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ABSTRACT
We designed a comparative study to unravel the phylogeography of two Alpine
endemic spiders characterized by a different degree of adaptation to subterranean
life: Troglohyphantes vignai (Araneae, Linyphiidae) and Pimoa rupicola (Araneae,
Pimoidae), the latter showing minor adaptation to hypogean life. We sampled
populations of the model species in caves and other subterranean habitats across
their known geographical range in the Western Alps. By combining phylogeographic
inferences and Ecological Niche Modeling techniques, we inferred the biogeographic
scenario that led to the present day population structure of the two species.
According to our divergent time estimates and relative uncertainties, the isolation
of T. vignai and P. rupicola from their northern sister groups was tracked back to
Middle–Late Miocene. Furthermore, the fingerprint left by Pleistocene glaciations
on the population structure revealed by the genetic data, led to the hypothesis that
a progressive adaptation to subterranean habitats occurred in T. vignai, followed by
strong population isolation. On the other hand, P. rupicola underwent a remarkable
genetic bottleneck during the Pleistocene glaciations, that shaped its present
population structure. It seems likely that such shallow population structure is both
the result of the minor degree of specialization to hypogean life and the higher
dispersal ability characterizing this species. The simultaneous study of overlapping
spider species showing different levels of adaptation to hypogean life, disclosed a new
way to clarify patterns of biological diversification and to understand the effects of
past climatic shift on the subterranean biodiversity.

Subjects Biogeography, Ecology, Evolutionary Studies, Molecular Biology, Zoology
Keywords Comparative phylogeography, Pleistocene glaciations, Ecological niche modeling,
Cave-dwelling spiders, Alpine fauna, Pimoa, Troglohyphantes, Subterranean specialization, DNA
markers, Dispersal

INTRODUCTION
Long term climatic changes are often invoked among the most important factors that

drove surface-dwelling invertebrate populations to colonize subterranean habitats,

causing their isolation and shaping their present day distribution patterns (Jeannel,

1943; Peck, 1980; Holsinger, 1988; Botosaneanu & Holsinger, 1991; Culver & Pipan, 2010).

In this regard, the Pleistocene glaciations (reviewed in Culver & Pipan, 2010) and the
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Messinian Salinity Crisis (Faille et al., 2010) have been pointed out among the main

drivers of the present distribution patterns of the European subterranean biodiversity.

The climate-driven isolation caused the allopatric divergence of subterranean populations,

resulting in narrow patterns of distribution and high levels of endemism (Christman et al.,

2005; Culver & Pipan, 2009; Borges et al., 2012; Cardoso, 2012). Accordingly, population

studies conducted so far have uncovered an extreme genetic structuring in terrestrial

invertebrates in subterranean habitats (Kane, Barr & Badaracca, 1992; Allegrucci, Minasi

& Sbordoni, 1997; Hedin, 1997; Gentile & Sbordoni, 1998; Hedin & Thomas, 2010; Ribera et

al., 2010; Snowman, Zigler & Hedin, 2010; Dixon & Zigler, 2011; Zhang & Li, 2013; see also

Bohonak, 1999 for an historical perspective on this topic). This general trend was mainly

interpreted in light of the past climatic transition, as the result of the limited dispersal

ability of subterranean organisms. Because of the adaptation to the hypogean medium,

subterranean species develop narrower physiological tolerance (i.e., troglomorphism

sensu Christiansen, 1962), which hamper their dispersal ability through non-subterranean

habitats. For example, some cave-dwelling spiders with minor adaptations to hypogean

life are known to disperse outside caves in different stages of their life cycle (e.g., Meta

spiders; Smithers, 2005; Mammola & Isaia, 2014). On the other hand, subterranean

habitats, especially caves, are generally connected through a networks of small cracks

and voids which may facilitate dispersal of the invertebrate fauna (Juberthie, Delay &

Bouillon, 1980; Juberthie, Delay & Bouillon, 1981; Uéno, 1987; Romero, 2012; Culver &

Pipan, 2009; Culver & Pipan, 2014; Giachino & Vailati, 2010 among others).

Here we designed a comparative study aimed at providing insights on the origin and

the evolution of the hypogean biodiversity. Specifically, we focused on two Alpine endemic

species co-occurring in caves and other subterranean habitats across most of their known

distribution range and exhibiting different levels of adaptation to subterranean life.

The first model species,Troglohyphantes vignai Brignoli, 1971 (Araneae, Linyphiidae), is

endemic to the Western Italian Alps (NW Italy), being discontinuously distributed from

the Cottian (Province of Torino) to the Maritime Alps (Province of Cuneo) (Isaia et al.,

2011). Since the description, all available records of this species refer to cave habitats (Brig-

noli, 1971; Brignoli, 1985; Pesarini, 2001; Arnó & Lana, 2005; Isaia & Pantini, 2010; Isaia et

al., 2011). T. vignai shows adaptations to the hypogean life, namely loss of pigmentation,

reduction of the eye apparatus, thinning of integuments and heavy spination. T. vignai was

described from the cave Buco di Valenza (Speleological cadastrial number: 1009 Pi/CN; Po

Valley) by Brignoli (1971). In the same publication, Brignoli also described T. rupicapra,

which was distinguished from T. vignai by small morphological details of the epigynum.

T. rupicapra was described on material from Grotta superiore delle Camoscere (Speleologi-

cal cadastrial number: 250 Pi/CN; Pesio Valley). According to the species description, and

as later observed by Isaia & Pantini (2010, Figs. 15–18), T. rupicapra shows a higher degree

of troglomorphism compared to T. vignai, namely higher depigmentation, reduction of

eye diameter and loss of functional eyes, and lowering of the profile of the cephalothorax.

The species validity of T. rupicapra was questioned by Pesarini (2001), who proposed the

synonymy T. rupicapra = T. vignai, currently accepted in the World Spider Catalog (2015).
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Our second model organism, Pimoa rupicola (Simon, 1884) (Araneae, Pimoidae), is an

Alpine-Apenninic endemic element, recorded almost continuously from the Graian Alps

to the Tuscan Apennines (Thaler, 1976; Hormiga, 1994; Isaia et al., 2011) and French

Maritime Alps. Several authors (Brignoli, 1971; Brignoli, 1972; Brignoli, 1985; Thaler,

1976; Arnó & Lana, 2005; Isaia et al., 2011) referred to P. rupicola as a troglophile species

(sensu Sket, 2008), being abundant in subterranean habitats and occasionally recorded

from surface habitats, such as leaf litter, humid rocks covered by mosses and mountain

screes (Bertkau, 1890; Jackson, 1926; Thaler, 1976; Hormiga, 1994; Isaia et al., 2015;

Isaia, Paschetta & Chiarle, 2015). Given the sporadic collection of individuals outside

cave (mainly pitfall trap data reported in Isaia et al. (2015); Isaia, Paschetta & Chiarle

(2015), and additional unpublished data collected by two of us (SM and MI)), it seems

likely that males and immatures of P. rupicola disperse trough the epigean environment.

Morphologically, the species does not show any remarkable troglomorphic features: it has

eight functional eyes, it is entirely pigmented and it has a well defined abdominal pattern.

