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Olive (Olea europaea L.) is a highly mycotrophic species that has been introduced and
cultivated in China for half a century. However, it is still unclear how native AMF impact
growth and mineral nutrients, especially phosphorus absorption. In the present study,
through a pot experiment, the effects of native AMF on the growth, phosphorus uptake and
expression levels of four phosphate transporter genes (Pht) of olive plantlets were
characterized. We found that (1) typical AMF colonization was observed within the roots of
inoculated olive plantlets, and the growth of plantlets was significantly promoted; (2) some
indigenous consortia (AMF1 and AMF2) notably promoted the absorption of phosphorus,
fertilizers significantly increased the foliar content of nitrogen, and both AMF inoculation
and fertilization had no significant effect on the uptake of potassium and boron; and (3)
AMF inoculation enhanced the expression of phosphate transporter genes in inoculated
olive roots. This work demonstrates the effectiveness of native AMF on the cultivation of
robust olive plantlets and highlights the role of AMF in increasing phosphorus uptake. The
study results are expected to provide a theoretical basis for analyzing the phosphorus
uptake pathway promoted by AMF in olive.
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20 Abstract

21 Olive (Olea europaea L.) is a highly mycotrophic species that has been introduced and cultivated 

22 in China for half a century. However, it is still unclear how native AMF impact growth and 

23 mineral nutrients, especially phosphorus absorption. In the present study, through a pot 

24 experiment, the effects of native AMF on the growth, phosphorus uptake and expression levels 

25 of four phosphate transporter genes (Pht) of olive plantlets were characterized. We found that (1) 

26 typical AMF colonization was observed within the roots of inoculated olive plantlets, and the 

27 growth of plantlets was significantly promoted; (2) some indigenous consortia (AMF1 and 

28 AMF2) notably promoted the absorption of phosphorus, fertilizers significantly increased the 

29 foliar content of nitrogen, and both AMF inoculation and fertilization had no significant effect on 

30 the uptake of potassium and boron; and (3) AMF inoculation enhanced the expression of 

31 phosphate transporter genes in inoculated olive roots. This work demonstrates the effectiveness 

32 of native AMF on the cultivation of robust olive plantlets and highlights the role of AMF in 

33 increasing phosphorus uptake. The study results are expected to provide a theoretical basis for 

34 analyzing the phosphorus uptake pathway promoted by AMF in olive.

35
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40 Introduction

41 Olive (Olea europaea L.), a multifunctional long-living tree crop, is relevant not only for table 

42 olive and oil production but also for its impact on human nutrition and rural lifestyle (Fabbri et al. 

43 2009). Olive has long been the symbol of the Mediterranean and is now spreading in many other 

44 new areas (Gutierrez et al. 2009; Horden & Purcell 2012). A global production trend of olive has 

45 been on the rise and the countries that were previously importers of the product, such as the US, 

46 China, Chile and Australia are now producing. Olive trees were introduced to China in the 

47 1960’s, and now grown in 14 provinces, mainly Gansu, Sichuan, and Yunnan, covering an area 

48 of 167000 ha (Wang et al. 2019). These areas are located in western China, and the soil is mostly 

49 acidic red soil and yellow soil, phosphorus (P) is one of the major plant nutrients that is least 

50 available in the soil. Aluminum and iron ions, which predominate in acidic soils, interact 

51 strongly with P and render it unavailable to plants (Raghothama & Karthikeyan 2005).

52 Arbuscular mycorrhizal fungi (AMF) can form mutualistic symbioses with approximately 80% 

53 of land plant species. They can acquire nutrients from soil volumes that are inaccessible to roots, 

54 and provide the host plant with mineral nutrients and water, in exchange for photosynthetic 

55 products (Berruti et al. 2016). Olive is a typical mycotrophic species (Calvente et al. 2004; 

56 Hayman et al. 1976; Roldán-Fajardo & Barea 1986), and many studies have reported that the 

57 early presence of AMF increases the growth of olive rooted cuttings and micropropagated plants 

58 (Estaún et al. 2003; Martín et al. 2006) and enhances olive plant tolerance to stress caused by 

59 transplanting (Bompadre et al. 2014; Dag et al. 2009), drought (Ouledali et al. 2018), salinity 

60 (Ben Hassena et al. 2021) and disease (Boutaj et al. 2021). Notably, AMF are known to improve 

61 P nutrition in plants by making them accessible to unavailable soil P sources (Allen 1996). Thus, 

62 AMF show superior prospects as biofertilizers, especially in tropical soils (Igiehon & Babalola 

63 2017), which are usually dominated by iron and aluminum oxides and maintain a lower available 

64 P than temperate soils (Tiessen 2005).

65 In this study, we hypothesized that, after years of planting in China, (1) the olive trees 

66 harbored some indigenous AMF; (2) these AMF can produce promising effects on the growth 

67 and phosphorus (P) uptake of olive plants, and the expression of genes related to P uptake can 

68 also be promoted with the root colonization of AMF. In this context, we collected rhizosphere 

69 soil of olive trees from five growing sites in Yunnan as the source of indigenous AMF consortia 

70 and compared them with commercial AMF inoculum and fertilizer to study their effects on olive 

71 plantlets. Furthermore, the gene expression of P absorption via the formation of AM was also 

72 characterized.

