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ABSTRACT
Background: Cancer driver genes are usually ranked by mutation frequency, which
does not necessarily reflect their driver strength. We hypothesize that driver strength
is higher for genes preferentially mutated in patients with few driver mutations
overall, because these few mutations should be strong enough to initiate cancer.
Methods: We propose formulas for the Driver Strength Index (DSI) and the
Normalized Driver Strength Index (NDSI), the latter independent of gene mutation
frequency. We validate them using TCGA PanCanAtlas datasets, established driver
prediction algorithms and custom computational pipelines integrating SNA, CNA
and aneuploidy driver contributions at the patient-level resolution.
Results: DSI and especially NDSI provide substantially different gene rankings
compared to the frequency approach. E.g., NDSI prioritized members of specific
protein families, including G proteins GNAQ, GNA11 and GNAS, isocitrate
dehydrogenases IDH1 and IDH2, and fibroblast growth factor receptors FGFR2 and
FGFR3. KEGG analysis shows that top NDSI-ranked genes comprise EGFR/FGFR2/
GNAQ/GNA11–NRAS/HRAS/KRAS–BRAF pathway, AKT1–MTOR pathway, and
TCEB1–VHL–HIF1A pathway.
Conclusion: Our indices are able to select for driver gene attributes not selected by
frequency sorting, potentially for driver strength. Genes and pathways prioritized are
likely the strongest contributors to cancer initiation and progression and should
become future therapeutic targets.
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INTRODUCTION
According to the mainstream view, cancer is initiated and promoted by mutations in
so-called “driver” genes, whereas mutations in “passenger” genes bear no effect and simply
“travel” along, during the course of somatic evolution (Vogelstein et al., 2013). There are
multiple approaches to identifying cancer driver genes and to their ranking (Marx, 2014;
Raphael et al., 2014). One of the earliest and most intuitive approaches is to use mutation
frequency, typically corrected by background mutation rate in a gene, e.g. by the rate of
synonymous mutations. Some notable examples of such algorithms are MuSiC (Dees et al.,
2012), MutSigCV (Lawrence et al., 2013) and dNdScv (Martincorena et al., 2017).
Interestingly, even after background correction, high recurrence of a mutated gene in a
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cancer cohort does not necessarily translate to the statement that this gene is a strong
driver. We can imagine a gene that is mutated in the majority of cancer patients (e.g.,
because it has multiple suitable sites for a driver mutation, such as catalytic sites, sites of
post-translational modifications or protein-protein interfaces) but has a weak contribution
to cancer progression in each of these patients (e.g., because this gene is redundant).
We can also imagine a gene that is mutated rarely (e.g., because it has only one suitable site
for a driver mutation) but if the mutation does occur it immediately leads to cancer (e.g.,
because this gene is in a key position to control cell growth). The former would be an
example of a frequent but weak driver, whereas the latter would be a rare but strong driver.
Overall, algorithms based on mutation recurrence cannot reliably determine driver gene
strength.

There is a large group of algorithms that aim to predict and rank driver genes according
to the impact of mutations on protein structure and activity. Some notable examples
include HotMAPS (Tokheim et al., 2016a), 2020plus (Tokheim et al., 2016b),
OncodriveFML (Mularoni et al., 2016), OncodriveCLUSTL (Arnedo-Pac et al., 2019) and
CHASMplus (Tokheim & Karchin, 2019). Typically, these algorithms are based on
mutation clustering, sequence evolutionary conservation, protein domains and
three-dimensional protein structure, or combinations thereof, sometimes with the use of
machine learning. These methods can reliably identify if a given protein’s structure and
function are disturbed by a given mutation and to what degree. However, they are much
less suitable for identification of the role of this protein in the cellular and
microenvironmental context, which is critical to determine whether it will drive cancer and
how strongly. Thus, the strength of driver genes is unlikely to be determined by structural
approaches.

Some algorithms aim to predict and rank drivers based on data from protein interaction
networks, e.g., NetBox (Cerami et al., 2010), DriverNet (Bashashati et al., 2012), NetSig
(Horn et al., 2018) and Hierarchical HotNet (Reyna, Leiserson & Raphael, 2018). The idea
is that a gene having multiple connections with other genes, i.e. playing the role of a
network hub, will have more dramatic influence on the cell in case of mutation (Bowler,
Wang & Ewing, 2015). However, whilst mutations in network hubs are indeed likely to
cause severe disturbance in the cell, this would rather lead to cell death than to oncogenic
transformation. Thus, network-based approaches are also not likely to uncover the actual
strength of driver genes.

We have recently quantified the number of driver events in individual patients in
various cancer types and discovered very high variability in this number even within the
same cancer type (Vyatkin et al., 2022). We therefore asked a question: what is the reason
that for some patients one driver event is sufficient to drive cancer, whereas the others do
not develop cancer until dozens of driver events accumulate? We hypothesized that the
major reason is driver strength–one strong driver is equivalent in its cancer-promoting
potency to several weak drivers. Thus, we define the strength of a cancer driver as its share
of the contribution to the initiation and progression of a given cancer relative to other
drivers. It immediately follows that a driver that is able to singlehandedly initiate cancer is
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a strong driver, whereas a driver that is present in cancers only amongst the multitude of
other drivers is very likely a weak driver.

We reason that a few strong drivers are sufficient to initiate cancer, and there would be
no need to accumulate additional drivers. On the other hand, weak drivers would need to
accumulate in much higher quantity, until their combined strength would become
sufficient to initiate cancer. Therefore, it should be statistically more likely to find strong
drivers in patients that have only few driver mutations in their tumours, and less likely to
find them in patients with multiple drivers per tumour. Likewise, it should be statistically
less likely to find weak drivers in patients that have only few driver mutations in their
tumours, and more likely to find them in patients with multiple drivers per tumour. Hence,
we propose the Driver Strength Index (DSI) that takes into account the frequencies of
mutation of a given driver gene in groups of patients with different total number of driver
mutations, and gives priority weights to groups with fewer mutations. We also propose a
modification of this index that is completely independent of the overall frequency of
mutation of a given driver gene–the Normalized Driver Strength Index (NDSI).

