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ABSTRACT
Objective. To investigate the effect of Sema3A/NRP1 signaling in oligodendrocytes
(OLs) after spinal cord injury.
Methods. Three analysis strategies, namely differential expression gene analysis, Gene
Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, were applied. The protein-protein interaction (PPI) networkwas con-
structed using the STRING website to explore the correlation between Sema3A/NRP1
and oligodendrocytes. Then, the T10 spinal cord segment of rats was injured by the
Allen method to establish a spinal cord injury (SCI) model. Real-time quantitative
PCR, Western blotting, Nissl staining and immunofluorescence staining were used to
detect the effect of Sema3A/NRP1 signaling on oligodendrocytes in vivo.
Results. After the SCI model was established, significantly fewer oligodendrocytes were
observed. At the same time, R software was used to analyze the expression of related
genes, and NRP1 expression was increased. PCR also demonstrated similar results,
and NRP1 ligand Sema3A was also upregulated. KEGG and GO functional enrichment
analysis indicated that the SCI model was mainly related to cytokine interaction, cell
proliferation, differentiation and maturation. Interestingly, we found that NRP1 was
involved in semaphorin-plexin signaling pathway neuronal projection guidance and
axon guidance, mediating cell growth and migration. Moreover, Sema3A/NRP1 sig-
naling was closely associated with platelet-derived growth factor receptor α (PDGFRα)
in the PPI network. When Sema3A/NRP1 signaling was specifically blocked at early
stages, PDGFRα expression was effectively inhibited, and the expression of OLs was
promoted. Furthermore, inhibition of Sema3A/NRP1 signaling increased the Basso-
Beattie-Bresnahan (BBB) score of lower limbmotor function in SCI rats and promoted
the survival of motor neurons in the ventral horn of the injured spinal cord.
Conclusion. Our data suggest that Sema3A/NRP1 signaling may regulate the develop-
ment of OPCs and OLs after SCI, thereby affecting functional recovery.
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Keywords Bioinformatic analysis, Spinal cord injury, Oligodendrocyte, Sema3A/NRP1signal,
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INTRODUCTION
Spinal cord injury (SCI) has become a major public health concern with no effective
treatment. Clinically, SCI is mainly manifested by irreversible neurological impairment,
resulting in a series of dysfunctions (Almeida et al., 2018). Current evidence suggests
that there are approximately 133,000 to 226,000 new cases of SCI per year globally. In
the United States, the hospital charges related to SCI are close to US$9.7 million per
year, which burdens the medical care system, the patient’s family and society (Wyndaele &
Wyndaele, 2006;Kumar et al., 2018). To date, little is currently known about the underlying
mechanisms, warranting further studies.

It is widely acknowledged that oligodendrocyte precursor cells (OPCs) and
oligodendrocytes (OLs) are widely distributed in the central nervous system (CNS).
OLs are the glial cells of myelin axons derived from OPCs, playing an important role in
the integrity of axons, maintaining the normal structure of axons and optimizing axon
conduction (Gritsch et al., 2014;Welsh & Kuenas, 2018). SCI and its secondary impairment
may lead to loss of OLs and neurological dysfunction (Baumann & Pham-Dinh, 2001).
Therefore, the development and recovery of OL are essential during the recovery process
after nerve damage.

Neuropilin1 (NRP1) is a transmembrane glycoproteinmainly expressed in dendrites and
axons of neurons that plays a key role in the functional recovery of SCI after extracellular
binding with Semaphorin3A (Sema3A) (Parker et al., 2012). In recent years (Shim et
al., 2013; Nakanishi, Fujita & Yamashita, 2019), the role of Sema3A/NRP1 signaling in
directional migration of OLs and axonal regeneration after nerve injury has been reported.
In addition, Sema3A/NRP1 signaling is a directional guide for oligodendrocyte migration
in the hallmark ofmultiple sclerosis (Jiang et al., 2010). However, the role of Sema3A/NRP1
signaling in regulating OLs development after SCI remains largely unknown. This study
observed the effects of Sema3A/NRP1 signaling in OLs associated with SCI in rats to explore
the molecular mechanism underlying functional recovery.

