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Drift macroalgae, often found in clumps or mats adjacent to or within seagrass beds, can
increase the value of seagrass beds as habitat for nekton via added food resources and
structural complexity. But, as algal biomass increases, it can also decrease light
availability, inhibit faunal movements, smother benthic communities, and contribute to
hypoxia, all of which can reduce nekton abundance. We quantified the abundance and
distribution of drift macroalgae within seagrass meadows dominated by turtle grass
Thalassia testudinum across the northern Gulf of Mexico and compared seagrass
characteristics to macroalgal biomass and distribution. Drift macroalgae were most
abundant in areas with higher seagrass shoot densities and intermediate canopy heights.
We did not find significant relationships between algal biomass and point measures of
salinity, temperature, or depth. The macroalgal genera Laurencia and Gracilaria were
present across the study region, Agardhiella and Digenia were collected in the western
Gulf of Mexico, and Acanthophora was collected in the eastern Gulf of Mexico. Our survey
revealed drift algae to be abundant and widespread throughout seagrass meadows in the
northern Gulf of Mexico, with likely influences the habitat value of seagrass ecosystems.
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23 ABSTRACT

24 Drift macroalgae, often found in clumps or mats adjacent to or within seagrass beds, can 

25 increase the value of seagrass beds as habitat for nekton via added food resources and structural 

26 complexity. But, as algal biomass increases, it can also decrease light availability, inhibit faunal 

27 movements, smother benthic communities, and contribute to hypoxia, all of which can reduce 

28 nekton abundance. We quantified the abundance and distribution of drift macroalgae within 

29 seagrass meadows dominated by turtle grass Thalassia testudinum across the northern Gulf of 

30 Mexico and compared seagrass characteristics to macroalgal biomass and distribution. Drift 

31 macroalgae were most abundant in areas with higher seagrass shoot densities and intermediate 

32 canopy heights. We did not find significant relationships between algal biomass and point 

33 measures of salinity, temperature, or depth. The macroalgal genera Laurencia and Gracilaria 

34 were present across the study region, Agardhiella and Digenia were collected in the western Gulf 

35 of Mexico, and Acanthophora was collected in the eastern Gulf of Mexico. Our survey revealed 

36 drift algae to be abundant and widespread throughout seagrass meadows in the northern Gulf of 

37 Mexico, with likely influences the habitat value of seagrass ecosystems. 

38

39 INTRODUCTION

40 Drift macroalgae often originate as attached algae on seagrass leaves and other hard 

41 substratum before becoming uprooted by various physical disturbances (e.g., currents, waves) 

42 (Norton & Mathieson, 1983; Bell & Hall, 1997; Biber, 2002; Lirman et al., 2003). They are 

43 commonly found in small patches within and around the calm, coastal seagrass meadows from 

44 early spring to mid-summer (Norton & Mathieson, 1983), with distributions influenced by water 

45 currents as well as the roughness of the surrounding substrate (Bell et al., 1995; Bell & Hall, 
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46 1997; Biber, 2007; Fonseca & Koehl, 2006). The ecosystem benefits of seagrass habitats are 

47 strongly correlated with their structural complexity, and macroalgal communities often further 

48 increase this complexity 3-100-fold (Morris & Hall, 2001; Kingsford, 1995). Seagrass and 

49 macroalgae are major constituents in some of the most productive coastal ecosystems and they 

50 enhance fisheries by providing valuable nursery habitat for a variety of finfish and invertebrate 

51 fauna (e.g., Carr, 1991; Jackson et al., 2001; Heck, Hays & Orth, 2003; Guido et al., 2004; Bos et 

52 al., 2007). In the Mediterranean, seagrass and macroalgal habitats support 30-40% of the 

53 commercial fish and 29% of recreational fish during their juvenile life stages (Jackson, Wilding 

54 & Attrill, 2015). The structure provided by seagrass and macroalgal communities can enhance 

55 feeding and growth rates, while lowering predation rates for many shrimp, crab, and fish species 

56 (Orth, Heck & van Montfrans, 1984; Kingsford & Choat, 1985; Bax, 1998; Rooker, Holt & Holt, 

57 1998; Nagelkerken et al., 2002). The detached nature of drift macroalgal communities can also 

58 aid in dispersal of many small fish and invertebrates utilizing this structure (Astill & Lavery, 

59 2001; Holmquist, 1994). 