Calculating these indices requires data on the number of driver mutations in each
individual patient. The majority of existing driver prediction algorithms work at the cohort
level, i.e. they predict driver genes for large groups of patients, usually having a particular
cancer type. This does not allow to look at the composition of driver mutations in
individual patients. We wrote specific scripts to convert cohort-level predictions into
patient-level events (Vyatkin et al., 2022), which also allowed seamless integration of the
results from various third-party algorithms, including 2020plus, CHASMplus,
CompositeDriver, dNdScv, DriverNet, HotMAPS, OncodriveCLUSTL and
OncodriveFML. This is useful, as each individual driver prediction algorithm is based on
the unique combination of theoretical concepts and computational methodology and thus
has its own strengths and shortcomings, and combining results from multiple algorithms
allows to obtain more complete and balanced picture, ensuring that less driver mutations
have been missed. We also used a consensus driver gene list from 26 algorithms (Bailey
et al., 2018), applied separately to each cancer cohort of TCGA PanCanAtlas, and a list of
COSMIC Cancer Gene Census Tier 1 genes affected by somatic SNAs and CNAs (CGC), as
it represents the current gold standard of verified cancer drivers (Sondka et al., 2018).
To minimize false positives, we used only driver gene-cohort pairs that were independently
predicted by at least two of our sources (Vyatkin et al., 2022).

METHODS
Our detailed workflow is described in Methods S1. Most of the methodology, except for the
PALDRIC modification, enabling the calculation of driver strength indices, and pathway
and network analysis of top-ranked driver genes, has been previously published in
(Vyatkin et al., 2022). Here, we describe it briefly.

Source files and initial filtering
TCGA PanCanAtlas (https://www.cell.com/pb-assets/consortium/PanCancerAtlas/
PanCani3/index.html) data were used. Files containing data on sample quality, purity,
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ploidy, SNA, CNA, mRNA and miRNA expression were downloaded from https://gdc.
cancer.gov/about-data/publications/PanCan-CellOfOrigin. The file with clinical
information was downloaded from https://gdc.cancer.gov/node/905/. Only samples with
primary malignant neoplasm histology were used. All samples marked as low quality, with
cancer DNA fraction <50% or with subclonal genome fraction >50% were removed. Only
patients having data simultaneously for SNA, CNA and aneuploidy were used.

RNA filtering of CNAs
The median expression level for each gene across patients was determined. If the
expression for a given gene in a given patient was below 0.05x median value, it was
encoded as “−2”, if between 0.05x and 0.75x median value, it was encoded as “−1”, if
between 1.25x and 1.75x median value, it was encoded as “1”, if above 1.75x median value,
it was encoded as “2”, otherwise it was encoded as “0”. If the gene CNA status in a given
patient was not zero and had the same sign as the gene expression status in the same
patient, then the CNA status value was replaced with the gene expression status value,
otherwise it was replaced by zero. If the corresponding expression status for a given
gene was not found then its CNA status was not changed. We named this algorithm
GECNAV (Gene Expression-based CNA Validator) and created a GitHub repository:
https://github.com/belikov-av/GECNAV. The package used to generate data in this article
is available as Data S2.

Aneuploidy driver prediction
By drawing arm statuses randomly with replacement (bootstrapping) from the table with
chromosomal arm statuses of individual patients, for each cancer type the number of
statuses corresponding to the number of patients in that cancer type were generated and
their average was calculated. The procedure was repeated 10,000 times and the median of
averages for each cancer type was calculated. P-value for each arm alteration status was
calculated for each cancer type. To do this, first the average alteration status for a given
cancer type and a given arm was calculated and compared to the median of averaged
bootstrapped arm alteration statuses for this cancer type. If the average status was higher
than zero and the bootstrapped median, the number of bootstrapped statuses for this
cancer type that are higher than the average status was counted and divided by 5,000. If the
average status was lower than zero and the bootstrapped median, the number of
bootstrapped statuses for this cancer type that are lower than the average status was
counted and divided by 5,000. Other values were ignored (cells left empty). For each cancer
type, the Benjamini–Hochberg procedure with FDR = 5% was applied to P-values and
passing P-values were encoded as “DAG” (Driver arm gain) or “DAL” (Driver arm loss).
The other cells were made empty. Alterations were classified according to the following
rules: if the arm status in a given patient was “−1” and the average alteration status of a
given arm in the same cancer type was “DAL”, then the alteration in the patient was
classified as “DAL”. If the arm status in a given patient was “1” and the average alteration
status of a given arm in the same cancer type was “DAG”, then the alteration in the patient
was classified as “DAG”. In all other cases an empty cell was written. The same procedures
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as described above for chromosomal arms were repeated for the whole chromosomes.
Chromosome drivers were considered to override arm drivers, so if a chromosome had
“DCL” (Driver chromosome loss) or “DCG” (Driver chromosome gain), no alterations
were counted on the arm level, to prevent triple counting of the same event. We named this
algorithm ANDRIF (ANeuploidy DRIver Finder) and created a GitHub repository: https://
github.com/belikov-av/ANDRIF. The package used to generate data in this article is
available as Data S3.

SNA classification
Frameshift deletions and insertions, nonsense, nonstop and translation start site mutations
were considered potentially inactivating; in frame deletions, insertions and de novo start, as
well as missense mutations, were considered potentially hyperactivating; de novo start out
of frame and silent mutations were considered passengers; the rest were considered
unclear. The sum of all alterations of each type in all patients was calculated for each
gene. Genes containing only SNAs with unclear role (likely, noncoding genes) were
removed. Next, the Hyperactivating to Inactivating SNA Ratio (HISR) was calculated for
each gene as

HISR ¼ Number of hyperactivating SNAsþ 1
Number of inactivating SNAsþ 1

(1)

Genes for which the sum of hyperactivating, inactivating and passenger SNAs was less
than 10 were removed to ensure sufficient precision of HISR calculation. We named
this algorithm SNADRIF (SNA DRIver Finder) and created a GitHub repository:
https://github.com/belikov-av/SNADRIF. The package used to generate data in this article
is available as Data S4.

Driver prediction algorithms sources
Lists of driver genes and mutations predicted by various algorithms applied to
PanCanAtlas data were downloaded from https://gdc.cancer.gov/about-data/publications/
pancan-driver (2020plus, CompositeDriver, DriverNet, HotMAPS, OncodriveFML),
https://karchinlab.github.io/CHASMplus/ (CHASMplus), as well as received by personal
communication from Francisco Martínez-Jiménez, Institute for Research in Biomedicine,
Barcelona, francisco.martinez@irbbarcelona.org (dNdScv, OncodriveCLUSTL,
OncodriveFML). All genes and mutations with q-value > 0.05 were removed. Additionally,
a consensus driver gene list from 26 algorithms applied to PanCanAtlas data was
downloaded from (Bailey et al., 2018) and COSMIC Cancer Gene Census (CGC) Tier 1
gene list was downloaded from https://cancer.sanger.ac.uk/cosmic/census?tier=1. Only
genes affected by somatic SNAs and CNAs present in the TCGA cancer types were used for
further analyses from the CGC list. Cancer type names in the CGC list were manually
converted to the closest possible TCGA cancer type abbreviation. Entrez Gene IDs
were identified for each gene using HUGO Symbol and the NCBI Gene database:
http://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz.
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Conversion of population-level data to patient-level data
Cohort-level lists of driver genes predicted by third-party algorithms were matched to the
patient-level SNA data via the simultaneous matching of the Entrez Gene ID and cancer
type. Cohort-level lists of driver mutations were matched to the patient-level SNA data via
the Ensembl Transcript ID, nucleotide/amino acid substitution and cancer type.
All cohort-level lists were matched to the patient-level CNA data via the Entrez Gene ID
and cancer type. Resulting patient-level SNA and CNA lists were combined and duplicates
removed.