To present knowledge (Arnó & Lana, 2005; Isaia et al., 2011), the Alpine range of P.

rupicola encompasses the entire range of T. vignai and the two species often co-occur in the

same cave.

In this contribution we investigated the biogeographic events that shaped present day

population structure of the two species. Since the study was set at the species/population

interface, we employed two fast-evolving DNA markers, namely the mitochondrial

cytochrome oxidase I (cox1) and the nuclear second internal transcribed spacer region

(ITS-2). The popularity of this markers stem from a generally high level of variation,

which permit to reconstruct relationships among and within spider species, making them

particularly suitable for population and biogeographic studies (Agnarsson, 2010; Vidergar,

Toplak & Kuntner, 2014).

Moreover, in accordance with Peterson (2009) we coupled genetic inferences with

ecological niche modeling techniques, thus obtaining multiple supports to our research

hypothesis. In particular, we hypothesized that past climatic changes played a key role in

shaping the genetic structure of the populations of the two species. Given the contrasting

degree of subterranean specialization exhibited by the two spiders, we further hypothesized

that populations of P. rupicola show minor genetic structure than T. vignai.

Additionally, this study offered the opportunity to reveal the existence of cryptic

species within the two lineages. In fact, it was observed during the course of the study

that individuals belonging to the northern populations of P. rupicola presented subtle but

consistent differences in their genital morphology. Hereinafter, we will restrict the use of

the epithet ‘rupicola’ to indicate the southern populations, and we will refer tentatively to

the northern populations as ‘n. sp.’

MATERIAL & METHODS
Sampling
Populations were collected in caves, abandoned mines and other hypogean habitats

across the known distribution range of Troglohyphantes vignai and Pimoa rupicola in
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the Western Alps. The distribution range of T. vignai was entirely covered (including

type locality and former localities of T. rupicapra, indicated hereinafter as T. vignai

sensu rupicapra), while for Pimoa we only sampled Alpine populations, thus excluding

French and Apenninic populations. The complete list of localities is reported in Table 1 and

Fig. 1. The toponomastics and classification of the different sectors and sub-sectors of the

Alps follows the partition of the Alpine chain (SOIUSA: Marazzi, 2005). Specimens were

hand-collected, preserved in 95% ethanol and stored in freezer. Given that the sampled

environments were highly oligotrophic, in certain localities we were able to detect and

collect only few individuals of the two investigated species. The number of individuals

collected for each locality ranged from 2 to 8 in P. rupicola and P. n. sp. and from 1 to 7 in

T. vignai (Table 2). Overall, 119 Pimoa specimens from 25 localities and 37 Troglohyphantes

specimens from 8 localities were used in this study.

DNA extraction, amplification and sequencing
One leg was removed from each specimen for DNA extraction. Whole genomic DNA was

extracted from the samples using the SpeedTools Tissue Extraction Kit (Biotools) following

the manufacturer’s protocol. A 676 bp region of the mitochondrial cytochrome oxidase

subunit I (cox1) gene and a 400 bp region of the nuclear second internal transcribed

spacer region (ITS-2) gene were amplified using polymerase chain reaction (PCR). We

utilized the primers C1-J-1490 (5′-GGTCAACAAATCATAAAGATATTGG-3′; Folmer et al.,

1994) and C1-N-2191 (5′-CCCGGTAAAATTAAAATATAAACTTC-3′; Simon et al., 1994)

for the cox1 and the ITS-5.8s (5′-GGGACGATGAAGAACGGAGC-3′) and the ITS-28s

(5′-TCCTCCGCTTATTGATATGC-3′) for the ITS-2 (White et al., 1990).

PCR amplifications were carried out in 25 µL reaction volume in a final concentration

of 0.1 µL Taq polymerase (Promega), 5 µL buffer (Promega), 2.25 µL MgCl2 (Promega),

0.2 mm of each dNTP, 0.5 µL of each primer and 1.5 µL of DNA sample. PCR conditions

for amplification were as follows: initial denaturing step at 95 ◦C for 5 min, 35 amplifica-

tion cycles (94 ◦C for 30 s, 45 ◦C for 35 s, 72 ◦C for 45 s cox1 fragment and 94 ◦C for 45 s,

48 ◦C for 1 min, 72 ◦C for 60 s for ITS-2 fragment) fallowed by a final extension at 72 ◦C

for 5 min. For certain populations of Pimoa rupicola (localities #23 and #26), a slightly

different annealing protocol for the cox1 was utilized (94 ◦C for 30 s, 42 ◦C for 35 s, 72 ◦C

for 45 s). PCR products were visualized on agarose gels.

PCR product were cycle-sequenced at Macrogen, Inc. (Seoul, Korea; http://www.

macrogen.com). The DNA sequences obtained were preliminary assembled and edited

using Geneious 7.1 (Kearse et al., 2012; http://www.geneious.com).

The alignment of the cox1 sequences was trivial, as they showed no evidence of indel

mutations. The ITS-2 fragments were aligned with the online version of MAFFT (Katoh

& Toh, 2008; http://mafft.cbrc.jp), using the Q-INS-I strategy with default options.

We explored best partitioning schemes and substitution models simultaneously using

PartitionFinder v.1.0.1 (Lanfear et al., 2012) under a Bayesian information criterion (BIC).
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Table 1 Summary of the sampled localities. Sampled localities of Pimoa rupicola, P. n. sp. and Troglohyphantes vignai ordered by latitude (from North to South).

Cod Valley Locality Habitat
type

x y P.
n.sp

P.
rupicola

T.
vignai

Date Collector/s

1 Susa (!) Seinera Abandoned
mine

7,201 45,163 * 20.II.2011 Mammola S., Piano E., Giuliano D.

2 Susa (!) Dravejs Scree 7,039 45,118 * 13.VI.2014 Mammola S., Piano E.

3 Sangonetto Coazze Ruined
building

7,241 45,067 * 20.II.2011 Isaia M.

4 Sangonetto Garida Abandoned
mine

7,304 45,055 * 20.II.2011 Isaia M.

5 Chisone [1591 Pi/TO] Tana del Diavolo Wild cave 7,123 45,028 * * 12.IX.2014 Isaia M., Mammola S.

6 Chisone Bocetto Abandoned
mine

7,086 44,959 * 12.IX.2014 Isaia M., Mammola S.

7 Germanasca [n.c. Pi/CN] Tuna du Diau Wild cave 7,104 44,949 * * 12.IX.2014 Isaia M., Mammola S.

8 Lemina S. Pietro Val Lemina Abandoned
mine

7,297 44,937 * 12.IX.2014 Isaia M., Mammola S.

9 Germanasca (!) Tornini Abandoned
mine

7,199 44,908 * * 12.IX.2014 Isaia M., Mammola S.

10 Germanasca S. Germano Chisone Abandoned
mine

7,225 44,901 * 13.XI.2014 Isaia M.

11 Pellice [1538 Pi/TO] Gheisa d’la Tana Wild cave 7,224 44,851 * 28.IX.2014 Isaia M., Mammola S., Paschetta M.

12 Po Balma di Rio Martino (Opera 372) Military
bunker

7,140 44,702 * 13.XI.2014 Isaia M., Mammola S., Paschetta M.