60 While macroalgae can enhance the ecosystem services of seagrasses, at sufficiently high 

61 biomass, macroalgae can lead to declines in organismal abundance and species diversity (e.g., 

62 Hull, 1987; Bonsdorff, 1992; Zajac & McCarthy, 2015). The degree of this change may be tied 

63 to species-specific morphological traits (Bartholomew et al., 2000). Green filamentous 

64 macroalgae in the Baltic Sea, for example, is problematic at high concentrations, causing 

65 hypoxia and altering the resident benthic communities (Vahteri et al., 2000). Massive influxes of 

66 the brown alga Sargassum to coastal systems have also led to similar declines in flora and fauna 

67 in the Caribbean, causing benthic mortality and decreasing habitat value (Chávez et al., 2020). 

68 However, brown algae in New Zealand led to an increase in fish and invertebrate abundance, 
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69 with higher species abundances relative to attached vegetation and open water areas (Kingsford 

70 & Coat, 1985). Understanding the algal composition throughout the northern Gulf of Mexico and 

71 seasonal changes in biomass may allow us to better understand the species-specific effects that 

72 algae have on seagrass and their associated nekton communities. 

73 Algae are classified into three evolutionarily distinct lineages based on variations in their 

74 morphological characteristics and tissue pigment composition, and consist of brown algae 

75 (Phaeophyceae), green algae (Chlorophyta), and red algae (Rhodophyta), with rhodophytes being 

76 the dominant taxa in the northern Gulf of Mexico (Virnstein & Carbonara, 1985; Holmquist, 

77 1997). Over the last few decades, seagrass areal coverage has declined in many areas, including 

78 the northern Gulf of Mexico and southern Atlantic estuaries of North America (Hall et al., 1999; 

79 Peneva, Griffith & Carter, 2008; Carter et al., 2011). Macroalgal blooms have increased in 

80 frequency and intensity (e.g., Benz, Eiseman & Gallaher, 1979; Virnstein & Carbonara, 1985; 

81 Zieman, Fourqurean & Iverson, 1989; Kopecky & Dunton, 2006; Fredericq et al., 2009) and are 

82 predicted to proliferate under future scenarios of warmer sea surface temperatures and ocean 

83 acidification (Brodie et al., 2014). Consequently, the functional role of drift algae may increase 

84 in importance in regions where seagrasses have declined. However, drift algae are known for 

85 being highly variable across space and time (Benz, Eiseman & Gallaher, 1979; Bell & Hall, 

86 1997), with their abundance and movement within estuaries rarely quantified and difficult to 

87 track, complicating our understanding of drift algae in seagrass ecosystems. Although 

88 underappreciated for their habitat value, drift macroalgae likely augment the value of seagrass 

89 beds as habitat for nekton by increasing the physical structure within and adjacent to seagrass 

90 beds. We surveyed seagrass meadows across the northern Gulf of Mexico and quantified (1) the 
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91 abundance of drift macroalgae in early and late summer and (2) the relationship between algal 

92 abundance and environmental and seagrass metrics. 

93

94 MATERIALS & METHODS

95 Study regions. Five estuaries in the northern Gulf of Mexico, each containing at least 20 

96 sites within seagrass meadows, were surveyed twice during the early (May�June) and late 

97 (August�September) summer of 2018 (Fig. 1). Sites were selected by overlaying a tessellated 

98 hexagonal grid (500 m edge length) on each estuary in ArcGIS (Moore, 2009; Neckles et al., 

99 2012; Wilson & Dunton, 2012). A randomly generated site within each of 20 to 25 grid cells that 

100 contained more than 50% seagrass coverage and a minimum of 500 m separation were selected 

101 for assessment (Belgrad et al., 2021). Across all regions, turtle grass (Thalassia testudinum) was 

102 the dominant macrophytic taxon; however, manatee grass (Syringodium filiforme) and shoal 

103 grass (Halodule wrightii) were also common. Star grass (Halophila engelmannii) and widgeon 

104 grass (Ruppia maritima) were present but occurred in <0.01% of surveys and are not considered 

105 in this study. In situ measurements of seagrass coverage ranged from 0-100%. Measurements 

106 were collected across twenty sites within Laguna Madre, TX (LM; 26⁰08�N, 97⁰14�W), Corpus 