Driver event classification and analysis
Third-party algorithm outputs converted to patient-level as described above were
combined and all TCGA Barcode-Entrez Gene ID (patient-gene) pairs not present in at
least two output files were removed. Numbers of hyperactivating and inactivating SNAs for
each TCGA Barcode-Entrez Gene ID pair were taken from the SNADRIF output, in case of
no match zeros were written. A HISR value for each Entrez Gene ID was also taken from
the SNADRIF output, in case of no match an empty cell was left. A CNA status for each
TCGA Barcode-Entrez Gene ID pair was taken from the GECNAV output, in case of no
match zero was written. Each TCGA Barcode-Entrez Gene ID pair was classified according
to the Table 1.

The names of individual genes, chromosome arms or full chromosomes affected by
driver events of each type were catalogued for each patient. Information on the driver
chromosome and arm losses and gains for each patient was taken from the ANDRIF
output. The number of various types of driver events in individual genes, chromosome
arms or full chromosomes was calculated for each cancer type, tumour stage, age group, as
well as for patients with each total number of driver events from 1 to 100. Analyses were
performed for the total population and for males and females separately, and histograms of
top 10 driver events in each class and overall were plotted for each group.

Driver Strength Index (DSI)

Table 1 Driver event classification rules.

Driver type Number of
nonsynonymous SNAs

Number of
inactivating SNAs

HISR CNA status Count as …
driver event(s)

SNA-based oncogene ≥1 0 >5 0 1

CNA-based oncogene 0 0 >5 1 or 2 1

Mixed oncogene ≥1 0 >5 1 or 2 1

SNA-based tumour suppressor ≥1 ≥0 ≤5 0 1

CNA-based tumour suppressor 0 0 ≤5 −1 or −2 1

Mixed tumour suppressor ≥1 ≥0 ≤5 −1 or −2 1

Passenger 0 0 0 0

Low-probability driver All the rest 0

Belikov et al. (2022), PeerJ, DOI 10.7717/peerj.13860 6/30

http://dx.doi.org/10.7717/peerj.13860
https://peerj.com/


DSI A ¼
X100

i¼1

p A i

i p i
(2)

and Normalized Driver Strength Index (NDSI)

NDSI A ¼
P100

i¼1

p A i

i p i

P100

i¼1

p A i

p i

(3)

were calculated, where p A i is the number of patients with a driver event in the gene/
chromosome A amongst patients with i driver events in total; p i is the number of patients
with i driver events in total. We limited i to 100 because we have previously shown that
there are on average 12 driver events per tumour, patients with one and seven driver
events per tumour are the most frequent, and there are very few patients with more than 40
events (Vyatkin et al., 2022). To avoid contamination of NDSI-ranked driver event lists
with very rare driver events and to increase precision of the index calculation, all events
that were present in less than 10 patients in each driver event class were removed.
To compose the top-(N)DSI-ranked driver list, the lists of drivers from various classes were
combined, and drivers with lower (N)DSI in case of duplicates and all drivers with
NDSI < 0.05 were removed. We named this algorithm PALDRIC GENE and created a
GitHub repository: https://github.com/belikov-av/PALDRIC_GENE. The package used to
generate data in this article is available as Data S5.

Pathway and network analysis of top-(N)DSI-ranked driver genes
First, the chromosome arms and full chromosomes were removed from the top-(N)DSI-
ranked driver lists, as external pathway and network analysis services can work only with
genes.

Next, top 50 DSI-ranked genes and top 50 NDSI-ranked genes were selected, to facilitate
proper comparison. The resulting lists were uploaded as Entrez Gene IDs to the “Reactome
v77 Analyse gene list” tool (https://reactome.org/PathwayBrowser/#TOOL=AT) (Fabregat
et al., 2018). Voronoi visualizations (Reacfoam) were exported as images. The resulting
lists were also uploaded as Entrez Gene IDs to the “KEGG Mapper – Color” tool (https://
www.genome.jp/kegg/mapper/color.html) (Kanehisa & Sato, 2020), “hsa” Search mode
was selected, the search executed and the top result-“Pathways in cancer - Homo sapiens
(human)” (hsa05200) was selected for mapping. The resulting images were exported.
The data were also analysed in Cytoscape 3.8.2 (https://cytoscape.org) (Shannon et al.,
2003). The BioGRID: Protein-Protein Interactions (H. sapiens) network was imported and
then (N)DSI values appended from the top 50 (N)DSI-ranked driver list. First, Degree
Sorted Circle Layout was selected and genes not within the circle were removed. Node Fill
Color was mapped to (N)DSI values with Continuous Mapping and Node Height and
Width were mapped to the degree.layout parameter (number of connections) with
Continuous Mapping. Then, yFiles Organic Layout was selected and the legend appended.
The resulting images were exported.
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RESULTS
We calculated the number of various types of driver events in individual genes,
chromosome arms or full chromosomes for each cancer type, tumour stage, age group, as
well as for patients with each total number of driver events from 1 to 100. We performed
the analyses for the total population and for males and females separately, and, for each
group, plotted the histograms of top 10 driver events in each class and overall (for data and
graphs see Data S1). In Fig. 1 we present the overall ranking of genes for all TCGA
PanCanAtlas cohorts combined. It can be seen that PIK3CA is the oncogene with the
highest number of SNAs, as well as the highest number of simultaneous occurrences of
SNAs and gene amplifications. MYC is the oncogene with the highest number of
amplifications. TP53 is the tumour suppressor with the highest number of SNAs, as well as
the highest number of instances of simultaneous occurrences of an SNA in one allele and a
deletion of the other allele. It is also the top mutated gene when driver events of all classes
are counted. CDKN2A and PTEN are tumour suppressors with the highest number of
deletions. Losses of chromosomes 13 and 22 are the most frequent cancer-promoting
chromosome losses, whereas gains of chromosomes 7 and 20 are the most frequent
cancer-promoting chromosome gains. Losses of 8p and 17p arms are the most frequent
cancer-promoting chromosome arm losses, whereas gains of 1q and 8q arms are the most
frequent cancer-promoting chromosome arm gains. Overall, these results are expected and
indicate that our analytic pipelines work as they should.