13 Po [1148 Pi/CN] Buco del Maestro Wild cave 7,238 44,686 * 3.X.2014 Isaia M., Mammola S., Paschetta M.

14 Po [1009 Pi/CN] Buco di Valenza Wild cave 7,172 44,683 * * 13.XI.2014 Isaia M., Mammola S., Paschetta M.

15 Varaita (!) Tour Real Blockhouse 6,982 44,645 * 29.VII.2014 Mammola S.

16 Varaita [1019 Pi/CN] Tana dell’Orso di Casteldelfino Wild cave 7,099 44,561 * 21.VII.2013 Mammola S.

17 Varaita [1010 Pi/CN] Grotta di Rossana Wild cave 7,431 44,534 * 20.VII.2013 Giresi A., Mammola S.

18 Maira [n.c. Pi/CN] Grotta del Partigiano di Roccabruna Wild cave 7,294 44,509 * 14.VII.2014 Isaia M.

19 Stura [1122 Pi/CN] Grotta dello Scoiattolo Wild cave 7,389 44,412 * 13.I.2015 Isaia M., Mammola S., Paschetta M.

20 Stura [1102 Pi/CN] Buco dell’ Aria Calda Wild cave 7,462 44,349 * 03.X.2014 Isaia M., Mammola S., Paschetta M.

21 Stura [1056 Pi/CN] Grotta della Chiesa di Valloriate Wild cave 7,382 44,339 * 13.I.2015 Isaia M., Mammola S., Paschetta M.

22 Lisio [884 Pi/CN] Grotta Rio dei Corvi Wild cave 7,994 44,303 * 26.XII.2014 Isaia M., Mammola S.

23 Corsaglia [113 Pi/CN] Tana di Camplass Wild cave 7,887 44,297 * 26.XII.2014 Isaia M., Mammola S.

24 Vermenagna Fort (B) of Vernante (Opera 14) Military
bunker

7,529 44,257 * 13.I.2015 Isaia M., Mammola S., Paschetta M.

25 Pesio [250 Pi/CN] Grotta superiore delle Camoscere Wild cave - Protected
data -

44,21719 * 26.XII.2014 Isaia M., Mammola S.

26 Tanaro [118 Pi/CN] Grotta dell’Orso di Ponte di Nava Wild cave 7,866 44,119 * 10.X.2014 Isaia M., Mammola S.

27 Pesio (!) Unknown cave near Colle del Pas Wild cave 7,774 44,166 * 20.VIII.2014 Badino G.

28 Argentina [619 Li/IM] Sgarbu du ventu Wild cave 7,937 44,002 * 27.XII.2014 Isaia M., Mammola S.

29 Argentina [104 Li/IM] Tana di Bertrand Wild cave 7,867 43,916 * 27.XII.2014 Isaia M., Mammola S.

Notes.

Cod, locality numeric code used in the analysis and figures. For each record we report the name of the locality, the name of the Alpine valley, the habitat type, the geographical coordinates (longitude and latitude in
decimal degrees, WGS 84 reference system), the date and the collectors. For hypogean localities, we report the Speleological cadastrial number in square brackets (e.g., 1591 Pi/TO), when available. An exclamation mark
in parenthesis (!) before the name of the locality indicates new unpublished records found during this study.
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Figure 1 Haplotype networks of the investigated populations. Statistical parsimony haplonetworks for
Pimoa n. sp. (A), P. rupicola (B) and Trogolohyphantes vignai (C). Numbers in maps indicate localities (see
legend), alphanumeric codes in the networks refer to haplotypes. The size of each circle is proportional to
the number of sampled individuals with each haplotype (see scale above the legend). Unsampled and/or
extinct haplotypes are represented by small black circles.

Genetic analyses
Population structure
Standard genetic diversity indices (nucleotide and haplotype diversity, A-T bias,

transition/transversion rate) were estimated with the PopGenome package (Pfeifer et

al., 2014) in R environment (R Development Core Team, 2013). We tested for population
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Table 2 Standard genetic diversity indices. Diversity measures for the cox1 and ITS-2 genes for the
localities of Pimoa n. sp., P. rupicola and Troglohyphantes vignai sampled in this study.

Cox1 ITS-2

Locality code Species N H π h N H π h

1 P. n. sp. 2 2 1,000 1,000 2 1 0,000 0,000

2 P. n. sp. 2 2 1,000 1,000 2 1 0,000 0,000

3 P. n. sp. 5 2 0,600 0,600 5 2 0,400 0,400

4 P. n. sp. 4 1 0,000 0,000 2 1 0,000 0,000

5 P. n. sp. 8 1 0,000 0,000 6 2 0,476 0,476

6 P. n. sp. 6 1 0,000 0,000 6 1 0,000 0,000

7 P. n. sp. 7 2 0,285 0,285 7 1 0,000 0,000

8 P. n. sp. 3 3 0,000 0,000 3 2 0,666 0,666

9 P. n. sp. 6 3 2,133 0,533 6 3 1,400 0,600

10 P. n. sp. 2 1 0,000 0,000 2 1 0,000 0,000

11 P. n. sp. 4 4 5,666 1,000 5 3 1,333 0,666

12 P. n. sp. 7 4 2,476 0,714 8 3 0,678 0,464

13 P. n. sp. 8 5 2,429 0,857 8 3 1,047 0,523

14 P. n. sp. 5 2 1,500 0,500 5 2 0,333 0,333

15 P. n. sp. 2 1 0,000 0,000 2 1 0,000 0,000

17 P. n. sp. 5 2 2,500 0,500 4 1 0,000 0,000

18 P. n. sp. 5 2 0,666 0,333 5 1 0,000 0,000

19 P. n. sp. 3 3 2,666 0,666 3 2 0,000 0,000

20 P. n. sp. 4 1 0,000 0,000 4 2 0,500 0,500

21 P. n. sp. 5 1 0,000 0,000 5 1 0,000 0,000

22 P. rupicola 2 1 0,000 0,000 2 1 0,000 0,000

23 P. rupicola 5 1 0,000 0,000 5 1 0,000 0,000

24 P. rupicola 4 1 0,000 0,000 5 1 0,000 0,000

26 P. rupicola 6 1 0,000 0,000 6 1 0,000 0,000

28 P. rupicola 7 1 0,000 0,000 7 5 2,285 0,857

29 P. rupicola 3 2 7,333 0,667 3 1 0,000 0,000

5 T. vignai 6 2 0,612 0,600 6 1 0,000 0,000

6 T. vignai 6 2 1,000 0,500 6 3 1,166 0,833

7 T. vignai 5 1 0,000 0,000 5 1 0,000 0,000

9 T. vignai 7 3 0,571 0,523 7 1 0,000 0,000

14 T. vignai 3 1 0,000 0,000 3 1 0,000 0,000

16 T. vignai 3 1 0,000 0,000 3 1 0,000 0,000

25 T. vignai* 6 3 0,666 0,600 6 1 0,000 0,000

27 T. vignai* 1 1 0,000 0,000 1 1 0,000 0,000

Notes.
N, number of individuals; H, number of haplotypes; π , nucleotide diversity; h, haplotype diversity.

