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ABSTRACT
Recent studies have renewed interest in sponge ecology by emphasizing the
functional importance of sponges in a broad array of ecosystem services. Many
critically important habitats occupied by sponges face chronic stressors that might
lead to alterations in their diversity, relatedness, and functional attributes. We
addressed whether proximity to human activity might be a significant factor in
structuring sponge community composition, as well as potential functional roles,
by monitoring sponge diversity and abundance at two structurally similar sites that
vary in distance to areas of high coastal development in Bocas Del Toro, Panama.
We surveyed sponge communities at each site using belt transects and differences
between two sites were compared using the following variables: (1) sponge species
richness, Shannon diversity, and inverse Simpson’s diversity; (2) phylogenetic
diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and
dissimilarity; and (5) phylogenetic and trait patterns in community structure. We
observed significantly higher sponge diversity at Punta Caracol, the site most distant
from human development (∼5 km). Although phylogenetic diversity was lower at
Saigon Bay, the site adjacent to a large village including many houses, businesses, and
an airport, the sites did not exhibit significantly different patterns of phylogenetic
relatedness in species composition. However, each site had a distinct taxonomic
and phylogenetic composition (beta diversity). In addition, the sponge community
at Saigon included a higher relative abundance of sponges with high microbial
abundance and high chlorophyll a concentration, whereas the community at Punta
Caracol had a more even distribution of these traits, yielding a significant difference
in functional trait diversity between sites. These results suggest that lower diversity
and potentially altered community function might be associated with proximity to
human populations. This study highlights the importance of evaluating functional
traits and phylogenetic diversity in addition to common diversity metrics when
assessing potential environmental impacts on benthic communities.
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INTRODUCTION
Coral reefs are critical and dynamic habitats that provide a variety of important ecosystem

services that support local economies and international industries around the world

(Moberg & Folke, 1999; Mumby et al., 2008). Historically, scleractinian corals have provided

the structural framework for many of these complex reef networks (Aronson & Precht,

2001). However, in recent decades, reefs worldwide have experienced a marked decline

in the abundance of reef-building corals due to multiple stressors including marine

pathogens, overfishing of herbivores, and coastal eutrophication (Hughes, 1994; Lapointe,

1997; Hughes & Connell, 1999; Jackson et al., 2001; Harvell et al., 2007). Caribbean reefs

exemplify this trend, as many of these reef systems have undergone drastic phase shifts,

resulting in the dominance of fleshy macroalgae in place of hard corals (McCook, 1999;

Maliao, Turingan & Lin, 2008; Dudgeon et al., 2010). Along with altered community

composition, structure and function (Norström et al., 2009), these new “stable” states

provide fewer ecosystem services (Brock & Carpenter, 2006; Carpenter & Brock, 2006).

Healthy reefs are typically characterized as structurally complex habitats that act as refuges

for a variety of species including juvenile fish and invertebrates, effectively increasing the

diversity and abundance of the associated community (Graham et al., 2006). In contrast,

the reduced habitat complexity of macroalgal communities supports lower species diver-

sity and productivity across numerous trophic levels (McCook, 1999; Jones et al., 2004).

In addition to increased macroalgal cover, sessile macro-invertebrates, like sponges and

gorgonians, are often more abundant on degraded reefs (Maliao, Turingan & Lin, 2008).

This increased sponge abundance may have important ecological implications for these

communities (Bell et al., 2013), as numerous sponge species are known to perform critical

functional roles on shallow reefs. For instance, sponges directly contribute to energy

cycling on reefs by efficiently clearing dissolved organic carbon (Yahel et al., 2003; De Goeij

et al., 2013), bacteria (Reiswig, 1971; Pile, Patterson & Witman, 1997) and pathogens from

the water column, incorporating these energy sources into the benthic system (Hadas

et al., 2006). Moreover, by hosting diverse and often abundant microbial symbionts,

sponges contribute to primary productivity (photosynthesis) and nutrient cycling on the

reef (Wilkinson & Fay, 1979; Wilkinson, 1983; Wilkinson, 1992; Dı́az & Ward, 1997), even

though microbial community composition and, subsequently, functional roles, are highly

variable among species (Easson & Thacker, 2014; Freeman, Easson & Baker, 2014). Thus, as

sponge abundance increases throughout the Caribbean (Nyström, Folke & Moberg, 2000;