107 Christi Bay, TX (CB; 27⁰51�N, 97⁰08�W), and the Chandeleur Islands, LA (LA; 29⁰54�N, 

108 88⁰50�W). In Florida, measurements were collected from 25 sites at both Cedar Key (CK; 

109 29⁰05�N, 83⁰01�W) and Charlotte Harbor (CH; 26⁰04�N, 82⁰14�W). At each sampling location, 

110 abiotic conditions (i.e., temperature, salinity, DO, depth) were recorded, drift macroalgae 

111 biomass measured, and seagrass cover/abundance and morphometrics assessed. Because we 

112 sampled synoptically using the same methods, we were able to assess both algal biomass and 
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113 distribution within and among locations across the northern Gulf of Mexico (Table 1; Belgrad et 

114 al., 2021; Correia, 2021).

115 Drift algal abundance assessment. Within each hexagon, drift algal abundance within 

116 seagrass meadows was measured using a flat otter trawl, an epibenthic sled, and 1-m2 quadrats. 

117 The use of these three sampling techniques provided valuable information about broad and fine 

118 scale macroalgal distributions within seagrass habitats. While the trawl covers a larger area than 

119 the epibenthic sled, it can quickly become fouled by high biomass of drift algae, making it 

120 difficult to standardize trawl lengths. Epibenthic sleds allow for a more standardized comparison 

121 between seagrass and macroalgal habitat within a given area. Each sled tow was pulled within 

122 seagrass habitats for the same distance allowing for a precise representation of macroalgae 

123 within each seagrass bed. Quadrats were used in the same vicinity as the epibenthic sled and 

124 trawl to assess seagrass and algal percent cover.

125 A 4.85-m flat otter trawl with a 3.8-cm stretch mesh body and 1.3-cm stretch mesh bag 

126 was towed through seagrass beds at an average speed of 3.7�5.6 km h-1 for approximately 2 

127 minutes, resulting in linear distances of approximately 116.7 m ± 0.12 SE per trawl. Latitude and 

128 longitude were recorded at the beginning, midpoint, and end of each trawl to record the trawl 

129 path to obtain accurate distance calculations and provide coordinates for sled and quadrat 

130 surveys. Macroalgal abundance was determined as the wet weight of algae present in the trawl, 

131 measured using a spring scale. Samples of drift algae were taken from the trawl, bagged, frozen, 

132 and later identified to genus using a dissecting microscope (Littler & Littler, 2000). Due to 

133 variations in the trawl sampling distance, drift algal weight was standardized to trawl area (g·m-

134 2). At the center of each trawl path, environmental parameters including salinity, temperature 

135 (°C), and dissolved oxygen (mg L-1) were measured using a YSI Pro 2030 containing a galvanic 
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136 DO sensor (Model 2002) immediately following the trawl. Water depth (cm) was also measured 

137 at the center of the trawl path. 

138 We returned to each site to sample using the epibenthic sled, which consisting of an 

139 aluminum frame (0.75-m wide and 0.6-m high), with two skids on either side (0.8 m in length), 

140 and a 2-mm stretch mesh net. Sled samples were collected near the midpoint of the trawl path. 

141 The sled was towed for 13.3 m at approximately 0.5 m sec-1, covering an area of 10 m2. Algae 

142 from benthic sled samples were bagged, frozen, and transported to the lab where they were later 

143 identified to genus and weighed. 

144 Seagrass and algal vegetative sampling (quadrats). The structural complexity of 

145 seagrass meadows and percent cover of drift algae were assessed using a 1-m2 quadrat divided 

146 into 100, 10-cm x 10-cm cells. Twelve quadrats were haphazardly thrown along each trawl: four 

147 quadrats at the beginning, middle, and end of each trawl path. The percent cover, shoot count, 

148 and canopy height of each seagrass species present in a quadrat was recorded. Seagrass percent 

149 cover by species, as well as the cover of drift algae, were measured by counting the number of 

150 grid cells within each quadrat that contained a particular vegetation type (0�100 grids quadrat-1). 

151 The shoot count was calculated for each seagrass species by counting the number of shoots 

152 within a random quadrat grid cell. Canopy height was defined as the mean of three randomly 

153 selected canopy height measurements. 