MATERIALS AND METHODS
Analysis method of the data spectrum
Data download and processing
The gene expression data for the present study was downloaded from Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) using the accession
number (Chamankhah et al., 2013). The dataset GSE450006 was based on the GPL1355
platform and contained 4 spinal cord samples from sham rats and 20 from SCI model
female rats. 24 samples were selected for further data processing. Specifically, the raw
expression datasets were log2-transformed for further analysis. Subsequently, according
to platform annotation files, the probes were matched with corresponding genes, and
non-matched probes to gene symbol were removed. When multiple probe names were
assigned to a single gene symbol, the values were averaged. Finally, the data was assembled
for subsequent analysis.
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Identification of DEGs
Data were collated as previously described in Ren et al. (2020). Specifically, R software
and related R packages were used to normalize and analyze differentially expressed genes
(DEGs). Log2 fold change (FC) greater than 2 and adjusted p-value< 0.05 were selected as
the cutoff criterion for DEGs screening. The analysis results were presented by heat maps
and volcano plots drawn in R Studio software (version:1.2.1335; RStudio Team, 2015).

Functional enrichment analysis
To further analyze the biological processes of DEGs in the sham group compared with the
SCI group, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were carried out using the cluster Profiler in R package and
R studio software (Yu et al., 2012). Significantly enriched GO terms and KEGG pathways
were screened using the criteria: p-value <0.05 and an enriched gene count >2.

Protein-protein interaction (PPI) network analysis
To explore the mutual relationship between proteins encoded by different genes, DEGs
were imported into the STRINGwebsite (version:11.0) for further analysis (Szklarczyk et al.,
2019; Snel et al., 2000;Athanasios et al., 2017). The lowest interaction score was greater than
0.4, and isolated nodes in the network were removed. Then the analysis results were output
to the TSV format file, and the detailed processing and module analysis were carried out by
Cytoscape software (version:3.7.1). Molecular Complex Detection (MCODE) (Fischer et
al., 2015) is a plug-in downloaded fromCytoscape App Store used to find closely connected
nodes in a complex network based on topology. In the present study, we applied plug-in
MCODE to select critical modules of PPI network.

Animals
All healthy male SD rats (eight-week old, 220 ± 10 g) were provided by Shanghai Xipu
Bikai Shanghai Xipu Laboratory Animal Co. (animal license No: SCXk (Shanghai) 2018-
0006) and were housed in the Experimental Animal Center of Zhejiang Chinese Medical
University (AAALAC, animal license No: SYXK (Zhejiang) 2018-0012). The animals
were housed in environmentally-controlled standard conditions (illumination, 12/12 h
light/dark cycle; humidity, 50–60%; room temperature, 21–23 ◦C) with ad libitum access
to food and water. 3% pentobarbital sodium (0.15 ml/kg, i.p.) was intraperitoneally
injected before the end of the experiment. Rats were divided into a sham group (sham,
only underwent laminectomy does not damage the spinal cord), the SCI model group
(SCI, underwent laminectomy and damage the T10 spinal cord, details in ‘SCI Rat Model
Establishment’), the SCI+AAV Sema3A group (spinal cord stereotactic injection of AAV
virus, details in 2.4), and the SCI+AAVNC group (spinal cord stereotactic injection of AAV
control virus, details in ‘Virus Injection’). All experiments were performed in compliance
with relevant ethical regulations and approved by the animal ethics committee of Zhejiang
Chinese Medical University (IACUC-20190128-02). All the experimental protocols strictly
followed the National Institutes of Health guidelines for the care and use of laboratory
animals (NIH Publication No. 8023).
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SCI rat model establishment
To establish a contusive SCI model at T10, contusive injury was induced on the T10 spinal
cord using the MASCIS weight-drop device with a 5 × 10 g/cm gravitational potential
energy after T10 laminectomy. The severity and consistency of injury were verified by
checking the bruise on the spinal cord or tail-flick of the rats after weight drop. All
animals received intraperitoneal injections of penicillin (100 U/d) for three days to prevent
infection.