Norström et al., 2009) and populations of large species such as the giant barrel sponge,

Xestospongia muta, increase in some regions (increased by 46% from 2000 to 2006 in the

Florida Keys; McMurray, Henkel & Pawlik, 2010), it is likely that shifts in nutrient cycling

and ecosystem function are also occurring across degraded reef systems (Dı́az & Rützler,

2001; Wulff, 2001; De Goeij et al., 2013).

Although overall sponge richness and total biomass may be positively correlated with

anthropogenic stressors (Zea, 1994), some sponge species may be just as susceptible to

alterations in the chemical, biological and physical characteristics of the surrounding envi-

ronment as corals (Fang et al., 2014). For example, elevated concentrations of organic pol-
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lutants can influence sponge community structure by altering species diversity (Alcolado,

2007; Powell et al., 2014). Based on these data, we would predict that sponge community di-

versity and species composition might change across a gradient of anthropogenic stressors,

but the specific response is potentially variable. Recent work has highlighted the need to

move beyond simply measuring species diversity, showing that an organism’s contribution

to a habitat may be more important than its presence or absence (Cadotte, 2011; Safi et

al., 2011; Stuart-Smith et al., 2013; Stuart-Smith et al., 2015). This principle is especially

relevant in tropical ecosystems characterized by high diversity and often a high degree of

functional redundancy (Stuart-Smith et al., 2013). Sponges represent an ideal group on

coral reefs to study shifts in organismal contribution to ecosystem function, because they

are prolific reef-builders, have a range of functional behaviors, and contribute a variety of

crucial services to reef environments (Dı́az & Rützler, 2001; De Goeij et al., 2013).

The Bocas del Toro archipelago on the Caribbean coast of Panama includes numerous

islands, mangrove cays, peninsulas, fringing reefs and seagrass beds that surround shallow

bays with historically high coral cover (Collin, 2005). The region receives high annual

rainfall (3–5 m), resulting in variations in temperature, salinity, sedimentation and

turbidity (Kaufmann & Thompson, 2005). In addition, while the Bocas del Toro region

historically was home to several indigenous communities, the areas around Bocas Town

and Saigon Village have recently experienced rapid large population growth (Fig. 1).

This rapid population growth combined with high tourism rates, substandard public

infrastructure (e.g., sewers), and deforestation has contributed to increased run-off and

pollution of the near shore environment (Aronson et al., 2004). For example, there have

been reports of “black water” outflow (sewage, road pollution and solid waste dumping)

into Saigon Bay. The concentration of human activities in the Bocas del Toro region implies

that some local reef communities may be negatively impacted by chronic fluctuations in

water quality, while other reefs more distant from human development may be exposed

to these anthropogenic stressors less frequently (D’Croz, Del Rosario & Gondola, 2005;

Gochfeld, Schloder & Thacker, 2007).

The goal of our study was to build on the research of Gochfeld, Schloder & Thacker

(2007), who reported signs of sponge community variation that included lower diversity

and higher disease prevalence near human settlement. Additionally, because measure-

ments of alpha diversity can overlook important genetic and/or functional variability

among species in the community, we also assessed potential variation in phylogenetic

diversity, taxonomic and phylogenetic composition (beta diversity), and functional traits

between sites, with the goal of forming testable hypotheses for how sponge community

variation may translate to meaningful functional variation in communities of these

increasingly dominant benthic organisms.