* Indicates populations of T. vignai sensu rupicapra.

structure among localities in the cox1 dataset using FST as implemented in ARLEQUIN

3.01 (Excoffier, Laval & Schneider, 2005). Significance was assessed by performing 10,000

permutations. We excluded from this analysis six localities (#1, #2, #10, #15, #22 and #27)

where the sampling representativeness was questionable (i.e., less than 3 individuals).
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Haplotype networks were constructed using the statistical parsimony method (Templeton,

Crandall & Sing, 1992; Clement et al., 2002) with a confidence limit of 95% as implemented

in PopArt (online at: http://popart.otago.ac.nz).

Phylogenetic inference
Maximum likelihood (ML) and Bayesian inference (BI) were used to infer the gene trees

and the concatenated tree for each genus. For this analysis we only included unique

haplotypes. We concatenated Cox1 and ITS-2 gene fragments in Geneious and excluded

taxa with partial sequences. Gaps in the ITS-2 were recoded as absence/presence characters

using the simple method proposed by Simmons & Ochoterema (2000) with the help of

the computer program SeqState 1.4.1 (Müller, 2005). We used Troglohyphantes nigraerosae

and Pimoa edenticulata as outgroups to root the respective trees based on the results of

ongoing analyses on the two genera (MA Arnedo, 2015, unpublished data; G Hormiga,

2015, unpublished data).

ML analyses were performed in RAxML v.7.4.2 (Stamatakis, 2006) with the aid of the

graphical interface RAXML-GUI v.1.3 (Silvestro & Michalak, 2011), by conducting 10 runs

per 500 bootstrap replicates.

BI analyses were conducted in MrBayes v.3.2 (Ronquist et al., 2012) with two indepen-

dent runs of 20 million generations with four Markov chains (one cold, three heated),

sampling every 1,000 generations. The convergence of chains was checked in Tracer v.1.6

(Rambaut et al., 2014) until effective sample sizes (EES) was above 200, and the average

standard deviation of split frequencies (ASDSF) of the two runs was below 0.02. The first

20% of trees in each run were discarded as burn-in. The majority-rule consensus tree was

generated from remaining trees.

Divergence time estimation
Divergence time was estimated for the two lineages using a multispecies coalescent

approach (Heled & Drummond, 2010), as implemented in BEAST (Drummond et al.,

2012). Coalescent groups within each species were first identified by using the General

Mixed Yule Coalescence (GMYC; Fujisawa & Barraclough, 2013) method and used

as a proxy of species in the multicoalescent analyses. GMYC is a clustering method

that provides an objective way to delimit putative independent evolutionary lineages

(i.e., coalescent groups). For each cox1 alignment, we generated a ML tree (see analytical

protocol above) and we converted it to an ultrametric tree with the help of PATHd8

(Britton et al., 2007). The GMYC analysis was conducted via the package splits (Ezard,

Fujisawa & Barraclough, 2014) in R, after removing zero-length branches and make the tree

fully dichotomous.

For estimating the divergence time of Troglohyphantes and Pimoa lineages, we utilized

the best gene partition schemes estimated with PartitionFinder. Because of the lack of

reliable calibration points (e.g., fossils, relevant geological or biogeographical events) for

any of the two lineages, we relied on informed priors of the substitution rates of the cox1,

based on available information for spiders (Bidegaray-Batista & Arnedo, 2011). Preliminary

analyses using a lognormal relaxed clock for the cox1 gene showed that the posterior
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distribution of the ucld.mean parameter accreted to zero and hence a strict clock was

preferred. We set the prior rate parameter of the cox1 strict clock to a normal distribution

with mean ± sd = 0.02 ± 0.006. Similarly, we assigned a strict clock prior to the ITS-2

partition. To speed up calculation, we defined a flat prior to the ITS-2 mean rate parameter

consisting in a uniform distribution with upper and lower bounds of 0.2 and 0.0001,

respectively. We selected a Yule model for the tree prior.

For each species we ran three independent MCMC chains for 50 million generations,

sampling every 10,000 generations. Convergence of the three chains and correct mixing

was assessed in Tracer v.1.6 (Rambaut et al., 2014).

Ecological niche modeling
We relied on ecological niche modeling (ENM; see, e.g., Elith et al., 2006) to model the

ancestral distribution of the target species. Detailed methodological protocol is provided

in Supplemental Information 1. In a first step, we collected all records of the target species

available in the literature. We managed to track down 22 localities for Troglohyphantes

vignai, most of which clustered together. On the other hand, for Pimoa we recovered

110 localities (61 for Pimoa n. sp. and 49 for P. rupicola), including new unpublished

records discovered during the present study. Given the low number of localities for T.

vignai, we only inferred the ENM model for the Pimoa lineages. The dataset was corrected

for potential spatial autocorrelation and haphazard sampling (Oliveira et al., 2014 and

references therein). We obtained present day climatic data (19 ‘Bioclim variables’, see

Table 1 of Supplemental Information 1) and altitude a.s.l. from the WorldClim website

(www.worldclim.org). We obtained downscaled and calibrated Paleoclimatic data for the

Last Glacial Maximum (∼22,000 years ago; hereinafter LGM) from three different simu-

lations available from Global Climate Models (GCMs; Coupled Model Intercomparison

Project phase 5; http://cmip-pcmdi.llnl.gov/cmip5). The climatic preferences of the two

species were investigated via Principal Component Analysis (PCA) in the Vegan R package

(Oksanen et al., 2013). We investigated collinearity among covariates and obtained a final

set of uncorrelated variables (Annual mean temperature (Bio1), Temperature annual range

(Bio7) and Mean temperature of the driest quarter (Bio9)).

We generated presence-only models with the Maximum Entropy Distribution Models

available in MaxEnt (Phillips, Anderson & Schapire, 2006), as implemented in the dismo R

package (Hijmans et al., 2014). Firstly, we computed the models on the present climate

and on the occurrence points within the M area (sensu Barve et al., 2011; details in

Supplemental Information 1). To generate the prediction, we ran each niche model 20

times using a loop script in R, keeping in all cases a random partition of 20% of the

occurrence points, which was used to evaluated model performance via the Area Under the

Curve (AUC) of the Receiver Operating Characteristic (ROC) plot (Fielding & Bell, 1997).

We projected the MaxEnt models in the LGM climate, under each of the three GCMs

climatic scenarios. We used a conservative approach to identify potential Pleistocene

refugia: we first applied a threshold of 0.6 to the continuous probability surface of presence

estimated after the projection. We then combined the three projections, by sub-sampling

only those pixel classified as potentially occupied (p > 0.6) in each LGM forecast.
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RESULTS
Population structure
The new sequences obtained in the present study are available in GenBank (Supplemental

Information 2). A fragment of the mitochondrial cox1 gene of 676 bp was obtained

for 37 specimens of Troglohyphantes vignai in 8 localities, corresponding to 14 unique

haplotypes. The cox1 data set had 79 segregating sites and 9 parsimony informative

sites. The overall mean distance (p-distance among haplotypes) was 0.0495 ± 0.0059.