73

74 Materials & Methods

75 Plant materials and cultivation conditions

76 Koroneiki was selected since it is one of the most common olive cultivars in Yunnan province 

77 with promising performance. The plantlets used in this study were obtained by mist propagation. 

78 The semi-woody cuttings were approximately 10 cm long and had two pairs of leaves at the top 
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79 end. The bottom basal end of each cutting was immersed in an ethanol solution containing 5 g of 

80 indol-3-butyric acid/L to promote root development. Propagation was performed in an arch 

81 tunnel with a controlled glass greenhouse under an air temperature of 20 ± 2 ℃. After three 

82 months, the rooting cuttings were transferred to 7.5 cm × 11.5 cm plastic pots filled with 

83 growing medium.

84 The growing medium was a mixture of 50% peat moss and 50% vermiculite (v/v) with a pH of 

85 6.85, organic matter of 251.83 g/kg, hydrolyzable nitrogen of 406.76 mg/kg, available 

86 phosphorus of 43.12 mg/kg, available potassium of 469.38 mg/kg, total nitrogen, phosphorus and 

87 potassium of 5.08 g/kg, 0.62 g/kg and 16.57 g/kg, respectively. The growing medium was 

88 autoclaved twice for a period of 2 h at 121°C, with a 24 h interval between the two sterilizations.

89 AMF and fertilization treatments

90 The native soil inocula were collected from five orchards located in the representative olive 

91 introduction and cultivation areas in Yunnan Province. The five growing sites sampled were 

92 coded AMF1~AMF5. AMF1 soil was collected from Deqin County, AMF2 and AMF3 soil 

93 samples were collected from Yongren County, and AMF4 and AMF5 soil samples were 

94 collected from Lijiang County. The spore numbers of AMF1 to AMF5 were 350, 121, 82, 198 

95 and 116 in 20 grams of soil. The dominant AMF species of AMF1, AMF2, AMF3 and AMF5 

96 were Funneliformis geosporum, that of AMF4 was Septoglomus constrictum. A commercial 

97 AMF inoculant (coded AMF6) was assayed as a reference alongside the native soil inocula. 

98 AMF6 was produced in the form of granules, spores and roots, viz. Rhizophagus intraradices, F. 

99 mosseae, R. aggregatus and Claroideoglomus etunicatum (without other additives). Three 

100 fertilizer treatments were used here to compare their effects with AMF inocula, namely, Fert1 (3 

101 gram/pot of compound (15:15:15) fertilizer), Fert2 (3 gram/pot of earthworm manure, whose 

102 main components include 56.2% organic matter, 1.78% total nitrogen, 1.67% total phosphorus, 

103 1.02% total potassium, pH 7.66) and Fert3 (Fert1 + Fert2). Plantlets with neither inoculation nor 

104 fertilizer application were used as the control. Six repetitions were performed for each treatment. 

105 Inoculation was carried out at the time of transferring the rooted cuttings into the containers. 

106 Three grams of inoculum was deposited directly below the roots of the rooted cuttings.

107 To expose the cuttings in every treatment to an equal nutritional level, for the AMF1 

108 treatment, 3 grams of sterilized rhizosphere soil from AMF2 to AMF5 were added to the pot, and 

109 for AMF2, 3 grams of sterilized rhizosphere soil from AMF1, AMF3 to AMF5 were added to the 

110 pot, and so on. For the AMF6, Fert1, Fert2, Fert3 and CK treatments, the rhizosphere sterilized 

111 soil of AMF1 to AMF5 was added to the pot, 3 grams each.

112 The plantlets were grown in the greenhouse of the Yunnan Academy of Forestry and 

113 Grassland and watered manually with tap water, depending on the environmental conditions 

114 prevailing inside the greenhouse. After six months of growth, the shoots and roots of the olive 

115 plantlets were harvested separately.

116 Detection of AMF colonization
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117 The roots were first washed with tap water, and randomly collected root segments were then 

118 cleared with 10% (w/v) KOH at 90°C in a water bath for approximately 60 min. After cooling to 

119 room temperature, root samples were thoroughly washed with tap water, stained with blue ink 

120 (Hero® 203, Shanghai China), mounted on microscope slides and then examined under a 

121 compound light microscope (Olympus-BX53, Olympus Corporation, Tokyo, Japan) for the 

122 presence of AM fungal structures. The percentage of root length occupied by hyphae, arbuscules 

123 and vesicles was quantified on each sample by a modified line intersection method (McGonigle 

124 et al. 1990). At least 200 intersections per root sample were examined.