METHODS
Field sites
To assess potential sponge assemblage differences related to proximity to human

development, we conducted belt transects adjacent to concentrated human settlement
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Figure 1 Map of Bocas del Toro region in Panama, where surveys were performed (Punta Caracol and Saigon Bay). The white dot marked STRI
represents the Smithsonian Tropical Research Institute. Each yellow dot represents an individual structure (residence) in 2004, and each red dot
represents a structure in 2011. Blue dots represent new residences that were built between 2004 and 2011. Approximately 55 new structures were
constructed on or adjacent to the shore along Saigon Bay in this 7-year span. Imagery is from 2004 (A) and 2011 (B and C) and is provided by
DigitalGlobe® via Google Earth and ArcGIS® software imagery basemap in ArcMapTM by Esri©.

around Saigon Bay, an area where about 150 houses, an airport and several businesses are

in close proximity to shore (n = 9, Saigon), and ∼5 km away from town where only a few

houses are located (n = 10, Punta Caracol, Fig. 1). Surveys conducted near Saigon Bay

were not in the exact same location as Gochfeld, Schloder & Thacker (2007), whose site was

located within the bay, likely subjecting it to naturally different environmental conditions.

In the current study we conducted surveys at the mouth of Saigon Bay to better standardize

reef structure between sites. Surveys were conducted at these sites in August 2012 and April

2014. Survey sites were similar in depth, exposure direction, and distance from shore. All

transect data were collected on SCUBA at a depth of 5–7 m along the general axis of the

reef with a minimum distance of 10 m between each transect. All specimen collection for

this study was performed in accordance with a collection permit from the government of

Panama, issued to Robert W. Thacker (resolution DGOMI-PICFC No. 36 issued on July 4,

2012).

Sponge richness and diversity
Sponge diversity and abundance were characterized by counting individuals that fell within

1 m of the transect line (i.e., creating 10 m × 2 m belt transects). A total area of 200 m2

and 180 m2 was surveyed at Punta Caracol and Saigon, respectively. Each sponge was

identified to the lowest possible taxonomic level. For sponges that were unidentifiable in

situ, voucher specimens were collected and identified in the laboratory following spicule

and fiber preparations. Using the R package vegan (Oksanen et al., 2007), we calculated

three univariate measures of sponge diversity for each transect at each survey site: species

richness (S), the Shannon index (H′), and the inverse Simpson’s index (D). We compared

each of these metrics between the two sites using a two-sample t-test.
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Phylogenetic reconstruction
Phylogenetic relatedness among surveyed sponge species was assessed using a phylogeny

constructed from a partitioned alignment of gene sequences from GenBank coding for the

small (18S) and large (28S) nuclear ribosomal subunits, which are common markers used

for molecular identification of sponge species (Redmond et al., 2013; Thacker et al., 2013;

Table S1). One sponge species, Verongula reiswigi, was not represented in GenBank, and

we obtained sequence information from vouchers representing this species as part of the

current study (Supplemental Information 1).

We reconstructed a phylogeny for all sponge species except Niphates caycedoi, for which

we were unable to obtain sequence information. This species was rare, with only four

individuals of this species found at one site. This species was excluded from phylogenetic

analysis. For each gene, sequences were aligned using the default options of MAFFT

7.017 (Katoh et al., 2002) in the program Geneious (version 6.1.8, Biomatters Limited).

We concatenated the two alignments, treating them as two separate partitions with

independent models of sequence evolution. We implemented a relaxed-clock model

in MrBayes version 3.2.1 (Ronquist et al., 2012), using the CIPRES computational

resources (Miller, Pfeiffer & Schwartz, 2010), and following recommended best practices

for implementing partitioned analysis (Wiens & Morrill, 2011; Kainer & Lanfear, 2015). We

constrained sponges in the genus Plakortis as an outgroup, using the independent gamma

rate relaxed clock model with a birth-death process (File S1, Aris-Brosou & Yang, 2003).

We included three parallel runs of 10 million generations, each using four Markov chains

and sampling every 100 generations. A consensus phylogeny of the three parallel runs was

summarized following a burn-in of 25% (Fig. S1).