Virus injection
To further verify the effect of Sema3A/NRP1 signaling after SCI, we designed an SNCA-
shRNA sequence plasmid and integrated it into adeno-associated virus (AAV), as previously
described (Hu et al., 2020), and injected it into rats to downregulate Sema3A expression.
Briefly, at 21 days before modeling, 0.5 ul AAV2/9-U6-shRNA(Sema3A)-CAG-tdtomato or
a negative control AAV2/9-U6-shRNA(luciferase)-CAG-td tomato virus (Shanghai Taitool
Bioscience Co., Ltd.) were injected bilaterally between T9 and T10 spinal cord using a 10
ul Hamilton syringe after rats anesthetized with pentobarbital sodium (40 mg/kg, i.p.).
Vessels and nerves were avoided while injecting the virus. The viral titer was 7.5 × 1012

vg/ml. 7 × 109 vg virus was given to every animal.

Nissl staining
Procedures for Nissl staining were as follows. Briefly, after dehydration in 30% sugar
solution, the tissues were sliced with a freezing microtome. The slices were incubated with
nissl staining solution in a 37 ◦C constant temperature water bath for 10 min, followed
by alcohol gradient decolorization for 1 min each, and washed with distilled water for 30
s immediately. Finally, the slices were sealed with neutral resin. Images were taken with a
light microscope.

Real-time quantitative PCR (qPCR) analysis
First, total RNA was extracted from the T10 spinal cord tissue and the quality of RNA
tested (Invitrogen, Carlsbad, CA, USA), cDNA was synthesized using PrimeScript RT
reagent Kit (TaKaRa). qRT-PCR was conducted by using the Fast Start Universal SYBR
Green Master kit (TaKaRa Bio Inc, Beijing, China) with a 20 µl reaction system. The data
for qRT-PCR were collected with CFX96 Real-Time System (BioRad, USA). All qRT-PCR
results were analyzed using comparative Ct methods (2−11Ct). Primer sequences are
listed in Table 1.

Western blotting
Rat spinal cord tissue was homogenized with radioimmunoprecipitation assay (RIPA)
buffer. Protein concentrations were determined using the bicinchoninic acid (BCA)
assay. Furthermore, equal quantities of protein were separated via 8% SDS-PAGE
gel and transferred by electroblotting polyvinyl difluoride (PVDF) membranes. The
membranes were blocked with 5% nonfat milk in TBST containing 0.1% Tween 20
at room temperature for 1.5 h and then incubated overnight at 4 ◦C with primary
antibody: semaphorin3A (GTX37550, 1:500), neuropilin1 (ab81321, 1:1,000), Platelet-
derived growth factor receptor α (PDGFR α) (ab203491, 1:1,000), and β-actin (ab20271,
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Table 1 The primers used in qPCR.

Primers Forward Reverse Amplicon
size (bp)

Sema3A TGGAACTGCTGCGGATTTCATGG AGTCGTGCTGCTCGGTCCTG 89
NRP1 GGCGACAAGAACATCTCCAGGAAG AACAGGCACAGTACAGCACAACTC 136
Olig2 CCAAGATCGCCACGCTGCTG TCGCTCACCAGTCTCTTCATCTCC 85
Sox10 CGAGGCAGACGATGACAAGTTCC CTCTTGCTGGCACCGTTGACC 117
PDGFRα GTGCCGCTGAGTTCGTCCTTC GCTGAGGCGTTGACCACTTCC 161
β-actin TGTCACCAACTGGGACGATA GGGGTGTTGAAGGTCTCAAA 165

1:5,000). The following day, the membrane was incubated at room temperature for 2 h with
secondary antibodies (CST7074s, 1:2000). Finally, immunoreactive bands were detected by
enhanced chemiluminescence and visualized with an Image Quant LAS 4000. For statistical
comparisons, primary antibody values were normalized against β-actin for each run in the
normal Western blots. The density of each band was measured by ImageJ analysis software.