Sequences of the nuclear intron ITS-2 were obtained from the same individuals. The

alignment was 400 positions long, 10 additional absence/presence gap characters were

scored, corresponding to 10 ITS-2 sequence types. The ITS-2 had 16 segregating sites and 9

parsimony informative sites. The overall p-distance among caves was 0.0389 ± 0.0020. We

obtained 676 bp cox1 sequence fragments of 119 Pimoa individuals from 25 localities. The

93 individuals from 19 localities of Pimoa n. sp. yielded 43 haplotypes (35 segregating sites

and 7 parsimony informative sites) and the 27 individuals from 6 localities of P. rupicola

yielded 7 haplotypes. The average p-distance within populations in Pimoa n. sp. and

P. rupicola was 0.0076 ± 0.0017 and 0.0052 ± 0.0017, respectively, and the maximum

p-distance between the two lineages was 0.1164 ± 0.0111. The nuclear ITS-2 sequences

were obtained from 118 Pimoa specimens. The final alignment included 411 positions and

4 additional gap characters. Individuals of Pimoa n. sp. (90 individuals) and P. rupicola (28

individuals) yielded 34 and 10 sequence types, respectively. The average p-distance within

populations in Pimoa n. sp. and P. rupicola was 0.0102 ± 0.0027 and 0.0035 ± 0.0017,

respectively, and the maximum p-distance between the two lineages was 0.0701 ± 0.0121.

The standard genetic diversity indices calculated for the cox1 and the ITS-2 for each

locality are summarized in Table 2. Pimoa n. sp. showed high levels of nucleotide diversity

and low levels of haplotype diversity in most of the populations, while both P. rupicola

and T. vignai showed low levels of haplotype and nucleotide diversity. This pattern was

especially obvious in P. rupicola, since most individuals within populations were identical.

Pairwise FST values calculated for the localities of the three species are reported in

Table 3. Pairwise FST values between localities revealed contrasting patterns of gene flow. In

T. vignai, pairwise FST values between localities were always higher than 0.8, and significant

(p < 0.05), except for localities #14 and #16. A relatively strong population structure was

also found in P. rupicola. Pairwise FST values between localities were always higher than 0.6,

although significant comparisons involved exclusively southernmost localities (#28 and

#29). Pimoa n. sp. showed instead a more shallow population structure, with several FST

values below 0.5, generally corresponding to nearby localities.

Pimoa haplotypes were resolved as two independent networks, corresponding to Pimoa

n. sp. (1) and P. rupicola (2), respectively, separated by 42 steps. P. rupicola haplotypes were

limited to single populations, except H26 and H27, which were shared across populations.

Generally, populations had low haplotype diversity, and in one case (#26) there was one

single haplotype. Two divergent haplotypes (11 steps), however, were found in locality #29.

In Pimoa n. sp. haplotypes from nearby localities clustered together or were separated

by only few steps (1–4). Several haplotypes (H7, H8, H12, H14) were shared among closely
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Table 3 Population structure among localities. FST values for mtDNA cox1 of Pimoa n. sp., P. rupicola and Troglohyphantes vignai based on the
Tamura and Nei model. Locality codes are explained in Table 1. Localities #1, #2, #10, #15, #22 and #27 were excluded from the analysis, being
represented by less than three individuals.

FST Pimoa n. sp.

3 4 5 6 7 8 9 11 12 13 14 17 18 19 20 21

3 0,000 – – – – – – – – – – – – – – –

4 0,250 0,000 – – – – – – – – – – – – – –

5 0,723 0,018 0,000 – – – – – – – – – – – – –

6 0,787 0,123 0,332 0,000 – – – – – – – – – – – –

7 0,557 0,322 0,412 0,341 0,000 – – – – – – – – – – –

8 0,700 0,764 0,597 0,422 0,857 0,000 – – – – – – – – – –

9 0,433 1,000 0,733 0,733 0,590 0,733 0,000 – – – – – – – – –

11 0,200 1,000 0,500 0,500 0,357 0,500 0,230 0,000 – – – – – – – –

12 0,340 0,561 0,642 0,642 0,500 0,642 0,376 0,142 0,000 – – – – – – –

13 0,289 0,642 0,589 0,578 0,446 0,589 0,322 0,006 0,218 0,000 – – – – – –

14 0,500 0,589 0,800 0,800 0,657 0,800 0,533 0,300 0,442 0,357 0,000 – – – – –

17 0,450 1,000 0,750 0,750 0,607 0,750 0,483 0,250 0,392 0,186 0,470 0,000 – – – –

18 0,533 0,750 0,833 0,830 0,690 0,833 0,566 0,333 0,476 0,422 0,633 0,583 0,000 – – –

19 0,366 0,860 0,660 0,666 0,523 0,666 0,400 −0,071 0,309 0,107 0,466 0,416 0,500 0,000 – –

20 0,700 1,000 1,000 1,000 0,857 1,000 0,733 0,250 0,642 0,452 0,800 0,750 0,833 0,000 0,000 –

21 0,800 1,000 1,000 1,000 0,857 1,000 0,733 0,500 0,642 0,452 0,750 0,000 0,833 0,666 1,000 0,000

FST Pimoa rupicola FST Troglohyphantes vignai

23 24 26 28 29 5 6 7 9 14 16 25

23 0,000 – – – – 5 0,000 – – – – – –

24 1,000 0,000 – – – 6 0,916 0,000 – – – – –

26 1,000 1,000 0,000 – – 7 0,964 0,855 0,000 – – – –

28 1,000 0,667 1,000 0,000 – 9 0,957 0,873 0,943 0,000 – – –

29 0,876 0,876 0,876 0,667 0,000 14 0,991 0,988 1,000 0,991 0,000 – –

16 0,989 0,984 1,000 0,989 1,000 0,000 –

25 0,987 0,984 0,992 0,988 0,975 0,988 0,000

Notes.
Values in bold represent significant comparisons (p < 0.05).

located localities (e.g., occurring in the same Alpine valley or in adjacent valleys). In some

instances, however, haplotypes from distant localities were found to be very similar (few

steps), e.g., locality #1 and #2 with #12. Moreover, two haplotypes (H18 and H22) were

found in individuals occurring in distant populations.

In T. vignai, haplotypes were not shared between localities. Haplotypes from closely

located populations were generally separated by few mutations. Haplotype diversity was

low within populations, and localities #7, #14 and #16 showed single haplotypes. Two

localities (#9 and #25), on the other hand, had more than two haplotypes. The haplotypes

of T. vignai sensu rupicapra were separated by 17–20 steps from the nearest locality (#14),

which is actually the locus typicus of T. vignai (Buco di Valenza cave). A higher number of

steps (38–56) separated this cave from the remaining localities.
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Figure 2 Phylogenetic tree of Troglohyphantes. Topology obtained in the concatenated Bayesian analysis
for Troglohyphantes vignai. Only one individual per haplotype is shown. Vertical rectangles denote sup-
port as follows: Bayesian posterior probabilities (PP; left rectangles) and maximum likelihood bootstraps
(ML; right rectangles); black: PP > 0.95, ML bootstrap support > 70%, white: support values lower than
threshold values. The asterisk (*) indicate the locus typicus of T. vignai. Localities #25 and #27 refer to
T. vignai sensu rupicapra.