154 Statistical analysis. SAS© was used for all statistical analyses. When comparing algal 

155 biomass across the northern Gulf of Mexico, analyses were performed using General Linear 

156 Models (GLM) in SAS© with region (CB, CH, CK, LA, and LM) and sampling period (early or 

157 late summer) as fixed factors. The algal biomass within the trawl and epibenthic sled samples 

158 were log-transformed to mitigate skewness and achieve normality. Comparisons of algal weight 
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159 across early and late summer were then performed using procedure GENMOD with link function 

160 gamma to analyze continuous variables and α = 0.05 was maintained in all post hoc testing. 

161 To compare algal percent cover to environmental and seagrass variables within the 

162 quadrats, a multiple linear regression with backward elimination model selection was performed 

163 using procedure REG in SAS©, maintaining α = 0.05 during model selection. Variables included 

164 in this regression were shoot count, average canopy height, salinity, temperature, dissolved 

165 oxygen, and the percent cover of T. testudinum, H. wrightii, and S. filiforme from the quadrats. 

166     

167 RESULTS

168 Macroalgal biomass across the northern Gulf of Mexico. Drift macroalgae were 

169 present in both the early and late summer sampling times, reaching biomasses of over 50 g m-2 in 

170 one site in Charlotte Harbor, FL (Fig. 2). Regional comparisons of trawl samples showed no 

171 significant changes in the overall algal biomass in Corpus Christi Bay, TX or Cedar Key, FL 

172 between early and late sampling times (p = 0.49 and 0.29, respectively; Table 2). Charlotte 

173 Harbor, FL had significantly higher biomass of drift macroalgae in the late summer when 

174 compared to the early summer months (p < 0.001; Table 2). Meanwhile, Laguna Madre, TX and 

175 Chandeleur Islands, LA both had significantly less macroalgae in the late summer months 

176 compared to the early summer (p = 0.05 and 0.01, respectively; Table 2). Macroalgal biomass 

177 collected in the epibenthic sled followed a similar pattern among regions and sampling times 

178 (Fig. 2, Table 2).  

179 Macroalgal species composition across the northern Gulf of Mexico. Drift algal 

180 community composition varied across region. Macroalgae identified in Laguna Madre, TX 

181 consisted of the genera Agardhiella, Amphiroa, Dictyota, Digenia, Gracilaria, Hypnea, and 
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182 Laurencia. Corpus Christi Bay, TX had similar algal genera comprised of Agardhiella, 

183 Chondria, Dictyota, Digenia, Gracilaria, and Laurencia. Macroalgae found in Chandeleur 

184 Islands, LA consisted of Agardhiella, Chondria, Gracilaria, Laurencia, and Spyridia. Cedar 

185 Key, FL consisted of Acanthophora, Dictyota, Digenia, Gracilaria, Laurencia, Polysiphonia, 

186 and Ulva. Charlotte Harbor, FL were mainly comprised of Acanthophora, Cladophora, 

187 Gracilaria, and Spyridia genera, and Hypnea, Laurencia, and Ulva were also present.

188 Macroalgal percent cover in relation to seagrass and abiotic parameters. Within the 

189 quadrat surveys, T. testudinum percent cover and average canopy height both significantly 

190 related to drift algal percent cover (p = 0.03 and p < 0.001, respectively; Fig. 3), whereas the 

191 seagrass shoot counts, salinity, temperature, and percent cover of H. wrightii and S. filiforme did 

192 not significantly contribute to the drift algae cover in these areas (p > 0.05; Table 3). Drift algal 

193 cover increased with increasing T. testudinum cover, and algae were most dense in areas with 

194 intermediate seagrass canopy heights around 400 mm tall (Fig. 3).  

195

196 DISCUSSION

197 Drift macroalgae were found throughout the study region in both the early and late 

198 summer months, with lower biomasses observed in the late summer months across Laguna 

199 Madre, TX, Cedar Key, FL, and Chandeleur Islands, LA, consistent with previous findings (e.g., 

200 Benz, Eiseman & Gallaher, 1979; Virnstein & Carbonara, 1985). Conversely, macroalgal 

201 abundance was higher in the late summer in Charlotte Harbor, FL, and did not significantly 

202 change from early to late summer in Corpus Christi Bay, TX. The inconsistent patterns observed 

203 in these two estuaries may be the result of tidal and freshwater variations that affect delivery 

204 rates of nutrients and/or flushing of drift macroalgae. Corpus Christi Bay, TX is an enclosed 
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205 system with little direct influence from the Gulf of Mexico and long water residence times (Solis 