Immunofluorescence staining
Frozen sections were used for immunofluorescence. Transverse spinal cord sections (25
µm) were cut on a frozen microtome and installed on gelatin-coated glass slides. Then,
the tissues were incubated overnight with the following antibodies at 4 ◦C: semaphorin3A
(GTX37550, 1:200), neuropilin1 (AF566, 1:50), PDGFR α (ab203491, 1:500). The signal
was detected with the corresponding second antibodies conjugated to Goat anti-rabbit
Alexa Fluor-488 (111-545-144, 1:600), Donkey anti-rabbit Alexa Fluor 647 (711-605-152,
1:600) or Donkey anti-goat Alexa Fluor 488 (ab150129, 1:600) and viewed by Nikon A1R
laser scanning confocal microscope.

Behavioral testing
Hindlimb locomotor function was evaluated using Basso-Beattie-Bresnahan (BBB) score.
As previously described (Wei et al., 2017), the BBB scale ranges from 0–21 and reflects
the extent of hind limb movements , weight support, stepping ability, coordination, and
trunk stability. Evaluation and analysis were conducted by a specialist with an independent
assistant blinded to the group allocation. Then the motor performance of the rats in
an open field was scored, including hind limb joint movement, weight support, plantar
stepping, coordination, paw position, and trunk and tail control. Scoring was performed
as illustrated in Table 2.

Statistical analyses
The statistical analyses between control and experimental groups were conducted by an
unpaired t -test or one-way ANOVA followed by Tukey Kramer tests in GraphPad Prism7.
Results are expressed as mean ± SEM. A p-value < 0.05 was statistically significant.
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Table 2 Basso Beattie Bresnahan locomotor rating score.

Score The ability of Lower limbmotor

0 There is no visible hindlimb (HL) movement
1 Light movement of one or both joints, usually hip and/or knee
2 Broad movement of one joint or joint and slight movement of the other
3 Extensive movement of the two joints
4 Light movement of three joints
5 Light movement of two joints and wide movement of the third
6 Broad movement of the two joints and light movement of the third
7 The extensive movement of all three joints of HL
8 The ball of the foot without weight support or without weight support
9 The soles of the feet occasionally bear the weight of the ground (for example, when stationary), frequent or consistent load-

bearing movements of the dorsal claw, without the soles of the feet supporting the movement
10 Paw surface occasionally moves with load bearing without FL-HL coordination
11 Paw surface has more load bearing movement and no FL-HL coordination
12 More load bearing movement and occasional FL-HL coordination on paw surface
13 Common paw bearing movement and frequent FL-HL coordination
14 Continuous palm-surface bearing movement with consistent FL-HL coordination, or common palm-surface movement,

continuous fore-hind limb coordination, and occasionally dorsal claw movement
15 Continuous paw and palm bearing movement and consistent FL-HL coordination, no or occasional ground grasping move-

ment in the forward motion of the forelimbs, and the position of the main claw parallel to the body at the initial contact
16 In the gait, the continuous paw landing and the coordinated movement of the front and rear limbs are common in the pro-

cess of grasping the ground; The main claw position is parallel to the body at initial contact, and rotates after load transfer
17 In the gait, the continuous paw landing and the coordinated movement of the front and rear limbs are common in the pro-

cess of grasping the ground; The main claw position is parallel to the body at initial contact and load transfer
18 In the gait, the continuous paw touches the ground in a coordinated manner with the front and rear limbs. In the process of

progress, the continuous paw grasps the ground. The position of the main paw is parallel to the body at the initial contact
19 In the gait, the continuous paw touches the ground in a coordinated manner with the front and rear limbs. The continuous

paw grasps the ground in the process of advancing. The position of the main paw is parallel to the body at the initial contact
and load transfer

20 The position of the main claw is parallel to the body during initial contact and weight transfer. The trunk is unstable and the
tail kept cocking up

21 The position of the main claw is parallel to the body at the initial contact and load transfer, and the trunk is stable and the
tail kept cocking up