Phylogenetic tree and estimation of the divergent time
Partition Finder selected the full codon as the best partition scheme for the alignments

of both species. The models for each partition are reported in Table 2 of Supplemental

Information 1. Both the Bayesian and ML analyses of the concatenated data matrix of

T. vignai yielded in similar tree topologies, and most branches were highly supported

(i.e., posterior probabilities (PP) > 0.95, bootstrap support (BS) < 75%; Fig. 2). T. vignai

was split in two main clades: one including the southern populations (#14, #16, #25 and

#27), and the second one including the remaining northern populations (#5, #6, #7 and

#9). The Bayesian and the ML analyses also recovered similar tree topologies in Pimoa

(Fig. 3). Two well-supported clades were detected, corresponding to Pimoa n. sp. and

P. rupicola, respectively. Individuals from geographical adjacent localities were closely

related, although basal branches within Pimoa n. sp. were poorly supported.

The GMYC algorithm identified 2 coalescent clusters within Pimoa cox1 sequences

(ML = 100.8932; LR = 28.59767; p < 0.000), one including all sequences/localities

of P. rupicola and the other including all sequences/localities of Pimoa n. sp. Troglohy-

phantes vignai cox1 sequences were resolved as 7 coalescent clusters (ML = 424.2824;

LR = 207.4615; p < 0.000; Fig. 4). Except for cluster A2, which included individuals from

two caves, each cluster corresponded to individuals sampled from single caves.
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Figure 3 Phylogenetic tree of Pimoa. Topology obtained in the concatenated Bayesian analysis for
Pimoa. Only one individual per haplotype is shown. Vertical rectangles denote support as follows:
Bayesian posterior probabilities (PP; left rectangles) and maximum likelihood bootstraps (ML; right
rectangles); black: PP > 0.95, ML bootstrap support > 70%, white: support values lower than threshold
values.

The species trees and the embedded cox1 gene tree recovered for each spider genus

are shown in Fig. 4. The substitution rate estimated for the Troglohyphantes cox1 was

0.0218 substitutions per lineage/million years (95% HPD = 0.010–0.033), and for the

ITS-2 was 0.0024 (95% HPD = 0.0005–0.0031). The split between T. vignai and T.

nigraerosae was traced back to approximately 7.2 million years ago (Ma, 95% Highest

Posterior Density, HPD = 13.7–3.5 Ma). Diversification of the extant T. vignai lineages

occurred 2.9 million years ago (95% HPD = 5.4–1.5 Ma), while the diversification of the

extant northern populations (D2, E2, F2, G2 clusters) occurred approximately 0.5 Ma

(95% HPD = 0.9–0.2 Ma). The substitution rate estimated for Pimoa cox1 was 0.0217

substitutions per lineage/million years (95% HPD = 0.011–0.033), and for the ITS-2 was

0.006 (95% HPD = 0.002–0.013). The basal split between Pimoa n. sp. and P. rupicola

was estimated to have occurred around 5.7 Ma (HPD = 12–2 Ma). The origin of the

extant diversity of each lineage was estimated approximately at 0.4 Ma for both lineages

(HPD = 1–0.15 and HPD = 0.85–0.15 Ma, for P. rupicola and Pimoa n. sp. respectively).
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Figure 4 Timeframe of diversification. Chronograms obtained with the multispecies coalescent ap-
proach for the cox1 and ITS2 genes combined (orange topologies) and the cox1 gene alone (black
topologies). Grey node bars indicate the 95% HPD confidence intervals of the divergence time (for sake
of clarity, only those HPD referring to the cox1 gene are shown). The common x-axis is time in million
years (Mya).
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Figure 5 Climatic segregation of the Pimoa lineages. Bi-plot of Principal Component Analysis (PCA)
scores for the first two axes based on 19 bioclimatic variables and altitude a.s.l. extracted for the localities
of Pimoa n. sp. (purple dots) and Pimoa rupicola (green dots). For the explanation of the bioclimatic
variables see Table 1 in Supplemental Information 1.

Climatic segregation
We studied the climatic preference for the two Pimoa linages with PCA, using bioclimatic

variables (see Table 1 of Supplemental Information 1). The bi-plot of scores for the

first two axes of the PCA is shown in Fig. 5. The first two axes explained 86.2% of the

variation in the data. The variance explained by other axis was negligible (<1% each).

In respect to the first two axes, the two species segregate into two distinct clusters. The

first axis (eigenvalues = 12.28; variance explained = 62.0%) mostly reflect a gradient

of temperature. The second axis (eigenvalues = 4.79; variance explained = 24.2%) was

positively correlated with variables reflecting diurnal and annual thermic excursion (Bio2,

Bio4, Bio7) and anticorrelated with variables reflecting seasonal precipitation (Bio13,

Bio16, Bio19). Although the first axis (PC1) explains most of the variance in the data, the

localities of the two Pimoa species cluster in two groups according to the second axis (PC2),

which combines bioclimatic variables referable to continentality. According to the original

definition (see Currey, 1974 for more details), continentality is intended as a measure
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of how the climate is affected by its remoteness from the sea. Specifically, the distance

from water masses influences the climate in terms of higher seasonality (Bio4), increasing

diurnal (Bio2) and annual (Bio7) temperature ranges, as well as decreasing precipitation in

the coldest (Bio19) and wettest (Bio13 and 16) periods. In light of our results, Pimoa n. sp.

occurs in areas characterized by higher continentality in respect to P. rupicola.

Current and past distribution of Alpine Pimoa
The predictive performance of our bioclimatic models was fairly high both in Pimoa n. sp.

(mean ± SD AUC of the 20 runs = 0.845 ± 0.053) and in P. rupicola (0.908 ± 0.089).

Overall, the suitable areas predicted by the model were congruent with the known

distribution of the two species, at least in the Western Alps and Apennines. Current

predictions identified suitable areas for P. n. sp. around the medium mountain belt

(500–1500 m a.s.l.) of the Central and Western Alps, from the Camonica valley (province

of Bergamo) down to the margin between Cottian and Maritime Alps (Stura valley,

province of Cuneo). In respect to the known distribution, the predicted range of P. n. sp.

extended northwards over the known limit of the species (see dotted line in Fig. 6A). More

suitable areas were also detected in the northern edge of the Tuscan Apennines (Fig. 6A).

The suitable areas of P. rupicola corresponded to the southern border of the Western Alps,

in the coastal belt that spreads from Côte d’Azur (SW France) to the Ligurian eastern coast

and Tuscan Apennines (Italy). Additional suitable areas were also found in Tuscany, Lazio

and Corsica. The projection of the distribution model to the environmental condition of

the Last Glacial Maximum (LGM) revealed that most of the current suitable areas were

unsuitable in the LGM (Fig. 6B). Our threshold approach identified one main refugia for

P. n. sp. (RF1) and two for P. rupicola (RF2 and RF3). All refugia corresponded to areas

that were devoid from glaciers (in accordance with Ehlers, Gibbard & Hughes, 2011). The

RF1 extended outside the southern edge of the actual distribution of Pimoa n. sp., in the

hills and plains surrounding roughly the Northern border of Maritime and Ligurian Alps.