Next, we calculated the Driver Strength Index (DSI) (see Eq. (2) in Methods).
Surprisingly, we do not see much change compared to the simple frequency-of-mutation
approach (Fig. 2). The only dramatic difference is that BRAF became the top SNA-based
oncogene according to DSI, whereas PIK3CA dropped to the second place, lagging behind
by a wide margin. Also, PIK3CA overtook MYC as the top CNA-based oncogene, and
PTEN displaced CDKN2A from the top CNA-based tumour suppressor spot. Moreover,
members of several gene families appeared in the top 10 lists, such as KRAS, NRAS and
HRAS in the SNA-based oncogenic events list, histones HIST2H2BE and HIST1H3B in the
CNA-based oncogenic events list, or lysine methyltransferases KMT2C and KMT2D in the
SNA-based tumour suppressor events list. This indicates that our approach is indeed
meaningfully selecting for some biological attributes, which are not selected by simple
frequency sorting. Finally, multiple small changes of ranking positions happened,
nevertheless not affecting the overall picture. We think the reason for the limited effect of
changes is that DSI is still very much affected by the overall frequency of gene mutation,

due to
p A i

p i
component. Hence, to uncover the true driver strength unrelated to the

mutation frequency, further normalization is required.
Therefore, we propose the Normalized Driver Strength Index (NDSI) that corrects for

the effects of mutation frequencies (see Eq. (3) in Methods). As can be seen in Fig. 3, this
time the rankings are completely different from both DSI and frequency-based
approaches. GTF2I conquers the top spot amongst SNA-based oncogenes and overall,
SPOP becomes number one CNA-based oncogene, and MET occupies the first line of
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mixed oncogene rating. ATRX, CSDE1 and NF2 become the top SNA-based, CNA-based
and mixed tumour suppressors, respectively. NDSI reveals the losses of chromosomes 12
and 3 as the strongest cancer-promoting chromosome losses, whereas the gain of

Figure 1 Top 10 driver events from different molecular and functional classes sorted by the number of occurrences in TCGA PanCanAtlas.
Full-size DOI: 10.7717/peerj.13860/fig-1
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chromosome 17 as the strongest cancer-promoting chromosome gain. NDSI shows that
the losses of 19q and 12p arms are the strongest cancer-promoting chromosome arm
losses, whereas the gain of 5q arm is the strongest cancer-promoting chromosome arm
gain.

Figure 2 Top 10 driver events from different molecular and functional classes sorted by DSI. Full-size DOI: 10.7717/peerj.13860/fig-2
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Like DSI, NDSI is able to select for specific gene families. Two members of the guanine
nucleotide-binding protein family, GNAQ and GNA11, appeared on the top 10 SNA-based
oncogenic events and top 10 driver events of all classes lists (Fig. 3). Additionally, one more
G protein, GNAS, appeared on the top 50 NDSI-ranked driver list (Table 2). Of note, no

Figure 3 Top 10 driver events from different molecular and functional classes sorted by NDSI. Full-size DOI: 10.7717/peerj.13860/fig-3
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Table 2 Top 50 DSI- and NDSI-ranked genes.

Rank Entrez ID Symbol DSI Rank Entrez ID Symbol NDSI

1 7157 TP53 1.44664 1 100093631 GTF2I 0.6389

2 673 BRAF 1.00268 2 673 BRAF 0.58335

3 5728 PTEN 0.93317 3 1964 EIF1AX 0.46362

4 5290 PIK3CA 0.9215 4 9203 ZMYM3 0.31661

5 1029 CDKN2A 0.60404 5 2776 GNAQ 0.27502

6 5925 RB1 0.57932 6 7812 CSDE1 0.26198

7 3845 KRAS 0.54447 7 2767 GNA11 0.22382

8 8289 ARID1A 0.54286 8 8731 MET 0.21464

9 4609 MYC 0.46527 9 546 ATRX 0.20772

10 2064 ERBB2 0.41563 10 3417 IDH1 0.20172

11 2033 EP300 0.39411 11 3169 FOXA1 0.18161

12 2195 FAT1 0.39042 12 8450 CUL4B 0.18057

13 55294 FBXW7 0.37252 13 51343 CDH1 0.158

14 472 ATM 0.35055 14 7428 VHL 0.15612

15 3417 IDH1 0.29994 15 3418 IDH2 0.15364

16 4780 NFE2L2 0.2974 16 2475 MTOR 0.15247

17 1499 CTNNB1 0.29 17 4771 NF2 0.15232

18 4893 NRAS 0.27847 18 29072 SETD2 0.1507

19 1387 CREBBP 0.2738 19 8880 FUBP1 0.15022

20 5295 PIK3R1 0.27316 20 4893 NRAS 0.14785

21 4089 SMAD4 0.26931 21 207 AKT1 0.1468

22 196 AHR 0.26508 22 4615 MYD88 0.14625

23 9611 NCOR1 0.25715 23 23152 CIC 0.14165

24 1956 EGFR 0.25138 24 51585 PCF11 0.14083

25 7403 KDM6A 0.24971 25 8242 KDM5C 0.13977

26 9223 BAP1 0.24578 26 1031 CDKN2C 0.13712

27 8085 KMT2D 0.24363 27 6597 SMARCA4 0.13643

28 4297 MLL 0.23565 28 25836 NIPBL 0.13291

29 5624 APC 0.22422 29 7114 TMSB4X 0.12846

30 546 ATRX 0.21608 30 2778 GNAS 0.12708

31 2068 ERCC2 0.21513 31 26137 ZBTB20 0.1269

32 9757 MLL2 0.20883 32 84433 CARD11 0.12676

33 196528 ARID2 0.20073 33 3265 HRAS 0.12612

34 58508 MLL3 0.1921 34 55193 PBRM1 0.12463

35 58508 KMT2C 0.18892 35 8405 SPOP 0.12197

36 3265 HRAS 0.17947 36 6921 TCEB1 0.1115

37 1105 CHD1 0.17591 37 4089 SMAD4 0.10913

38 2065 ERBB3 0.17366 38 5781 PTPN11 0.10708

39 11168 PSIP1 0.17344 39 92 ACVR2A 0.10109

40 8349 HIST2H2BE 0.16951 40 3091 HIF1A 0.10082

41 5934 RBL2 0.16701 41 9223 BAP1 0.10069
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members of this family are present on the top 50 DSI-ranked driver list (Table 2).
Two members of the isocitrate dehydrogenase family, IDH1 and IDH2, appeared on the
top 10 SNA-based oncogenic events list, whereas fibroblast growth factor receptors FGFR2
and FGFR3 appeared on the top 10 mixed oncogenic events list (Fig. 3). The ability of
NDSI to prioritize members of specific protein families suggests that this index has an
actual biological meaning.