Phylogenetic relatedness and patterns of diversity
We assessed phylogenetic diversity by calculating Faith’s phylogenetic diversity (PD), using

the R package picante (Kembel et al., 2010). Faith’s PD measures the total branch length

spanned by the sub-tree from each community, allowing for a comparison of total branch

lengths between communities (Kembel et al., 2010). Additionally, Faith’s PD relaxes the

diversity measurement assumption that all species are “equally different” by weighting

species diversity based on phylogenetic similarity (Gotelli & Chao, 2013). Phylogenetic

diversity patterns (clustering, dispersion, or random) were assessed by measuring the

mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) scaled to the

standard effect size among sponges within each site, accepting the default options in the

models. MPD calculates the mean distance between two randomly chosen individuals

in the community. Significant clustering measured by MPD implies a higher presence of

species related to one another through interior nodes (away from the tips of the phylogeny)

belonging to broader phylogenetic groups. MNTD calculates the mean distance separating

one individual from its closest relative. MNTD describes clustering at the tips of the tree,

and significant clustering by this metric indicates a higher presence of closely related

species connected by nodes closer to the tips of the phylogeny. For both MPD and MNTD,

we assessed differences in phylogenetic diversity patterns using two t-tests. We used a
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two-sample t-test to assess differences between sites, and a one-sample t-test to test

whether each site differed from a null hypothesis of random phylogenetic relatedness

(µ = 0, Kembel et al., 2010; Kembel & Cahill Jr, 2011).

Beta-diversity analysis
We assessed taxonomic beta diversity patterns between sites by calculating Bray–Curtis

dissimilarity (BCD) among all transects. We also calculated phylogenetic beta diversity

among all transects, which compares MPD and MNTD between two individuals selected

from different sites as opposed to individuals within the same site as previously measured

(Kembel et al., 2010; Kembel & Cahill Jr, 2011). To compare taxonomic and phylogenetic

dissimilarity between sites, we used the function adonis in the R package vegan (Oksanen et

al., 2007). We used similarity percentage analysis (SIMPER) to determine the proportional

contribution of each species to BCD.

Functional trait diversity and dissimilarity
We evaluated two traits (1: microbial abundance and 2: chlorophyll a concentration) that

are often associated with the functional roles of sponges in coral reef communities. Micro-

bial abundance is often linked to water filtration rate. Low microbial abundance sponges

(LMA) typically have higher pumping rates and thus filter more particulate organic matter

(POM) from the water column. In contrast, high microbial abundance (HMA) sponges

often have lower pumping rates but are able to access key inorganic nutrient sources

through their symbionts. Photosymbionts represent a unique class of sponge symbionts

that provide access to autotrophic nutrition and other key inorganic nutrients. Abundance

of photosymbionts is often estimated by measuring chlorophyll a concentration within

sponge tissue (e.g., Gochfeld et al., 2012; Easson et al., 2014; Freeman, Easson & Baker, 2014).

While these two traits are often related, we assessed both traits to tease apart potential

differences between HMA and low photosymbiont abundance (e.g., Agelas conifera,

Aiolochroia crassa, etc.), which might occur in higher abundance at sites with lower

irradiance and higher inorganic nutrients. Sponges of different classifications, with respect

to these two traits, show distinct biogeochemical cycling in carbon and nitrogen cycling,

which might impact the larger reef community (Freeman, Easson & Baker, 2014). We

treated microbial abundance as a binary factor, as data for absolute microbial abundance in

sponges is limited, categorizing sponges as either high microbial abundance (HMA) or low

microbial abundance (LMA) based on their previously published designation (Oksanen

et al., 2007; Weisz et al., 2007; Weisz, Lindquist & Martens, 2008; Gloeckner et al., 2014).

We treated chlorophyll a concentration in sponge tissue as a continuous variable based

on values in Erwin & Thacker (2007). The species Svenzea cristinae was not analyzed in

this previous survey, thus vouchers of this sample were collected (n = 8) and chlorophyll

a concentration was measured using the same methodology as Erwin & Thacker (2007)

(Supplemental Information 1). We initially compared differences in these two traits be-

tween sites using a two-sample t-test, assessing the proportion of HMA/LMA or High/Low

chlorophyll a sponges (High/Low chlorophyll a defined in Erwin & Thacker, 2007) between

sites. We then calculated measurements of trait diversity similarly to phylogenetic diversity