RF2 corresponded to small areas along the French and Italian Riviera. RF3 extended over a

wider geographic area in the Apennine, and in the northern part of the Corsica.

DISCUSSION
The history of two cave-dwelling spiders
The confounding effects of adaptation, biogeography and dispersal ability on the

origin and the distribution patterns of cave organisms pose a stimulating challenge to

biogeographers (Porter, 2007; Juan et al., 2010). According to Culver & Pipan (2010), long

term climatic changes can be claimed as the main factors that prompted invertebrate

species to colonize the subterranean habitats. In this regard, the Miocene climatic

transitions and the Pleistocene glaciations are considered among the most important

events. Here, by reconciling phylogeographic patterns and predictive ENMs, we provide

support to this view, pointing out the Cenozoic climatic transitions has the most important

factors shaping the present day genetic diversity and the distribution range of our model

species.
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Figure 6 Current and past distribution of Pimoa lineages. Maps of the predicted environmental
suitability according to the ENMs fitted to the occurrence points for Pimoa n. sp. (purple surface)
and P. rupicola (green surface), at the present climate (A) and during the Last Glacial Maximum (B).
Potential Pleistocene refugia (RF1, RF2, RF3) were identified by combining the three GCMs climatic
reconstructions and applying a threshold of 0.6. The northern limit of the known distribution of P. n.
sp., corresponing to the Graian Alps (Isaia et al., 2011), is highlighted in the upper map with a dotted
line. Limits of the ice cover in the Last Glacial Maximum (Ehlers, Gibbard & Hughes, 2011) are reported
for Pleistocene projections (white shapes in the lower map).

Although special caution should be exercised when considering time estimates based

on molecular data, especially in the absence of fossil record (Hipsley, 2014), our results

fits well with some of the major climatic event undergone in the Western Alps during

the Cenozoic. Accordingly, the two Pimoa lineages and Troglohyphantes vignai originated

from the Middle (Serravallian) to the Late Miocene (Messinian), namely from 13 to 3.5

mya. More precisely, the isolation of T. vignai and P. rupicola from their northern sister

groups (T. nigraerosae and P. n. sp.) dates back 7.2 and 5.7 mya, respectively. This time

period approximately corresponds to the closure of the Gibraltar Strait and the onset of the

so-called Messinian Salinity Crisis (MSC; after Ruggieri, Adams & Ager, 1967). However,

given the large confidence intervals around our time estimates (∼10 million years), it is
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difficult to draw precise conclusions about the event that exactly determined the split of the

different lineages.

It is worth noticing that the onset of a climatic transition in the Middle Miocene,

marked the decline of the last global climate optimum conditions, leading to a progressive

deterioration of the dominant subtropical climatic conditions (Suc, 1984; Shevenell,

Kennett & Lea, 2004; Jiménez-Moreno, Fauquette & Suc, 2010). It is arguable that in parallel

to the slow climate deterioration and the increase of seasonality, isolation of Pimoa and

Troglohyphantes occurred.

Being possibly pre-adapted to shallow moist humid habitats (Deeleman-Reinhold, 1978;

Hormiga, 1994; Zhang & Li, 2013; Wang et al., 2008), both species progressively colonized

the subterranean habitat, most likely during the Pleistocene. Given their contrasting level

of troglomorphism, it is likely that the process began earlier in Troglohyphantes.

The known distribution range of T. vignai stretches discontinuously along the Cottian

(Chisone, Po and Varaita valleys) down to Ligurian (Valle Pesio) Alps. Conversely, the

distribution of the northern sister group T. nigraerosae is adjacent southern Graian Alps

(Isaia et al., 2011). The lack of shared haplotypes and the FST values close to 1 between the

sampled localities of T. vignai indicates a strong isolation of the populations (Holsinger &

Weir, 2009). The same idea is further corroborated by the identification of each population

as an independent coalescent lineage (i.e., GYMC cluster). These results are in agreement

with other studies on subterranean arachnids (Hedin, 1997; Hedin & Thomas, 2010; Dixon

& Zigler, 2011) that support the “caves as islands” scenario (sensu Snowman, Zigler &

Hedin, 2010), in which dispersal is virtually absent and the different populations diverge

in allopatry. Under such conditions, it seems likely the subterranean habitat acted as an

evolutionary cul-de-sac (see Fǐser, Blejec & Trontelj, 2012) for T. vignai. According to

our time estimates the diversification of extant T. vignai lineages (especially northern

population) occurred approximately during the Pleistocene glaciations. In this respect,

it is worth noting that subterranean localities inhabited by T. vignai lie at the periphery

of the Pleistocene glaciers (Ehlers, Gibbard & Hughes, 2011; see also local glacial limits

reconstructed in Motta, 2014). Because subterranean populations most likely cannot

survive under the ice cover (Culver & Pipan, 2010), we suggest that the present day

distribution range of T. vignai is the shadow of a wider ancestral distribution. Populations

inhabiting the northern valleys in the Cottian Alps (Germanasca and Chisone valleys; see

Fig. 4), where the ice shield was more compact, provide further evidences of the effect of

Quaternary ice sheets.

In this area the distribution of T. vignai overlaps with the range of several hypogean

species of Doderotrechus beetles (Carabidae, Trechini) (Giachino, 1993; Giachino & Vailati,

1997; Casale & Giachino, 2008). The similarity of distribution of both groups is most likely

the result of a similar response to glacial dynamics. Gaining further knowledge on the

biogeography of other subterranean species may provide further confirmation for the

patterns here recovered.

In contrast with T. vignai, for which we did not detect any evidence of current

population expansion, the topology of the chronogram obtained for Pimoa lineages
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hints at a recent expansion following a bottleneck (see Fig. 4). The putative population

expansion in both lineages of Pimoa would fall within the Quaternary Glacial Cycles,

between 2.8 and 2.5 Ma (Gibbard, Head & Walker, 2010). The movement of glaciers

as well as the continuous formation and melting of new ice sheets may have deeply

affected the different populations, altering profoundly the local habitat suitability.

Such transformations prompted either the migration of populations to more suitable

areas at lower altitudes or latitudes or the local extinction of resident populations.

Such scenario is congruent with the genetic fingerprint found in both Pimoa lineages.

Accordingly, we hypothesize a glacial cycle-driven extinction of ancestral populations

during cooler periods, followed by the expansion of populations which survived in climatic

refugia during warmer periods. A similar pattern was observed in the Asian species P.

clavata (Wang et al., 2008). The ENMs projected into the paleoclimatic reconstruction

pointed out three putative areas devoid from glaciers that may have acted as glacial refugia

for the surviving populations of each lineage (RF1-3; Fig. 6B). In the case of P. n. sp., we

detected one main macrorefugia (RF1) associated to the southernmost offshoots of the

Alpine glacial masses. Notably, similar areas have also been classified as peripheral refugia

for several Alpine plants, such as Phyteuma globulariifolium (Schönswetter et al., 2002) and

Ranunculus glacialis (Schönswetter et al., 2003). For P. rupicola, potential macrorefugia

where located along the SW French coast (RF2) and the Tuscan coast (RF3), including the

northern part of Corsica. Even though the presence of P. rupicola in Tuscany is confirmed

by literature records (Brignoli, 1971; Hormiga, 1994), recent investigation conducted by

the authors did not confirm the present occurrence of the species in Corsica. Because of

the larger spatial resolution of the LGM stacked rasters compared to the present day data

(2.5 min versus 30 arc-seconds (∼1 km)), it should be borne in mind that we may have

not detected small point-like microrefugia (sensu Rull, 2009) within the interior of the

Pleistocene ice shield covering the Alps.