RESULTS
The expression of OLs and PDGFR α after SCI
The injured spinal cord tissues were harvested on days 1, 7, and 14 after SCI, and the
expression of OLs was detected by qPCR. The results showed that compared with the sham
group, olig2, the early specific marker of OLs was significantly reduced after SCI in the
injured spinal cord tissue of rats (Fig. 1A). Sox10, themature OLs specific marker, exhibited
low levels after SCI (Fig. 1B). Furthermore, the specific marker of OPCs, Platelet-derived
growth factor receptor α (PDGFR α), was significantly increased after SCI (Fig. 1C).
We further detected the expression of PDGFR α in spinal cord tissue of SCI by western
blotting, and the results showed that the expression was increased at 7 and 14 days (Fig.
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Figure 1 The expression of OLs and PDGFRα after SCI. Decreased oligodendrocytes after spinal cord
injury. (A–C) qPCR validation of the Olig2 (A) Sox10 (B) and PDGFRα (C) expression in the spinal cord
of rats after SCI. (D) PDGFRα protein expressions in SCI rats vs. sham rats. n = 6. Statistical significance
was assessed by one-way ANOVA, *p< 0.05, Mean± SEM.

Full-size DOI: 10.7717/peerj.13856/fig-1

1D). Consistent with previous studies (Assinck et al., 2017) that reported a large number of
OL deaths after SCI, and the spontaneous differentiation of OPCs could be stimulated.

Increased expression of Sema3A and NRP1 after SCI
The dataset GSE450006 based on the GPL1355 platform contained four spinal cord
samples from sham rats and 20 from SCI model rats. A total of 299 DEGs were obtained,
including 176 upregulated and 123 downregulated genes (Fig. 2A), and the volcano plot
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Figure 2 The differential genes were identified. (A) Heat map displaying the gene expression value of
SCI and sham operation groups after hierarchical clustering of DEGs. (B) Volcano plot showing gene ex-
pression profiles in SCI group compared with the sham group.

Full-size DOI: 10.7717/peerj.13856/fig-2

showed upregulated and downregulated gene expression in each sample (Fig. 2B). We
observed that OLs were significantly decreased (Fig. 1) while NRP1 and Sema3A were
upregulated (Figs. 3A and 3B) in SCI rats. Based on the fact that NRP1 can only exert its
signal transduction function after forming a complex with Sema3A extracellularly (Parker
et al., 2012; Hu et al., 2020), we performed immunofluorescence staining on the spinal
cord tissues of sham and SCI seven-day rats. We observed that Sema3A and NRP1 were
co-expressed in the SCI model (Fig. 3C).

Analysis of the function and pathway of DEGs in SCI model rats
To further explore the mechanism of SCI, we performed GO and KEGG pathway
enrichment analyses of DEGs with the cluster profiler package in R software. GO is
one of the most widely used ontologies, which annotates genes in terms of their molecular
functions, cellular constituent, and biological processes (Feunang et al., 2016). Moreover,
the KEGG database is an important tool for identifying functional and metabolic pathways
(Sun et al., 2021). In this study, we used the R package ‘‘clusterProfiler’’ that automates the
process of biological-term classification and the enrichment analysis of gene clusters. The
screening criteria for statistically significant GO terms or pathways was a p-value less than
0.05.We found that the biological functions of DEGs weremainly related to wound healing,
cell growth, chemotaxis and metabolism regulation, extracellulaar matrix organization in
the SCI group (Fig. 4A). KEGG pathway analysis of DEGs between the SCI and the sham
groups revealed significant enrichment in the interaction between cells and cytokines,
cell proliferation, differentiation and maturation, ECM-receptor interaction (Fig. 4B).
We further condensed all enriched pathways processed by KEGG and GO functional
enrichment analysis, summarized all NRP1 involved in the results (Table S1), among
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Figure 3 Increased expression of Sema3A and NRP1 after SCI. (A, B) qPCR validation of the upregula-
tion of Sema3A and NRP1. n= 6 Statistical significance was assessed by the unpaired two-tailed Student’s
t -test, n = 3. *p < 0.05, Mean± SEM. (C) Fluorescence image of Sema3A and NRP1 binding together.
Red fluorescence represents Sema3A, green fluorescence represents NRP1, and blue fluorescence repre-
sents DAPI nuclei staining.