125 Plantlet growth measurements

126 Growth parameters were measured for all plantlets, including height, root collar diameter, and 

127 above- and belowground biomass. The dry weights of the shoots and roots were recorded after 

128 oven-drying at 70°C until they reached a constant mass. The foliar nutrient concentration was 

129 determined on dried material in the tested plantlets. Dried leaves were milled and passed through 

130 a 0.25 mm sieve, and a sample of 0.5 g of leaf powder was taken for digestion with H2SO4 and 

131 H2O2 (v/v) 1:4. Nitrogen, P and K concentrations were determined by the Kjeldahl Method 

132 (FOSS KJELTEC 8400, Denmark), ultraviolet–visible spectrophotometry (HITACHI U-5100, 

133 Japan) and atomic absorption spectrophotometry (HITACHI Polarized Zeeman Atomic 

134 Absorption Spectrophotometer ZA3000, Japan), respectively. In addition, the ratio of root:shoot 

135 growth was calculated to reflect the robustness of the plantlets and the efficiency of AMF 

136 inoculation (Tobar et al. 1994).

137 qRT–PCR of phosphate transporter genes

138 The wild olive assembly and annotated genome (Unver et al. 2017) were used as queries for 

139 phosphate transporter protein genes. Total RNA of olive roots was isolated using an RNAprep 

140 Pure Plant Kit (Tiangen, China). DNase was used to eliminate the potential trace of genomic 

141 DNA in RNA samples. Then, 1.0% agarose gel and a NanoDrop ND-2000 spectrophotometer 

142 (Thermo Fisher, USA) were used to evaluate and quantify RNA, respectively. RNA samples 

143 were reverse-transcribed into cDNA with the FastKing RT Kit (Tiangen, China), and synthesized 

144 cDNAs were used as templates for qRT–PCR with the SuperReal PreMix Plus Kit (Tiangen, 

145 China). O. europaea translation elongation factor-1 alpha (OeEF1α) served as the internal 

146 control for the qRT–PCR (Ray & Johnson 2014). All the primer sequences are listed in Table 1.

147 A 20 µL reaction solution containing 1 μL cDNA (20 ng), 1 μL of each primer (10 μM), 10 μL 

148 SYBR Green I Master mix reagent (Tiangen) and 7 μL ddH2O was amplified with a 

149 LightCycler96 (Roche, Switzerland). The qRT–PCR program was as follows: 95°C for 15 min, 

150 followed by 45 cycles at 95°C for 10 s, 55°C for 10 s and 72°C for 10 s. The qRT–PCR was 

151 performed with three biological replicates, and the data are shown as the mean ± SD. The 

152 relative transcript level was calculated using the 2-∆∆Ct method.

153 Statistical analysis
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154 Values of mycorrhizal parameters were summarized for each native and commercial AMF using 

155 some descriptive statistics viz. mean, standard error (SE). Data related to olive plantlet growth 

156 parameters per treatment were visualized using boxplots. One-way analysis of variance 

157 (ANOVA) was applied to test the variation in seedling traits. Each ANOVA was followed by 

158 Tukey's honest significance test (HSD) to distinguish homogeneous groups among AMF 

159 inoculation and fertilizer application.

160

161 Results

162 Root colonization by AMF

163 No mycorrhizal colonization was detected, as expected, in the roots of plantlets under fertilizer 

164 application (treatment Fert1, Fert2 and Fert3) and noninoculated ones (treatment CK). Except for 

165 AMF4, all other treatments showed similar or higher root AMF colonization percentages 

166 compared with the commercial AMF inoculum (AMF6). AMF hyphae colonization in roots of 

167 olive plantlets ranged from 40.20% in AMF4 to 93.78% in AMF3. The lowest mean arbuscule 

168 colonization was noted in AMF4 (3.32%), whereas the highest average was recorded in AMF5 

169 (42.46%). For the abundance of vesicles, the mean varied between 2.07% in AMF4 and 49.56% 

170 in AMF5 (Table 2). Some typical structures of AMF colonizing the roots of olive plantlets are 

171 presented in Figure 1.

172 Effect of AMF inoculation on the growth of olive plantlets

173 Six months after inoculation, all AMF inoculation treatments had a positive influence on plant 

174 growth in terms of height, diameter, biomass and leaf area (Fig. 2). Compared to the 

175 noninoculated CK, the commercial AMF inoculum increased the shoot and root fresh weights of 

176 plantlets by 66.27% and 91.90%, respectively. However, the native AMF inocula achieved 

177 higher effects (Fig. 2).