Easson et al. (2015), PeerJ, DOI 10.7717/peerj.1385 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1385/supp-2
http://dx.doi.org/10.7717/peerj.1385/supp-2
http://dx.doi.org/10.7717/peerj.1385/supp-2
http://dx.doi.org/10.7717/peerj.1385


by calculating the pairwise distance among species using the values for the measured

functional traits (microbial abundance and chlorophyll a concentration) to create a

distance matrix, which allowed for comparisons of dissimilarity among co-occurring

species and between sites (Kembel & Cahill Jr, 2011). We compared trait diversity between

sites using a two-sample t-test to test for site differences and a one-sample t-test to examine

whether either site differed from a null hypothesis for random trait patterns. We assessed

functional trait beta diversity similarly to phylogenetic beta diversity (comparing trait

distances between two individuals from different sites, Kembel & Cahill Jr, 2011), using the

function adonis in the R package vegan (Oksanen et al., 2007).

Overlap in beta diversity metrics
To investigate potential overlap among our metrics of community dissimilarity, we used

Mantel tests to determine whether BCD, phylogenetic dissimilarity, and trait dissimilarity

were correlated.

RESULTS
Field sites
Transects at Saigon and Punta Caracol contained an average of 260 and 194 individual

sponges, representing 17 ± 0.7 and 22 ± 1 (mean ± SE) sponge species per 20 m2,

respectively. Species richness at these two sites combined for a total of 40 sponge species.

Two sponges from the genus Aplysina were the most abundant members of these sponge

communities with 681 and 587 individuals of A. fulva and A. cauliformis, respectively,

pooling data from both sites. These two species accounted for approximately 28% of the

total sponge individuals at each site. Other notably abundant species were Chondrilla

caribensis, Mycale laevis, Svenzea cristinae, Niphates erecta, and Verongula rigida. Eight

species (35% of unique sponge species) were unique to Punta Caracol, while 2 species

(11% of unique sponge species) were unique to Saigon. These sponges were present at

lower abundances within their respective community, with none of these less common

species having more than 12 individuals in the entire dataset.

Sponge richness and diversity
Species richness of individual transects ranged from 12 to 24 species. All three diversity

indices were significantly different between the two sites: species richness (S) (mean ± SE:

17.3 ± 1.0 and 22.1 ± 0.7 for Saigon and Punta Caracol, respectively; t-test: t = 3.99,

df = 14.43, P = 0.001), Shannon Index (H′) (mean ± SE: 2.2 ± 0.06 and 2.6 ± 0.05 for

Saigon and Punta Caracol, respectively; t-test: t = 4.44, df = 16.63, P < 0.001), and inverse

Simpson’s Index (D) (mean ± SE: 7.0 ± 0.5 and 10.2 ± 0.7 for Saigon and Punta Caracol,

respectively; t-test: t = 3.64, df = 16.42, P = 0.002). Saigon on average had lower species

richness and community evenness compared to Punta Caracol.

Phylogenetic relatedness and patterns of diversity
In addition to the lower species diversity at Saigon, we observed significantly lower

phylogenetic diversity (Faith’s PD; 3.11 ± 0.11 for Saigon and 3.45 ± 0.09 for Punta
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Caracol; t-test, t = 2.45, df = 15.39, P = 0.027), indicating differences in the total branch

length spanned by the sub-tree from each community. We observed no differences in MPD,

between our two sites (t-test, t = 0.15, df = 12.52, P = 0.873). Although Punta Caracol

displayed a pattern of random MPD (one-sample t-test, t = −1.29, df = 9, P = 0.229),

Saigon showed a pattern of MPD clustering (one-sample t-test, t = −3.22, df = 8,

P = 0.012). These results imply that Saigon has a slightly higher presence of more closely

related species than Punta Caracol. We observed no significant differences in MNTD

between our sites (t-test, t = −1.40, df = 12.05, P = 0.186), and each site displayed a

random distribution of MNTD (one-sample t-test, t = −0.99, df = 8, P = 0.348 and

t = −1.94, df = 9, P = 0.084 for Saigon and Punta Caracol, respectively). These results

indicate that while phylogenetic diversity, often correlated with species richness, is lower

at Saigon, these two sites do not show significantly different patterns of phylogenetic

relatedness in species composition. Given the narrow geographic range of this study

(∼5 km), it is possible that these patterns of phylogenetic diversity may be more indicative

of the regional sponge fauna instead of differences between sites.