Full-size DOI: 10.7717/peerj.13856/fig-3

which unexpected findings include the semaphorin-plexin signaling pathway involved
in neuron projection guidance and axon guidance, mediating cell growth and migration
(Table 3).

Sema3A regulates the expression of NRP1 after SCI
To further define the relationship between Sema3A and NRP1, we designed SNCA-shRNA
sequence plasmids with rad fluorescent tags and integrated them into an adeno-associated
virus (AAV). Subsequently, we injected AAV2/9-U6-shRNA (Sema3A)-CAG-tdtomato
into the junction between T9 and T10 spinal cord rats 21 days before modeling to knock
down the expression of Sema3A. Four weeks after injection, we took the thoracic spinal
cord for sectioning and observed it under the microscope. It was found that the T10
segment had the best effect of AAV virus transfection (Fig. S1). Next, we observed the
changes in NRP1 and Sema3A after SCI. The immunofluorescence analysis results showed
that compared with the sham group, the expression of Sema3A and NRP1 in spinal cord
tissue of SCI rats increased, and knockdown of Sema3A could significantly downregulate
the expression of NRP1 (Figs. 5A–5C). The qPCR results were consistent with the results
obtained by immunofluorescence analysis results(Figs. 5E–5F).
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Figure 4 Functions analyzed by gene ontology (GO) enrichment of SCI differentially expressed genes
(DEGs).GO and KEGG pathway analysis. (A) Gene Ontology (GO) enrichment analysis of differentially
expressed genes (DEGs) of SCI. (B) KEGG pathway analysis of DEGs.

Full-size DOI: 10.7717/peerj.13856/fig-4

Sema3A/NRP1 signaling regulates the expression of PDGFR α and OLs
To investigate the role of Sema3A/NRP1 signaling in SCI, we constructed the PPI network
using STRING database and visualized it with Cytoscape. The upregulated genes were
highlighted in red, downregulated genes in green, key genes in blue, and gray lines
represented the protein interaction relationships. The results imply a possible regulatory
relationship between the Sema3A/NRP1 and PDGFR α (Fig. S2).
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Table 3 Functions were analyzed by gene ontology (GO) enrichment of SCI differentially expressed genes (DEGs).

Ontology ID Description p.adjust Count

BP GO:1901342 Regulation of vasculature development 0.000025059041 20
BP GO:0032103 Positive regulation of response to external stimulus 0.000040991881 19
BP GO:0001558 Regulation of cell growth 0.001189009268 15
BP GO:0090130 Tissue migration 0.001373745350 19
BP GO:0032102 Negative regulation of response to external stimulus 0.001546559919 15
BP GO:0050920 Regulation of chemotaxis 0.002958470252 16
BP GO:2001233 Regulation of apoptotic signaling pathway 0.008435229403 12
BP GO:0045926 Negative regulation of growth 0.021059552008 11
BP GO:0031346 Positive regulation of cell projection organization 0.038979640240 15
BP GO:0051496 Positive regulation of stress fiber assembly 0.054125841048 4
BP GO:0031032 Actomyosin structure organization 0.056226885639 8
BP GO:1902287 Semaphorin-plexin signaling pathway involved in axon guidance 0.061284157525 2
BP GO:0008045 Motor neuron axon guidance 0.063754433336 3
MF GO:0005539 Glycosaminoglycan binding 0.000006050609 17
MF GO:0008047 Enzyme activator activity 0.022590621407 15