206 & Powell, 1999; Pulich, 2007). Since macroalgae are commonly flushed by tidal currents, the 

207 long water residence time and protection from tidal flushing in Corpus Christi Bay may reduce 

208 seasonal algae decline observed in other locations. The high percentage of clay and silt within 

209 the benthic sediments of Corpus Christi Bay further indicates differences in the local 

210 hydrodynamic regime (Shideler, Stelting &McGowen, 1981), with previous studies showing a 

211 direct positive link between algae biomass and the amount of silt-clay in the system (Bell & Hall, 

212 1997). In contrast, Charlotte Harbor, FL, has experienced an increase in macroalgal blooms in 

213 recent years, particularly on the eastern shore (BTT, 2021). The increase in nutrient 

214 concentrations from creeks and streams, as well as the limited water circulation on the east side 

215 of Charlotte Harbor, appears to be a major driver of high accumulation of drift algae in these 

216 locations. Nutrient inputs from leaking septic systems, fertilizer and agricultural runoff, untreated 

217 stormwater, ineffective sewage treatment systems, and altered freshwater inflow have been 

218 deemed the primary cause of these algae blooms (Lapointe et al., 2016, BTT, 2021). While 

219 seasonal fluctuations often show a decline in algal abundances in the late summer months, 

220 localized anthropogenic and hydrodynamic differences may cause localized variations.  

221 Drift macroalgae were most dense in areas with higher percent cover of T. testudinum but 

222 with an intermediate canopy height (~400 mm). Perhaps unsurprisingly, algae are more likely to 

223 be entrained within denser seagrass beds (Virnstein & Carbonara, 1985; Bell & Hall, 1997), but 

224 this varies depending on location and scale. For example, at smaller spatial scales (m), shoot 

225 count and blade length were associated with algal density patterns in Tampa Bay, FL (Bell, Hall 

226 & Robbins, 1995). However, when this same location was studied at a larger scale (km), seagrass 

227 cover explained 57% of the variation in algal cover, suggesting that spatial scale is important 
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228 when comparing algal to seagrass communities (Bell & Hall, 1997). The relationship between 

229 seagrass canopy height and macroalgal density could be related to light-limiting growth 

230 restrictions. When macroalgae reach sufficient biomass, they can restrict the light available to 

231 seagrasses, decreasing productivity (Hauxwell et al., 2001; Huntington & Boyer, 2008). This 

232 may be why areas with the tallest seagrass canopies also have less macroalgae. Because light is 

233 less of a limiting factor, seagrass communities can grow at a faster rate when macroalgae are not 

234 present. Conversely, entrapment of algae at intermediate canopy heights could be related to the 

235 interaction between the algae and flow conditions. Taller canopies, that extend closer to the 

236 surface of the water may be influenced by higher water velocities and turbulence, increasing the 

237 likelihood of macroalgae dislodgement. 

238 This study was limited in its ability to determine species-specific algal effects across 

239 varying seagrass characteristics. During sampling, macroalgal species were not separated, 

240 identified, and weighed in the field, but were rather weighed collectively and a sample of each 

241 species brought back to the lab for later identification. Preliminary site selection was also chosen 

242 based on the presence of T. testudinum across all site locations, which could have obscured less 

243 obvious patterns when comparing algae biomass to S. filiforme and H. wrightii. Another potential 

244 reason for the seagrass species-specific differences are the varying morphological characteristics 

245 across T. testudinum, S. filiforme, and H. wrightii, including differences in blade width, 

246 thickness, and shoot height (Loria, 2019). Future research should further investigate 

247 concentrations of drift macroalgae in S. filiforme and H. wrightii dominated seagrass meadows to 

248 corroborate our nonsignificant findings. 

249 Macroalgae proliferate when sufficient light, nutrient availability, and warm temperatures 

250 co-occur (EPA, 2013) and can become entrained in seagrass beds in large quantities when 
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251 seagrasses are dense and water flow is low enough to prevent dislodgement (Bell & Hall, 1997). 

252 Although algae can be beneficial by increasing habitat complexity and food resources within 

253 seagrass meadows (e.g., Carr, 1994; Kingsford, 1995; Jones, Lawton & Shachak, 1997; Morris & 

254 Hall, 2001; Guido et al., 2004), large blooms of macroalgae can displace other benthic habitats 

255 and reduce the health of the seagrass meadows (Valiela et al., 1997; Tagliapieta et al., 1998). 