Beta-diversity analysis
We observed significant differences in beta diversity for taxonomic (adonis, F = 8.39,

df = 1, R2
= 0.33, P = 0.001, Figs. 2 and 3A) and MPD phylogenetic dissimilarity (adonis,

F = 1.53, df = 1, R2
= 0.083, P = 0.001, Fig. 3B), but not for MNTD phylogenetic

dissimilarity (adonis, F = 0.69, df = 1, R2
= 0.04, P = 0.476, Fig. 3C) between sites.

SIMPER analysis revealed that 5 sponge species comprised about 50% of the BCD between

the two sites, including: Svenzea cristinae (16%), Aplysina cauliformis (10%), Aplysina fulva

(9%), Haliclona walentinae (8%), and Chondrilla caribensis (7%), all of which were found

in higher relative abundance at Saigon (Fig. 2). Moreover, the SIMPER results demonstrate

that the lower species D at Saigon was due to the increased abundance of a few sponge

species.

Functional trait diversity and dissimilarity
Analysis of trait proportions between sites revealed that Saigon had a higher proportion of

HMA (t-test: t = −2.63, df = 16.41, P = 0.02) and high chlorophyll a (t-test: t = −9.00,

df = 16.50, P < 0.001) sponges, and the proportions of these two traits were correlated

(Pearson’s correlation, r = 0.62, df = 17, P = 0.005). Trait diversity was significantly

different between our two sites (t-test, t = 3.34, df = 10.68, P < 0.001). Traits were

significantly more clustered at Saigon (one-sample t-test, t = −2.49, df = 8, P = 0.044),

whereas traits were more evenly distributed at Punta Caracol (one-sample t-test, t = 2.73,

df = 9, P = 0.006, Fig. 3D). Species from Punta Caracol had a broad range of chlorophyll

a concentrations and microbial abundances, while species at Saigon were only represented

by a subset of this range. Trait beta diversity between sites was significantly different

(adonis, F = 82.264, df = 1, R2
= 0.83, P = 0.002) and explained approximately 83%

of the variation among transects.
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Figure 2 Relative abundance heatmap of sponge species encountered within each transect. These data are square-root transformed for easier
visualization. A Bray–Curtis dissimilarity dendrogram on the left highlights the taxonomic dissimilarity among transects. The reconstructed
phylogeny of these sponge species is displayed across the top, and species names are displayed across the bottom. S(1–9) represent transects near
Saigon Bay, which are closer to a larger number of residences, while PC(1–10) represent transects at Punta Caracol.

Overlap in beta diversity metrics
Mantel tests indicated that BCD taxonomic dissimilarity was significantly correlated with

MPD phylogenetic dissimilarity (Mantel: r = 0.48, P = 0.001), MNTD phylogenetic

dissimilarity (Mantel: r = 0.51, P = 0.001, and trait dissimilarity (Mantel: r = 0.24,

P = 0.004). Phylogenetic MPD (Mantel: r = 0.22, P = 0.010) and MNTD (Mantel:

r = 0.27, P = 0.005) dissimilarity were correlated with trait dissimilarity.
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Figure 3 NMDS scaling plots for beta diversity metrics. Nonmetric multi-dimensional scaling plots
of (A) BCD taxonomic, (B) MPD phylogenetic, (C) MNTD phylogenetic, and (D) trait dissimilarity
between sites. Blue dots indicate transects at Saigon, while red dots indicate transects at Punta Caracol.

DISCUSSION
This study identified clear differences in sponge species diversity and richness between

Saigon and Punta Caracol, supporting previous findings from Gochfeld, Schloder &

Thacker (2007), who attributed this variation to chronic anthropogenic influence. Building

on these results, we also observed significantly lower phylogenetic diversity at Saigon,

and demonstrated that each site had a distinct taxonomic and phylogenetic community

structure (Fig. 2). This variation in community structure resulted in contrasting trait

diversity between sites, with Saigon dominated by sponges with high chlorophyll a

concentrations and high microbial abundance.