Next, we wanted to analyse top DSI- and NDSI-ranked genes using several common
gene list analysis tools. To this aim, we combined the lists of drivers from various classes.
If the same gene was affected by more than one kind of alteration, we chose the alteration
type with the highest DSI or NDSI, depending on the analysis. Also, we removed the data
on chromosome arms and full chromosomes, as external pathway and network analysis
tools can work only with genes. Then, we selected top 50 DSI- and NDSI-ranked genes.
The resulting lists can be seen in Table 2.

First, we analysed the top 50 DSI- and NDSI-ranked genes for overrepresentation in
various Reactome pathways. It can be seen in Fig. 4A that top 50 DSI-ranked genes are
significantly overrepresented in such categories as signalling by NOTCH, signalling by
PTK6, ESR-mediated signalling, PIP3 activates AKT signalling, signalling by receptor
tyrosine kinases, signalling by WNT, signalling by erythropoietin, RAF/MAP kinase
cascade, signalling by TGF-beta receptor complex, mitotic cell cycle, meiosis, cell cycle
checkpoints, DNA double-stand break repair, generic transcription pathway, epigenetic
regulation of gene expression, RNA polymerase I transcription, circadian clock, chromatin
modifying enzymes, diseases of signal transduction by growth factor receptors and second
messengers, diseases of cellular senescence, diseases of programmed cell death, cellular
responses to stress, activation of HOX genes during differentiation, and transcriptional
regulation of granulopoiesis. Top 50 NDSI-ranked genes are significantly overrepresented
in even fewer categories (Fig. 4B)–signalling by PTK6, extra-nuclear oestrogen signalling,
negative regulation of PI3K/AKT signalling, signalling by receptor tyrosine kinases, GPCR
downstream signalling, erythropoietin activates RAS, RAF/MAP kinase cascade, cytokine
signalling in immune system, adaptive immune system, haemostasis, generic transcription

Table 2 (continued)

Rank Entrez ID Symbol DSI Rank Entrez ID Symbol NDSI

42 8358 HIST1H3B 0.16666 42 4221 MEN1 0.10049

43 23019 CNOT1 0.1655 43 3845 KRAS 0.09984

44 8454 CUL1 0.16319 44 2625 GATA3 0.09885

45 55193 PBRM1 0.15965 45 841 CASP8 0.09882

46 677 ZFP36L1 0.15549 46 9361 PIM1 0.09702

47 10735 STAG2 0.15149 47 2263 FGFR2 0.09696

48 285382 C3orf70 0.14784 48 2559 GABRA6 0.09553

49 2261 FGFR3 0.14772 49 1956 EGFR 0.09175

50 4763 NF1 0.14239 50 54894 RNF43 0.09159
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Figure 4 Significant overrepresentation of top 50 DSI-(A) and NDSI-(B) ranked genes in Reactome v77 pathways. The yellow colour indicates
significance (see the scale at the upper right corner). Full-size DOI: 10.7717/peerj.13860/fig-4
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pathway, chromatin modifying enzymes, and diseases of signal transduction by growth
factor receptors and second messengers. Surprisingly, several large categories often
deemed important for cancer – cell cycle, DNA replication, DNA repair, autophagy,
cellular responses to stress, programmed cell death, cell-cell communication and
metabolism – are not affected.

Next, we mapped the top 50 DSI- and NDSI-ranked genes to KEGG cancer pathways.
Figure 5A and Table 2 together suggest that top DSI-ranked genes comprise the EGFR/
ERBB2/FGFR3-KRAS/NRAS/HRAS-BRAF-MYC pathway, PIK3CA-PTEN pathway,
CTNNB1-MYC pathway, TP53-CDKN2A-RB1 pathway and MYC-CUL1-RB1 pathway.
Figure 5B and Table 2 together suggest that top NDSI-ranked genes comprise the EGFR/
FGFR2/GNAQ/GNA11-NRAS/HRAS/KRAS-BRAF pathway, AKT1-MTOR pathway,
and TCEB1-VHL-HIF1A pathway.

Finally, we explored protein-protein interactions in the top 50 DSI- and NDSI-ranked
genes using the BioGRID network. Figure 6A shows that although CTNNB1 and EGFR are
the biggest hubs of the top-DSI-ranked gene network, their DSI values are much lower
than those of BRAF and PTEN, which have fewer connections. Notably, TP53 exhibited the
highest DSI value and second-highest connectedness. Similarly, Fig. 6B shows that
although EGFR, AKT1 and HRAS are the biggest, centrally located hubs of the top-NDSI-
ranked gene network, their NDSI values are much lower than those of GTF2I, BRAF and
ZMYM3, located on the periphery of the network. Moreover, the top-NDSI-ranked gene
network has much fewer edges than the top-DSI-ranked gene network, despite containing
presumably stronger drivers. All of this supports our initially proposed notion that
network centrality does not equal driver strength.

DISCUSSION
NDSI places GTF2I on the top spot both amongst the strongest SNA-based oncogenes and
amongst the strongest drivers averaged across all classes. The GTF2I-encoded protein
binds to the initiator element (Inr) and E-box element in promoters and functions as a
regulator of transcription. The GTF2I c.74146970 T > A mutation was detected in 82% of
type A and 74% of type AB thymomas (Petrini et al., 2014). GTF2I β and δ isoforms are
expressed in thymomas, and both mutant isoforms are able to stimulate cell proliferation
in vitro (Petrini et al., 2014). Recently, it has been shown that expression of mutant GTF2I
alters the transcriptome of normal thymic epithelial cells and upregulates several
oncogenic genes (Kim et al., 2020). GTF2I L424H knockin cells exhibit cell transformation,
aneuploidy, and increased tumour growth and survival under glucose deprivation or DNA
damage (Kim et al., 2020). Our analysis also shows frequent mutations of GTF2I in the
TCGA THYM (thymoma) cohort. GTF2I has been recently named gene of the month and
its role in cancer reviewed (Nathany, Tripathi & Mehta, 2021).