256 This study identified several patterns in algal density and composition on a Gulf-wide scale. Data 

257 collected during this study also found large abundances of small fish and invertebrates living 

258 within these seagrass beds, indicating that the biomass of algae present in the northern Gulf of 

259 Mexico do not appear to be detrimental (Belgrad et al., 2021; Correia, 2021). Given the extent 

260 that drift algae spatiotemporally vary, research to quantify links between algal genera and faunal 

261 community composition could resolve much of the uncertainty surrounding this relationship. As 

262 the climate continues to change, macroalgal blooms may become more variable and 

263 understanding the interaction between algal-fauna relationships becomes increasingly important. 

264 Understanding the role of macroalgae within Gulf of Mexico seagrass beds will allow us to 

265 better manage the fisheries and other coastal resources in the future.

266
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424 Figure 1. Location of the 5 study estuaries (stars) throughout the northern Gulf of Mexico. 

425 Regions include Laguna Madre, TX (LM), Corpus Christi Bay, TX (CB), the northern extent of 

426 the Chandeleur Islands (LA), Cedar Key, FL (CK), and Charlotte Harbor, FL (CH). n represents 

427 the number of sites that were sampled within each estuary during the early and late summer 

428 2018. Map data © 2022 Google.

429

430

431 Figure 2. Average trawl and sled macroalgal weight in each region. (A) Average trawl 

432 macroalgae weight (g m-2) + SE and (B) benthic sled macroalgae weight (g m-2) + SE sampling 

433 across each region during the early (black) and late (grey) summer months. The regions include 

434 Laguna Madre, TX (LM, n = 20), Corpus Christi Bay, TX (CB, n = 20), Chandeleur Islands, LA 

435 (LA, n = 20), Cedar Key (CK, n = 25), and Charlotte Harbor, FL (CH, n = 25). The asterisk (*) 

436 indicates that there is a significant difference between early (May�June 2018) and late (August�

437 September 2018) sampling within that region.

438

439

440 Figure 3. Vegetation comparisons. (A) Scatterplots comparing the drift macroalgae percent 

441 cover to T. testudinum percent cover and (B) average seagrass canopy height from the quadrat 

442 dataset. Panel (A) displays drift algae cover increasing with increased T. testudinum cover and 

443 (B) shows algae percent cover was highest at intermediate canopy heights (~400 mm). 

444

445

446
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Figure 1
Location of the 5 study estuaries (stars) throughout the northern Gulf of Mexico.

Regions include Laguna Madre, TX (LM), Corpus Christi Bay, TX (CB), the northern extent of
the Chandeleur Islands (LA), Cedar Key, FL (CK), and Charlotte Harbor, FL (CH). n represents
the number of sites that were sampled within each estuary during the early and late summer
2018. Map data © 2021 Google.
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Figure 2
Average trawl and sled macroalgal weight in each region.

(A) Average trawl macroalgae weight (g m-2) + SE and (B) benthic sled macroalgae weight (g

m-2) + SE sampling across each region during the early (black) and late (grey) summer
months. The regions include Laguna Madre, TX (LM, n = 20), Corpus Christi Bay, TX (CB, n =
20), Chandeleur Islands, LA (LA, n = 20), Cedar Key (CK, n = 25), and Charlotte Harbor, FL
(CH, n = 25). The asterisk (*) indicates that there is a significant difference between early
(May–June 2018) and late (August–September 2018) sampling within that region.
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Figure 3
Vegetation comparisons .

(A) Scatterplots comparing the drift macroalgae percent cover to T. testudinum percent
cover and (B) average seagrass canopy height from the quadrat dataset. Panel (A) displays
drift algae cover increasing with increased T. testudinum cover and (B) shows algae percent
cover was highest at intermediate canopy heights (~400 mm).
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Table 1(on next page)

Abiotic variables from each region.

Abiotic variables (Mean ± SE) measured during the early (May–June) and late
(August–September) summer months 2018.
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1 Table 1. Abiotic variables from each region. Abiotic variables (Mean ± SE) measured during the early (May�June) and late 

2 (August�September) summer months 2018. 