The region of Almirante Bay in Bocas del Toro, Panama is characterized by high sponge

biodiversity with over 120 species found in reef, seagrass, and mangrove habitats (Diaz,

2005), despite episodic heavy rainfall resulting in severe freshwater runoff, sedimentation,

and low tidal flushing (D’Croz, Del Rosario & Gondola, 2005). Much of the development

in the area has little or no sewage treatment, and many residences and businesses are built

adjacent to or over the water (Fig. 1; Collin, 2005). Thus, many near-shore environments in

this area are heavily influenced by human activity (Aronson et al., 2004), and abundant

human debris is often observed floating and at depth in these areas (C Easson, pers.

obs., 2014). Although sponges are considered to be sensitive to environmental stressors

(Gochfeld, Schloder & Thacker, 2007), including elevated nutrient concentrations (Easson et

al., 2014, but see Gochfeld et al., 2012), a factor associated with poor sewage treatment, the

Bocas del Toro region maintains high sponge diversity (Diaz, 2005). In contrast to the high

diversity and abundance of sponges in the region, coral communities have experienced
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a marked decline associated with changes in water quality, concurrent with increases in

human settlement in the region (Guzman, 2003; Aronson et al., 2004).

By coupling heterotrophic filter-feeding with microbial metabolic pathways af-

forded by their symbionts, many sponges are able to utilize a wide range of nutrient

sources that likely contribute to their proliferation in a wide range of habitats, even in

anthropogenically-stressed areas where corals are in decline (Aronson et al., 2004; Diaz,

2005). However, changes in sponge community diversity and composition among sites

may indicate chronic environmental stress. Gochfeld, Schloder & Thacker (2007) found

distinct shifts in composition and lower diversity associated with proximity to human

development. Likewise, the current study demonstrated that sponge assemblages in close

proximity to human populations were less diverse and dominated by a small number of

species. When we looked beyond richness and diversity, we observed that the community

at Saigon contained lower genetic diversity, selecting for more distantly related species

belonging to broader phylogenetic groups. Differences in assemblage composition were

driven mainly by the high abundance of Svenzea cristinae and Haliclona walentinae at

Saigon; these species were nearly absent at Punta Caracol. Additionally, Saigon showed

a higher abundance of Aplysina cauliformis, Aplysina fulva, and Chondrilla caribensis.

Interestingly, these 5 species that comprise the main compositional differences between

sites all have high photosymbiont abundance. In contrast to previous surveys in the

area (Gochfeld, Schloder & Thacker, 2007), we found that the number of individuals

increased at sites in close proximity to human development. This result may be skewed

by the occurrence of many small individuals of Svenzea cristinae at Saigon (mean = 47

per transect) as compared to Punta Caracol (mean = 5 per transect). While estimates

of sponge biomass or volume are necessary to definitively measure changes in sponge

abundance across sites (Wulff, 2001), the number of individuals or species is often related

to sponge biomass measurements (Wulff, 2006; Wulff, 2013).

While metrics such as diversity and richness have been widely used to estimate com-

munity health in many marine systems (e.g., Witman, Etter & Smith, 2004; Schlacher et al.,

2007; Hewitt, Thrush & Dayton, 2008), these metrics capture only a small part of potential

changes and do not consider the functional variability of species are within a habitat

(Cadotte, 2011; Gotelli & Chao, 2013; Stuart-Smith et al., 2015). Sponges exhibit a wide

range of functional behaviors, and aside from filter feeding, many of the functional roles

that sponges fill are tied to the diverse and abundant microbial communities that they host.