SPOP is categorized by NDSI as the strongest CNA-based oncogene. SPOP encodes a
protein that is a component of a cullin-RING-based E3 ubiquitin-protein ligase complex
that mediates the ubiquitination of target proteins, leading most often to their proteasomal
degradation. SPOP is the most commonly mutated gene in primary prostate cancer
(Barbieri et al., 2012). SPOP mutations in prostate cancer result in impaired
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Figure 5 Mapping of top 50 DSI-(A) and NDSI-(B) ranked genes to the KEGG “Pathways in cancer” (hsa05200) map. The yellow colour
indicates a top 50 DSI-ranked gene. Full-size DOI: 10.7717/peerj.13860/fig-5
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homology-directed repair of double strand breaks and are associated with genomic
instability (Boysen et al., 2015). As most cancer-associated mutations in SPOP are missense
and almost none are frameshift or nonsense, PALDRIC classifies it as an oncogene.
However, SPOP is usually viewed as a tumour suppressor (Clark & Burleson, 2020).
Recently it has been discussed that SPOP actually has a dual role, and while being a tumour
suppressor in prostate cancer it performs as an oncogene in kidney cancer (Wang et al.,
2020). Indeed, cytoplasmic accumulation of SPOP leads to the ubiquitination and
degradation of multiple regulators of cellular proliferation and apoptosis, including the
tumour suppressor PTEN, ERK phosphatases, the proapoptotic molecule DAXX, and the
Hedgehog pathway transcription factor GLI2, and is sufficient to induce tumorigenesis in
clear cell renal cell carcinoma (Li et al., 2014). Our analysis shows frequent mutations and
amplifications of SPOP in TCGA PRAD (prostate adenocarcinoma) and UCEC (uterine
corpus endometrial carcinoma) cohorts.

MET is the strongest mixed (SNA+CNA) oncogene and the second-strongest CNA-
based oncogene, according to the NDSI rating. MET encodes a receptor tyrosine kinase
that transduces signals from the extracellular space into the cytoplasm by binding to the
hepatocyte growth factor ligand. MET regulates many physiological processes including

Figure 6 The BioGRID protein-protein interactions network of top 50 DSI-(A) and NDSI-(B) ranked genes. The node colour is mapped to DSI
values and the node size is mapped to the degree of connectedness. Genes without connections were removed.

Full-size DOI: 10.7717/peerj.13860/fig-6
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proliferation, morphogenesis and survival. Ligand binding at the cell surface induces
dimerization and autophosphorylation of MET on its intracellular domain that provides
docking sites for downstream signalling molecules. Following activation by its ligand, MET
interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter
GAB1. Recruitment of these downstream effectors by MET leads to the activation of
several signalling cascades including the RAS-ERK, PI3K-AKT, or PLCG-PKC. Mutations
in MET are associated with papillary renal cell carcinoma, hepatocellular carcinoma, and
various head and neck cancers. Amplification and overexpression of this gene are also
associated with multiple human cancers (Comoglio, Trusolino & Boccaccio, 2018; Recondo
et al., 2020). Our analysis shows frequent mutations and amplifications of MET in TCGA
KIRP (kidney renal papillary cell carcinoma) and LUAD (lung adenocarcinoma) cohorts.

ATRX is ranked by NDSI as the strongest SNA-based tumour suppressor, 9th strongest
CNA-based tumour suppressor, 5th strongest mixed (SNA+CNA) tumour suppressor and
9th strongest driver averaged across all classes. ATRX (Alpha-Thalassemia/Mental
Retardation Syndrome, X-Linked) encodes a protein that contains an ATPase/helicase
domain, and thus it belongs to the SWI/SNF family of chromatin remodelling proteins.
ATRX together with DAXX encode a complex that deposits the histone variant H3.3 into
repetitive heterochromatin, including retrotransposons, pericentric heterochromatin, and
telomeres, the latter of which show deregulation in ATRX/DAXX-mutant tumours
(Heaphy et al., 2011; Dyer et al., 2017). ATRX loss induces extensive changes in chromatin
accessibility in both repetitive DNA regions and non-repetitive regulatory regions (Liang
et al., 2020). These changes are highly correlated with changes in transcription, which lead
to alterations in cancer-related signalling pathways, such as upregulation of the TGF-β
pathway and downregulation of the cadherin family of proteins (Liang et al., 2020).
Our analysis shows frequent mutations and deletions of ATRX in TCGA ACC, GBM, LGG
and SARC cohorts.

CSDE1 is ranked by NDSI as the strongest CNA-based tumour suppressor and 5th

strongest driver averaged across all classes. CSDE1 encodes for an RNA-binding protein
involved in translationally coupled mRNA turnover. CSDE1 not only promotes and
represses the translation of RNAs but also increases and decreases the abundance of RNAs
(Guo et al., 2020). CSDE1 loss-of-function mutations and deletions define a Wnt-altered
subtype of pheochromocytomas and paragangliomas (Fishbein et al., 2017). Our analysis
also shows frequent deletions of CSDE1 in the TCGA PCPG (pheochromocytoma and
paraganglioma) cohort.

NF2 is ranked by NDSI as the strongest mixed tumour suppressor and 3rd strongest
CNA-based tumour suppressor. NF2 encodes Merlin (Moesin-ezrin-radixin-like protein),
also known as Neurofibromin 2 and Schwannomin. Merlin is a tumour suppressor
classically known for its ability to induce contact-dependent growth inhibition (Mota &
Shevde, 2020). Loss-of-function mutations or deletions in NF2 cause neurofibromatosis
type 2, a multiple tumour forming disease of the nervous system, characterized by the
development of bilateral schwannomas, as well as meningiomas and ependymomas
(Petrilli & Fernández-Valle, 2016). NF2 is also mutated and deleted in mesotheliomas
(Sekido et al., 1995), clear cell renal cell carcinomas (Dalgliesh et al., 2010), collecting duct
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carcinomas of the kidney (Pal et al., 2016), and renal cell carcinomas with sarcomatoid
dedifferentiation (Malouf et al., 2016). Our analysis shows frequent mutations and
deletions of NF2 in TCGA KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal
papillary cell carcinoma) and MESO (mesothelioma) cohorts.