We measured PDGFR α mRNA and PDGFR α protein levels by real-time PCR,
immunofluorescence, and western blotting. The results revealed that the overexpression
of PDGFR α in SCI model rats was significantly reduced by inhibition of Sema3A/NRP1
signaling (Figs. 5A, 5D, 6C, 6D, and 6G). To better understand the cellular mechanism
of Sema3A/NRP1signaling in mediating motor function recovery in SCI, we investigated
whether Sema3A/NRP1 signaling was involved in the maturation of OLs after SCI, which
is also a key link in neurological function recovery (Tetzlaff et al., 2011). The qPCR results
indicated that the expression of Olig2 and Sox10 of SCI group rats (after Sema3A/NRP1
signaling inhibition) significantly increased on day seven (Figs. 6A–6B) but showed no
significant change on day 14 (Figs. 6E–6F). The above data indicate that Sema3A/NRP1
signaling may regulate the expression of PDGFR α and OLs.

Inhibition of Sema3A/NRP1 signaling promotes function recovery
after SCI
The recovery of hind limb function was assessed using the BBB rating scale to examine
the effect of Sema3A/NRP1 signaling on locomotor recovery after SCI. The line graph
shows the BBB score for each group within 1 week after SCI. We found that all rats had a
BBB score of 21 before SCI and lost locomotor function after SCI. When Sema3A/NRP1
signaling was inhibited, the BBB score was higher than the SCI group after 7days (Fig. 7C).

Nissl staining showed that the color intensity and the number of nissl bodies in the
SCI-7d group and the SCI-7d+AAV NC decreased significantly compared with the sham
group. Compared with the SCI group, the SCI-7d+AAV Sema3A group showed deeper nissl
bodies staining with significantly increased expression of tiger-spotted motor neurons that
were smaller than in the sham group (Figs. 7A–7B). These results suggest that suppressing
Sema3A/NRP1 signal transduction is beneficial to functional recovery after injury.
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Figure 5 Sema3A knockdown downregulated the expression of NRP1 and PDGFRα after SCI. (A) A
representative diagram of Sema3A and its receptor NRP1 expression (continued on next page. . . )
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Figure 5 (. . .continued)
after SCI in the spinal cord in the sham group, SCI-7d group, SCI-7d + AAV Sema3A group, and SCI-
7d+AAV NC group was shown by immunofluorescence. (B–D) Quantification of the immunofluores-
cence data in (A), n= 3. (E–F) qPCR validation of the expression of Sema3A and NRP1. n= 6 rats/group.
Statistical significance was assessed by one-way ANOVA, **p< 0.01, Mean± SEM.

DISCUSSION
In this study, we revealed the related mechanism of Sema3A/NRP1 signaling on OPCs and
OLs through bioinformatics analysis. Previous studies (Mctigue, Wei & Stokes, 2001) have
shown that OLs are important cells involved in nerve repair after SCI, mainly formed by
the proliferation, migration and differentiation of OPCs. Massive OLs death after SCI is
accompanied by demyelination which restricts axon electrical signal conduction and leads
to dysfunction post-SCI (Totoiu & Keirstead, 2005). Interestingly, cell transplantation can
enhance the differentiation of OPCs and OL post-SCI, thus improving myelination and
promoting spinal cord nerve function recovery. Our study found that the expression of OL
markers olig2 and sox10 decreased significantly post-SCI, indicating that significant OL
death post-SCI may seriously hinder the repair of nerve function after injury.

NRP1 was first documented as a key receptor that inhibits the extension of axons
when bound to Sema3A (Goshima et al., 2000). Sema3A/NRP1 signaling is one of the
key molecular signals for the formation and growth of myelin sheath (Hamashima et al.,
2020). Orr, Fetter & Davis (2017) extracted SM-216289, a potent and selective inhibitor of
Sema3A, and injected it into the lesion site of rats with spinal cord transection for 4 weeks.
The results showed that the rats treated with SM-216289 exhibited axon regeneration,
myelination, and angiogenesis, and damaged nerve function was significantly restored. In
addition, inhibition of Sema3A/NRP1 signaling can promote motor function recovery after
SCI (Zhang et al., 2014). Our previous studies (Hu et al., 2020) confirmed that Sema3A
/NRP1 signaling plays an important role in functional recovery after SCI in rats. Herein,
we found that the expression of Sema3A and NRP1 was significantly increased after SCI.
However, the mechanism of action between Sema3A/NRP1 signal and OLs after SCI is still
unclear.