Both of the traits evaluated in the current study are related to these microbial communities

(Taylor et al., 2007a; Taylor et al., 2007b). We observed significant trait diversity differences

between sites, partially driven by high trait evenness at Punta Caracol. Further analysis

revealed that Saigon contained sponges that were mostly HMA with high chlorophyll a

concentrations while the community at Punta Caracol included species with a wide range

of photosymbiont and overall microbial abundances. The two traits investigated in the cur-

rent study are correlated because most sponges that have high photosymbiont abundance

are considered to be HMA species. However, despite the long-term use of the HMA/LMA

classification recent research has made several aspects of this dichotomy less clear by
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demonstrating that sponge species host a continuum of microbial diversity that is specific

to a species and independent of microbial abundance classification (Giles et al., 2013; Eas-

son & Thacker, 2014). Moreover, the function of the microbial symbionts is likely more im-

portant than abundance and chlorophyll a concentration is a better predictor of metabolic

differences among sponges than microbial abundance (Freeman, Easson & Baker, 2014).

Decreased trait diversity at Saigon compared to Punta Caracol could imply that

ecological forces at this site are selecting for a sponge assemblage with particular functional

traits. Most sponges that host photosynthetic microorganisms rely on them for nutrition

to some degree (Thacker & Freeman, 2012), and as a result may rely less on heterotrophic

feeding. We originally hypothesized that poor water quality in the region (Collin, 2005;

D’Croz, Del Rosario & Gondola, 2005; Gochfeld, Schloder & Thacker, 2007) would lead to

increased particulate matter in the water column, potentially benefitting heterotrophic

sponge species and selecting against phototrophic sponges (Weisz, Lindquist & Martens,

2008). Instead, a higher abundance of species that host abundant symbionts, specifically,

photosymbionts at Saigon may be driven by the ability of these symbionts to utilize diverse

inorganic nutrient sources common in areas of anthropogenic input (Freeman et al., 2013;

Easson et al., 2014; Zhang et al., 2015).

Chlorophyll a concentration and microbial abundance are somewhat limited in what

they can elucidate about the sponge function, and adding more traits to the analysis would

be beneficial. One trait that would provide greater resolution for sponge community

function would be nitrogen transformation potential of sponge symbionts. However, data

for this trait is limited to a small number of sponge species, and uncertainty surrounding

the stability of these symbiont communities, as well as measurement discrepancies within

a single species, prevented us from evaluating these traits in the current study (Southwell,

2007; Southwell et al., 2008; Hoffman et al., 2009; Maldonado, Ribes & van Duyl, 2012; Fiore,

Baker & Lesser, 2013).

The current study shows that a sponge community in close proximity to human

populations consisted of fewer sponge species with higher photosymbiont abundance,

as well as, overall microbial abundance. In contrast, the community at a site distant

from human development (Punta Caracol) included a more diverse assemblage of

species, including those considered to have both high and low microbial abundance and

chlorophyll a. Although we present no direct evidence of human impact (i.e., nutrient

analysis), Gochfeld, Schloder & Thacker (2007) measured pollutants consistent with

anthropogenic inputs in the Saigon area, and thus concluded that reefs in this region likely

experience some degree of human impact. This, coupled with the fact that development in

the Saigon area has continued (Fig. 1), implies that Saigon has been chronically exposed

to anthropogenic inputs for at least the last 7 years. Our observations of differences in

species and phylogenetic diversity, altered species composition, and functional trait

diversity at otherwise similar sites suggest that proximity to human development (and

potentially these inputs) may be partially shaping the community composition of these

dominant benthic invertebrates. Importantly, our data also suggest that this variation

may have important impacts on genetic diversity and ecosystem function. For instance,
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while species with high photosymbiont abundance may increase local productivity,

selection for species with abundant symbiont communities may lead to a reduction

in heterotrophic feeding, instead favoring a community capable of diverse nitrogen

transformations. Selection favoring HMA species over LMA species, which might rely

more on heterotrophic feeding, might further alter the cycling of nutrients and organic

matter within reef ecosystems by reducing water filtration rates. Thus, as shifts from

coral-dominated systems to sponge-dominated systems are occurring throughout the

Caribbean (Loh & Pawlik, 2014), it is important for us to understand how local-scale

changes impact the composition of these sponge communities, as well as the functional

role of species within these communities.
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