As suggested by the lower FST values compared to Troglohyphantes, the relatively fast

recolonization of ice-free areas is probably the result of the more effective dispersal ability

of Pimoa. In particular, the population expansion followed a south-north direction,

leading to the present distribution ranges of both lineages. Concerning P. n. sp., we

additionally predict suitable areas up to the Central Alps. Given the continuity of the

suitable habitats predicted by the ENM and the supposed high dispersal ability of

Pimoa, we hypothesize an ongoing expansion of the populations northwards. Indeed,

the occurrence of Pimoa in outer shaded and humid habitats such as beech forests and

other broadleaved forests (Bertkau, 1890; Jackson, 1926; Thaler, 1976; Isaia et al., 2015;

Isaia, Paschetta & Chiarle, 2015) provides empirical evidence of the existence of epigean

dispersal. Because of the sex bias among the specimens collected in superficial habitats

(Isaia et al., 2015; Isaia, Paschetta & Chiarle, 2015) and the general trend observed for

spiders (Foelix, 1996), gene flow appears mostly mediated by males.

It should be borne in mind, however, that in light of the relatively low sample-size

and the potential bias linked to the possible male-mediated dispersal, our cox1 data (and

the associated FST results) may not fully reflect patterns of gene flow (see, e.g., Willing,
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Dreyer & Van Oosterhout, 2012; Davalos & Russell, 2014). Since low sample size is known to

impact this kind of estimations, caution should be exercised when interpreting the values

of nucleotide and haplotype diversity calculated for each locality (e.g., Goodall-Copestake,

Tarling & Murphy, 2012). To minimize these potential bias, we left out from the calculation

of the FST populations consisting of less than three individuals. Nevertheless, it is worth

noticing that during data exploration we obtained very similar patterns of gene flow when

comparing cox1 and ITS-2 results.

At present, the two lineages of Pimoa identified in this study show allopatric distribu-

tions (Fig. 6). P. n. sp. populations occur preferentially in areas characterized by higher

continentality, and seem to tolerate cooler temperatures at higher altitudes and latitudes,

as suggested by the results of the PCA (Fig. 5). On the other hand, Pimoa rupicola occurs in

less continental areas, characterized by relatively small seasonal variations and high mean

annual temperatures (i.e., Mediterranean climate). Similar complete niche partitioning

between congeneric subterranean spiders has been reported elsewhere (Ribera, 1978;

Gasparo & Thaler, 2000; Mammola & Isaia, 2014).

The application of ENM techniques has become a widespread practice to answer

biogeographical and evolutionary questions (Franklin, 2009). In particular, ENM

have been extensively used to identify Pleistocene refugia (e.g., Waltari et al., 2007;

Rodriguez-Sanchez & Arroyo, 2008; Peterson, 2009; Planas et al., 2014). In constructing

our scenarios, we have adopted a conservative approach, as our goal was to generate

predictions under different levels of uncertainty. Although we relied on this approach, we

are aware that ENMs have been rarely—and only recently—applied to study the hypogean

ecosystems (see, e.g., Bryson et al., 2014; Camp et al., 2014; Naranjo, Moreno & Martíın,

2014). This is probably because, in first approximation, the link between the climatic

variables (i.e., the external climate) and the subterranean habitat is not so straightforward.

However, temperature of the underground compartment generally reflects the climatic

regimen on the surface (Smithson, 1991; Badino, 2010). Although less intuitive, the regimen

of rainfall plays an equally crucial role—if not more important—in determining such

conditions (see details in Badino (2004) and Badino (2010)).

Overlooked diversity
In light of our results, some consideration regarding the overlooked diversity of our model

species can be drawn. Concerning T. vignai, in this study we have included specimens

from eight different localities, including topotypical material and material of T. vignai

sensu rupicapra. The low levels of genetic variability observed between the latter and the

topotypic material of T. vignai (Fig. 2, p-distance = 0.0022), provide further support for

the synonymy between the two species proposed by Pesarini (2001). Therefore specimens

of T. vignai sensu rupicapra have to be regarded as a population of T. vignai isolated in

an area characterized by different climatic conditions (major Mediterranean influence).

Such isolation could tentatively be related to the higher development of troglomorphism in

T. vignai sensu rupicapra, as already observed by Brignoli (1971) and Isaia & Pantini (2010).

Moreover, climatic factors provide a further line of interpretation for the presence of two
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main lineages within T. vignai, corresponding to the northern and the southern clade

(Figs. 1 and 2). Slight differences in the shape of the lamella significativa of the male palp

could lead to consider the two lineage as candidate species (Vieites et al., 2009), however

the genetic distance between the two lineages, is about half of the value observed in the two

nominal species T. vignai and T. nigraerosae.

The genus Pimoa is represented worldwide by 28 species (World Spider Catalog, 2015),

many of which have only been described recently (Xu & Li, 2007; Xu & Li, 2009; Trotta,

2009; Hormiga & Lew, 2014). The application of molecular tools to investigate fine scale

phylogeographic patterns in this group may uncover additional hidden diversity (Wang

et al., 2008). It is generally accepted that species delimitation and eventually species

description should be based on the integration of multiple lines of evidence (Padial et

al., 2010). Here, we uncovered two deeply divergent genetic lineages (Fig. 3, GYMC clusters

with p-distance above 9%) within Pimoa rupicola, which are further delimited both by

genitalic morphology (S Mammola, G Hormiga, MA Arnedo, M Isaia, 2015, unpublished

data) and different ecological requirements (Fig. 5).

CONCLUSIONS
Here, we have described the origin and the subsequent diversification of two species

of spiders with contrasting levels of troglomorphism. We suggest that a different level

of adaptation to subterranean life is an important factor to consider in the study of

phylogeographic patterns. In particular, the major climatic events that occurred in the

Alps during the Cenozoic determined from one side the complete isolation of pre-adapted

subterranean species causing present day high population structuring, and from the other,

the obliteration of surface-dwelling populations, causing their extinction or the lack of

genetic structure in present day populations.

The parallel study of populations of subterranean species, especially when showing

different levels of adaptation and overlapping ranges of distribution, may disclose new

ways to understand patterns of biological diversification. Future research may include new

highly variable nuclear markers and analytical tools, and also consider other taxa showing

similar distributions (e.g., Doderotrechus beetles), to shed further light on the processes

that shaped the present diversity of Alpine subterranean fauna.
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Uéno S-I. 1987. The derivation of terrestrial cave animals. Zoological Science 4:593–606.

Vidergar N, Toplak N, Kuntner M. 2014. Streamlining DNA barcoding protocols: automated
DNA Extraction and a new cox1 primer in arachnid systematics. PLoS ONE 9(11):e113030
DOI 10.1371/journal.pone.0113030.
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