Interestingly, NDSI prioritized three members of the guanine nucleotide-binding
protein (G protein) family: GNAQ, GNA11, and GNAS. Guanine nucleotide-binding
proteins function as transducers downstream of G protein-coupled receptors (GPCRs) in
numerous signalling cascades. The alpha chain contains the guanine nucleotide binding
site and alternates between an active, GTP-bound state and an inactive, GDP-bound state.
Signalling by an activated GPCR promotes GDP release and GTP binding. The alpha
subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating
the signal. The GNAQ-encoded protein, an a subunit in the Gq class, couples a seven-
transmembrane-domain receptor to activation of PLC β. Some GNAQ cancer mutants
display normal basal activity and GPCR-mediated activation, but deactivate slowly due to
GTPase activating protein (GAP) insensitivity (Garcia-Marcos, Maziarz & Leyme, 2018).
GNAQmutations occur in about half of uveal melanomas, representing the most common
known oncogenic mutation in this cancer (Onken et al., 2008). The presence of this
mutation in tumours at all stages of malignant progression suggests that it is an early event
in uveal melanoma (Onken et al., 2008). Mutations affecting Q209 in GNAQ were present
in 45% of primary uveal melanomas and 22% of uveal melanoma metastases (Van
Raamsdonk et al., 2010). Our analysis also shows frequent mutations of GNAQ in the
TCGA UVM (uveal melanoma) cohort. Recently, of the 11,111 patients screened, 117
patients have been found to harbour GNAQ/GNA11 mutations, in melanoma, colorectal,
liver, glioma, lung, bile duct and gastric cancers (Yang et al., 2020). GNA11 encodes
subunit a-11 in the Gq class and acts as an activator of PLC. Mutations affecting Q209 in
GNA11 were present in 32% of primary uveal melanomas and 57% of uveal melanoma
metastases (Van Raamsdonk et al., 2010). Our analysis also shows frequent mutations of
GNA11 in the TCGA UVM (uveal melanoma) cohort. GNAS encodes subunit a in the Gs
class and participates in the activation of adenylyl cyclases, resulting in increased levels of
the signalling molecule cAMP. GNAS functions downstream of several GPCRs, including
beta-adrenergic receptors. GNAS mutations are found in 67% of intraductal papillary
mucinous neoplasms and many associated pancreatic ductal adenocarcinomas (Takano
et al., 2014). High GNAS expression in a breast tumour tissue showed a close correlation
with the reduced overall survival, frequent distal metastasis, advanced clinical stage,
stronger cell proliferation and enhanced cancer cell migration (Jin et al., 2019). Recently, it
has been shown that GNAS promotes the development of small cell lung cancer via PKA
(Coles et al., 2020). Our analysis shows frequent mutations and amplifications of GNAS in
TCGA COAD (colon adenocarcinoma), LIHC (liver hepatocellular carcinoma) and READ
(rectum adenocarcinoma) cohorts. The current knowledge on cancer-associated
alterations of GPCRs and G proteins has been recently reviewed (Larribère & Utikal,
2020). Strikingly, approximately 36% of all drugs approved by the US Food and Drug
Administration during the past three decades target GPCRs (Rask-Andersen, Almén &
Schiöth, 2011).
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Two members of isocitrate dehydrogenase family, IDH1 and IDH2, appeared on the top
10 SNA-based oncogenic events list as ranked by NDSI. The protein encoded by IDH1 is
the NADP+-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes.
The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production.
The protein encoded by IDH2 is the NADP+-dependent isocitrate dehydrogenase found
in the mitochondria. It plays a role in intermediary metabolism and energy production.
The most frequent mutations R132 (IDH1) and R172 (IDH2) involve the active site and
result in simultaneous loss of normal catalytic activity, the production of a-ketoglutarate,
and gain of a new function, the production of 2-hydroxyglutarate (Yan et al., 2009; Ward
et al., 2010; Yang et al., 2012; Bendahou et al., 2020). 2-hydroxyglutarate is structurally
similar to a-ketoglutarate, and acts as an a-ketoglutarate antagonist to competitively
inhibit multiple a-ketoglutarate–dependent dioxygenases, including both lysine histone
demethylases and the 10-11 translocation family of DNA hydroxylases (Yang et al., 2012).
Abnormal histone and DNA methylation are emerging as a common feature of tumours
with IDH1 and IDH2 mutations and may cause altered stem cell differentiation and
eventual tumorigenesis (Yang et al., 2012). In acute myeloid leukaemia, IDH1 and
IDH2 mutations have been associated with the worse outcome, shorter overall survival,
and normal karyotype (Marcucci et al., 2010). All the 1p19q co-deleted gliomas have
mutations in IDH1 or IDH2 (Labussière et al., 2010). Our analysis shows frequent
mutations of IDH1 and IDH2 in the TCGA LGG (lower grade glioma) cohort and frequent
amplifications of IDH1 in LIHC (liver hepatocellular carcinoma), as well as less frequent
mutations and amplifications of IDH1 in CHOL, GBM, PRAD and SKCM.

Two fibroblast growth factor receptors FGFR2 and FGFR3 appeared on the top 10
mixed oncogenic events list as ranked by NDSI. The extracellular region of these proteins,
composed of three immunoglobulin-like domains, interacts with fibroblast growth factors,
leading to the activation of a cytoplasmic tyrosine kinase domain that phosphorylates
PLCG1, FRS2 and other proteins. This sets in motion a cascade of downstream signals,
including RAS-MAPK and PI3K-AKT pathways, ultimately influencing cell proliferation,
differentiation, migration and apoptosis. FGFR aberrations were found in 7.1% of cancers,
with the majority being gene amplification (66% of the aberrations), followed by mutations
(26%) and rearrangements (8%) (Helsten et al., 2016). FGFR1 was affected in 3.5% of 4,853
patients; FGFR2 in 1.5%; FGFR3 in 2.0%; and FGFR4 in 0.5% (Helsten et al., 2016).
The cancers most commonly affected were urothelial (32% FGFR-aberrant), breast (18%),
endometrial (∼13%), squamous lung (∼13%) and ovarian (∼9%) (Helsten et al., 2016).
Our analysis also shows frequent mutations and amplifications of FGFR2 in TCGA LUSC
(lung squamous cell carcinoma) and UCEC (uterine corpus endometrial carcinoma)
cohorts, as well as frequent mutations and amplifications of FGFR3 in BLCA (bladder
urothelial carcinoma), HNSC (head and neck squamous cell carcinoma) and LUSC (lung
squamous cell carcinoma) cohorts.

Some of the drivers prioritized by NDSI are highly tissue-specific. For example, GTF2I is
specific to thymomas, whereas GNAQ and GNA11 are specific to uveal melanomas.
As discussed above, in many cases a mutation in one of these genes is able to
singlehandedly drive cancer in the corresponding tissue (Amaro et al., 2017). This
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undoubtedly makes them very strong drivers, despite being able to drive cancer in only one
tissue type. A contrasting example would be TP53 which is the most common cancer
driver in many tissues, but its individual strength is estimated as relatively low by NDSI, as
it requires many other drivers to cooperate for cell transformation. Thus, it is important to
differentiate the “weak – strong” axis from the “tissue-specific – universal” axis, as these
appear to be orthogonal.