Abiotic parameter Time Laguna Madre, 

TX

Corpus Christi 

Bay, TX

Chandeleur 

Islands, LA

Cedar Key, FL Charlotte 

Harbor, FL

Salinity (ppt) Early

Late

36.8 ± 0.06

37.1 ± 0.13

33.9 ± 0.16

34.9 ± 0.14

16.2 ± 0.49

27.6 ± 0.27

28.3 ± 0.59

25.1 ± 0.70

22.6 ± 1.22

19.9 ± 0.96

Temperature (⁰C) Early

Late

28.1 ± 0.20

29.7 ± 0.38

27.0 ± 0.15

30.2 ± 0.20

29.8 ± 0.55

30.8 ± 0.25

29.7 ± 0.16

30.1 ± 0.52

30.1 ± 0.22

31.8 ± 0.29

Dissolved Oxygen (mg L-1) Early

Late

8.4 ± 0.43

6.1 ± 0.47

6.2 ± 0.32

11.8 ± 0.46

9.5 ± 0.58

8.9 ± 0.38

7.6 ± 0.30

6.8 ± 0.35

6.3 ± 0.24

7.7 ± 1.50

3

4

5

6

7
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Table 2(on next page)

Comparisons of trawl and sled algal weight across region and sampling time .

Multiple and general linear regression models for macroalgal biomass across region during
early (May–June 2018) and late (August–September 2018) summer sampling. Each location
was then separated and analyzed individually using generalized estimating equations with
sample period as the fixed factor.
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1 Table 2. Comparisons of trawl and sled algal weight across region and sampling time. 

2 Multiple and general linear regression models for macroalgal biomass across region during early 

3 (May�June 2018) and late (August�September 2018) summer sampling. Each location was then 

4 separated and analyzed individually using generalized estimating equations with sample period 

5 as the fixed factor.  

SS df F ratio Prob > F

Trawl algae weight

Region (LM, CB, LA, CK, CH)

Sample period (early, late)

Region*sample period

1937715.58

142138.139

2547045.91

4

1

4

6.87

2.52

9.03

< 0.0001

  0.1137

< 0.0001

Sled algae weight

Region (LM, CB, LA, CK, CH)

Sample period (early, late)

Region*sample period

92.383

197.888

65.214

4

1

4

3.38

28.99

2.39

  0.0104

< 0.0001

  0.0521

Algal biomass comparisons across 

sampling time

Mean estimate Chi-Square Pr > ChiSq

Trawl

LM (early v late)

CB (early v late) 

LA (early v late) 

CK (early v late) 

CH (early v late) 

Sled

LM (early v late)

CB (early v late) 

LA (early v late) 

CK (early v late) 

CH (early v late) 

-479.345

3773.820

-527.146

-1150.98

299.2744

-26.07

238.02

-13.46

-28.12

88.59

6.51

0.49

3.86

1.11

14.22

4.97

0.10

18.31

1.64

0.82

0.0107

0.4859

0.0493

0.2921

0.0002

0.7533

0.3665

0.2010

< 0.0001

0.0258

6
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Table 3(on next page)

Backward regression to compare algae to abiotic and seagrass characteristic s.

Multiple linear regression with backward elimination model selection results comparing algal
density across abiotic and seagrass variables. The variables included in the model, following
selection, include T. testudinum density and the average canopy height. Variables that were
determined to be insignificant to the model during the selection process were average shoot
count, salinity, water temperature, H. wrightii density, S. filiforme density, and dissolved
oxygen.
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1 Table 3. Backward regression to compare algae to abiotic and seagrass characteristics. 

2 Multiple linear regression with backward elimination model selection results comparing algal 

3 density across abiotic and seagrass variables. The variables included in the model, following 

4 selection, include T. testudinum density and the average canopy height. Variables that were 

5 determined to be insignificant to the model during the selection process were average shoot 

6 count, salinity, water temperature, H. wrightii density, S. filiforme density, and dissolved oxygen. 

SS df F ratio Prob > F

Final model 

Variables in final model

T. testudinum density

Average canopy height

4.87

1.73

4.50

2 7.10

5.04

13.11

0.0010

0.0258

0.0004

Model R2 C(p) F ratio Prob > F

Variables removed from the 

model

Average total shoot count

Salinity

Temperature 

H. wrightii density

Dissolved oxygen 

S. filiforme density

0.0760

0.0749

0.0737

0.0702

0.0652

0.0604

7.02

5.26

3.53

2.36

1.52

0.65

0.02

0.25

0.27

0.83

1.18

1.14

0.8964

0.6182

0.6028

0.3626

0.2791

0.2862

7
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