Kim YB,Welsh LA, Kershaw EE, Neel BG, Kahn BB. 2008. Protein-
tyrosine phosphatase 1B expression is induced by inflammation in vivo. Journal of
Biological Chemistry 283(21):14230–14241 DOI 10.1074/jbc.M800061200.

Zhang K, Kaufman RJ. 2008. From endoplasmic-reticulum stress to the inflammatory
response. Nature 454(7203):455–462 DOI 10.1038/nature07203.

Zhou L, Zhang J, Fang Q, LiuM, Liu X, JiaW, Dong LQ, Liu F. 2009. Autophagy-
mediated insulin receptor down-regulation contributes to endoplasmic reticu-
lum stress-induced insulin resistance.Molecular Pharmacology 76(3):596–603
DOI 10.1124/mol.109.057067.

Budi et al. (2022), PeerJ, DOI 10.7717/peerj.13867 19/19

https://peerj.com
http://dx.doi.org/10.1038/emboj.2012.278
http://dx.doi.org/10.2337/db14-1933
http://dx.doi.org/10.1002/hep.28820
http://dx.doi.org/10.1007/s10495-009-0400-4
http://dx.doi.org/10.1038/s41598-017-14376-y
http://dx.doi.org/10.1016/j.ceb.2009.11.014
http://dx.doi.org/10.3892/ijmm.2015.2085
http://dx.doi.org/10.1074/jbc.M800061200
http://dx.doi.org/10.1038/nature07203
http://dx.doi.org/10.1124/mol.109.057067
http://dx.doi.org/10.7717/peerj.13867