GO and KEGG analyses showed that the most significant upregulated genes were
related to wound healing, cell-cytokine interaction, cell proliferation, differentiation
and maturation in the SCI group. Meanwhile, NRP1 is well-established to be involved
in the semaphorin-plexin signaling pathway neuronal projection guidance and axon
guidance, mediating cell growth and migration. Of note, PPI network analysis found
that Sema3A/NRP1 signaling may regulate the expression of PDGFR α. It is well known
that PDGFR α, one of the specific markers of OPCs, is produced by both astrocytes and
neurons (Hamashima et al., 2020; Duncan et al., 2020). OPCs are tightly correlated with
the maturation of OLs and can differentiate into mature OLs (Liu et al., 2017). Hence, we
speculated that Sema3A/NRP1 plays an important role in post-injury repair and may be
involved in the development of OPCs and OL after SCI.

Evidence has verified that Sema3A is a selective and reversible inhibitor of OPCs
differentiation in vitro (Syed et al., 2011). Drug inhibition or knockout mice blocking
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Figure 6 Sema3A/NRP1 regulates the expression of PDGFRα and Oligodendrocytes. (A–C) qPCR vali-
dation of the Olig2 (A), Sox10 (B) and PDGFRα (C) genes in the (continued on next page. . . )

Full-size DOI: 10.7717/peerj.13856/fig-6

Hu et al. (2022), PeerJ, DOI 10.7717/peerj.13856 14/20

https://peerj.com
https://doi.org/10.7717/peerj.13856/fig-6
http://dx.doi.org/10.7717/peerj.13856


Figure 6 (. . .continued)
spinal cord of rats at 7 days after SCI. (D) PDGFRα expression in the spinal cord of sham, SCI-7d, SCI-
7d+AAV Sema3A and SCI-7d+AAV NC groups measured by Western blot. (E–G) qPCR validation of the
Olig2 (E), Sox10 (f) and PDGFRα(G) genes in the spinal cord of rats at 14 days after SCI. n= 6 rats/group.
Statistical significance was assessed by one-way ANOVA, *p< 0.05, Mean± SEM.

Figure 7 Inhibition of Sema3A/NRP1 signaling promotes neural function recovery after SCI. (A) Nissl
staining of the ventral horn of the spinal cord. (B) The surviving motoneurons of the ventral horn of the
spinal cord were quantified by nissl staining, n= 3, (C) The motor function score of each group on day 7
compared with the SCI-7d group, Statistical significance was assessed by a two-way ANOVA.

Full-size DOI: 10.7717/peerj.13856/fig-7

Sema3A/NRP1 signal transduction can increase OPCs recruitment, reduce demyelination
lesions (Wang & Li, 2020) and axon growth-inhibitory factor (Boyd, Zhang & Williams,
2013) expression. To clarify the relationship between 3A/NRP1 and OPCs and OLs, we
selectively downregulated the expression of NRP1 ligand Sema3A in the spinal cord at the
injury site and observed that PDGFR α expression was downregulated when the expression
of Sema3A/NRP1 signaling was inhibited, while olig2 and sox10were significantly increased
on day 7. These results suggest that inhibition of Sema3A/NRP1 signaling may promote
the growth and development of OLs after injury. Moreover, we found that motor function
improved with downregulation of Sema3A/NRP1 signaling with increased motor neuron
survival in the ventral horn of the spinal cord. According to the above findings, decreasing
Sema3A/NRP1 signaling can promote the repair of spinal motor neuron function and
lower limb motor function post-SCI.
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In conclusion, this study provided compelling evidence that Sema3A/NRP1 signaling
can regulate the expression of OPCs and OLs after SCI. Importantly, inhibition of
Sema3A/NRP1 signaling can improve the recovery of motor function after SCI.
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