A puzzling question that remains in cancer genomics is why mutations in a given driver
gene are typically confined to one or a few cancer types, resulting in each cancer type
having its own unique set of driver genes (Iranzo, Martincorena & Koonin, 2018).
As mutations are supposed to happen randomly as a result of stochastic mutagenesis
processes (Belikov, 2017; Belikov, Vyatkin & Leonov, 2021), it is logical to suggest that
mutations in different tissues can affect the same genes. However, the same mutation can
be selected for in some tissues and selected against in others (Levine, Jenkins & Copeland,
2019). This selection most likely depends on the tissue-specific epigenetic profiles and
microenvironments of the cancer-initiating stem or progenitor cells (Hass, von der Ohe &
Ungefroren, 2020; Shlyakhtina, Moran & Portal, 2021). Thus, investigating the interplay
between stem cell mutations, epigenetic profiles and microenvironments in various tissues
appears to be a promising and exciting avenue for future research.

While both DSI- and NDSI-ranked top 50 genes are significantly overrepresented in
such Reactome categories as signalling by PTK6, ESR-mediated signalling, PIP3 activates
AKT signalling, signalling by receptor tyrosine kinases, signalling by erythropoietin, RAF/
MAP kinase cascade, generic transcription pathway, chromatin modifying enzymes, and
diseases of signal transduction by growth factor receptors and second messengers, there
are also multiple differences. Top 50 DSI-ranked genes are additionally overrepresented in
signalling by NOTCH, signalling by WNT, signalling by TGF-beta receptor complex,
mitotic cell cycle, meiosis, cell cycle checkpoints, DNA double-stand break repair,
epigenetic regulation of gene expression, RNA polymerase I transcription, circadian clock,
diseases of cellular senescence, diseases of programmed cell death, and cellular responses
to stress. This suggests that although these pathways are frequently mutated in cancer,
none of them possesses strong tumour-promoting activity on its own. On the other hand,
top 50 NDSI-ranked genes are additionally overrepresented in GPCR downstream
signalling, which suggests that although this pathway is mutated more rarely in cancer, it
nevertheless has a very strong tumour-promoting activity. It is also peculiar why neither
DSI- nor NDSI-ranked top 50 genes are significantly overrepresented in DNA replication,
autophagy, and metabolism categories. This may indicate that the role of these processes in
oncogenesis is overestimated.

The major signalling pathway activated by mutations in both top DSI- and top
NDSI-ranked driver genes is the RAS-RAF pathway. Although the pathway can be
triggered viamutations in EGFR, FGFR, NRAS, HRAS, KRAS and BRAF genes, all of which
are in the top 50 of both DSI and NDSI rankings, it can be additionally engaged through
mutations in the top DSI-ranked driver ERBB2 and the top NDSI-ranked drivers GNAQ
and GNA11. This suggests that ERBB2 driver mutations occur more frequently but are
weaker than GNAQ and GNA11 driver mutations. Also, top DSI-ranked driver mutations
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affect the upper part of the PI3K-AKT-MTOR pathway via constitutive PIK3CA activation
or PTEN inactivation, whereas top NDSI-ranked mutations affect the lower part of the
pathway by activating AKT1 and MTOR. Similarly, this suggests that PIK3CA and PTEN
driver mutations occur more frequently but are weaker than AKT1 and MTOR driver
mutations. Moreover, the CTNNB1-MYC pathway, TP53-CDKN2A-RB1 pathway and
MYC-CUL1-RB1 pathway are engaged only by top DSI-ranked drivers, indicating their
relative weakness in cancer promotion despite high frequency of mutation, whereas the
TCEB1-VHL-HIF1A pathway—only by top NDSI-ranked drivers, suggesting that this
pathway has very strong tumour-promoting potential whilst being mutated more rarely.

It is interesting to discuss how driver strength should be estimated for genes responsible
for the mutator phenotype (Loeb, 2011). On one hand, it appears that mutations in genes
responsible for DNA repair should be considered strong drivers as they initiate a cascade of
further mutations, many of which occur in other driver genes, thus heavily promoting
cancer. On the other hand, by our definition of driver strength, if a driver needs help from
many other drivers it cannot be called strong. Thus, it may be more fitting to call them
“trigger drivers”, as they trigger the activation of other necessary drivers, rather than call
them strong drivers per se. This may explain why top NDSI-ranked genes are not enriched
in the Reactome DNA repair pathways. Our algorithm “sees” that there are always too
many other driver mutations alongside the DNA repair drivers, thus it classifies the latter
as weak. It might be viewed as a pitfall of our method, but we think it just faithfully follows
the definition of what a strong driver really is, i.e. a driver able to drive cancer on its own or
with a couple more drivers, as opposed to a “trigger driver” which recruits many additional
helper drivers.

Another interesting aspect to discuss is the relation of driver strength to the
evolutionary history of cancer. i.e. the sequential order of appearance of driver mutations.
While our methodology does not allow deciphering the order of driver mutations, this
subject was investigated, for example, in a recent article by Gerstung et al. (2020). There
appears to be some indication that strong drivers (according to our methodology) overlap
with early drivers (according to their methodology). For example, in Fig. 2B they show
that, amongst the 50 most recurrent driver lesions, SMARCA4 and NF1 have the highest
significant odds ratio (>50) of early versus late clonal driver mutations, and SPOP has the
highest significant odds ratio (>50) of clonal vs. subclonal driver mutations. In our results
(Table 2), NF1 is the 50th top DSI-ranked gene, whereas NF2 (not shown in Gerstung et al.
(2020)), SMARCA4 and SPOP are the 17th, 27th and 35th top NDSI-ranked genes. Many
other significantly early/clonal genes—KRAS, VHL, BRAF, PBRM1, SETD2, NRAS, MEN1,
IDH1, ATRX—were also found amongst the top 50 NDSI-ranked genes. Thus, despite the
bias for recurrence in the Gerstung et al. (2020) figure, many of these genes were recovered
in recurrence-independent ranking by NDSI. This suggests that strong drivers might
indeed be activated early, which fits with our definition that strong drivers are able to
initiate cancer either on their own or with little help.

Finally, it is important to note that our approach is not meant to replace frequency-
based ranking, because it serves a different purpose. While the frequency-based approach
identifies the most common drivers, our method identifies the strongest ones.
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CONCLUSIONS
We have introduced a novel concept of cancer driver strength, formulated algebraic
equations for Driver Strength Indices, wrote software to calculate these indices and applied
it to TCGA PanCanAtlas datasets. As a result, we presented a comprehensive overview on
the landscape of cancer driver genes and chromosomes in TCGA PanCanAtlas patients
and highlighted particular genes, gene families and pathways deemed strong drivers
according to our Driver Strength Indices. These findings should help to direct future
research efforts and selection of promising targets for novel therapeutics.
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