178 AMF3 showed the highest effect on aboveground growth, and the shoot dry weights of 

179 inoculated plantlets were 2.16 times, 1.41 times, 2.02 times, 1.38 times and 1.24 times those of 

180 the CK, Fert1, Fert2, Fert3 and AMF6 treatments, respectively. Whereas AMF1 showed the 

181 highest effect on enhancing the belowground growth of the plantlets, the plantlets inoculated 

182 with AMF1 had root dry weights 2.84 times, 2.17 times, 2.71 times, 2.19 times and 1.35 times 

183 those of treatment CK, Fert1, Fert2, Fert3 and AMF6 treatments, respectively. The root to shoot 

184 ratios of olive plantlets inoculated with AMF1, AMF2, AMF3, AMF4, AMF5, AMF6, Fert1, 

185 Fert2, Fert3 and CK were 0.64, 0.52, 0.33, 0.48, 0.49, 0.44, 0.34, 0.35, 0.37 and 0.39, 

186 respectively.

187 Effect of AMF inoculation on the N, P, K and B contents in olive plantlets

188 The leaf nitrogen (N) contents of all the AMF inoculated plantlets were lower than the CK, 

189 except AMF2, which had a similar value to the control. Fertilization significantly increased the 

190 foliar N content compared with AMF and CK (Fig. 3a). The foliar P contents of olive plantlets 

191 inoculated with AMF1 and AMF2 were significantly higher than those of all other treatments 
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192 (Fig. 3b). AMF inoculation marginally enhanced the potassium (K) uptake of the plantlets, and 

193 the leaf K contents of plantlets treated with AMF1 to AMF6 were 8.34%, 15.54%, 9.33%, 

194 12.07%, 9.20% and 16.29% higher than those of the control; however, the differences were not 

195 significant (Fig. 3c). The leaf boron (B) content changed slightly among the different treatments, 

196 and the difference was not significant (Fig. 3d).

197 Effect of AMF inoculation on expression levels of phosphate transporter genes

198 We characterized the expression of four Pht genes in olive roots inoculated with AMF or 

199 fertilized with compound fertilizer and earthworm manure (Fig. 4). One member, Pht1;11, 

200 exhibited strong expression in olive roots inoculated with AMF, especially in the plants treated 

201 with AMF6, which of expression level jumped as much as 3400-fold compared to the 

202 noninoculated control. Pht1;4 was only expressed at high levels in the AMF1 treatment. The low 

203 levels of Pht1;2 transcripts in both the AMF and fertilizer treatments were completely different 

204 from those in the control. The expression level of the Pho3 gene responded positively to 

205 inoculation and fertilization, but fertilization seemed more effective.

206 A phylogenetic tree was constructed using a multiple DNA sequence alignment of four 

207 olive Pht genes and Pht transporters of other plants (Fig. 5). The four olive Pht genes were 

208 clustered into three main groups, OePht1;11 and OePht1;2 were clustered together with PT4 

209 genes of tomato (LePT4), potato (StPT4) and alfalfa (MtPT4); OePho3 and OePht1;4 were 

210 individually clustered into a separate group. The two Pht genes of monocotyledonous plants, 

211 OsPT13 of rice and ZmPT6 of maize, were distinct from those of all dicotyledonous plants.

212

213 Discussion

214 Our results showed that the presence of AMF native to the olive growing sites of Yunnan 

215 Province significantly promoted the growth, biomass and P uptake of olive plantlets. Several 

216 earlier studies have shown that AMF can promote olive plantlet growth and nutrient uptake 

217 (Calvente et al. 2004; M’barki et al. 2018; Porras-Soriano et al. 2009). In addition, we noted a 

218 distinct mycorrhizal compatibility among the native soil inoculum indicated by differences in 

219 root colonization intensity and the effectiveness on plantlets (Table 2, Fig. 2). In fact, different 

220 growth responses of olive plants have been demonstrated following inoculation with different 

221 AMF strains (Calvente et al. 2004; Castillo et al. 2006; Meddad-Hamza et al. 2010). Moreover, 

222 the effects of colonization by AMF on olive plant growth also varied with the plant cultivars. 

223 Dag et al. found that the response intensity in terms of height and biomass production of 12 

224 commercial olive cultivars, inoculated with G. mosseae and G. intraradices was highly cultivar 

225 specific (Dag et al. 2009). Other researchers (Martín et al. 2006; Mohamed Oussouf et al. 2014) 

226 reported that specific compatibility relationships may exist among symbionts, and underscore the 

227 importance of host-AMF selection to maximize olive performance.

228 In this study, we found that the effects of native AMF were generally higher than those of the 

229 commercial AMF inoculum (Fig. 2). Many studies have pointed out the higher efficiency of 

230 native AMF compared to nonnative, introduced AMF (Affokpon et al. 2011; Briccoli Bati et al. 
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231 2015; Estrada et al. 2013; Labidi et al. 2015). Our results are in consistent with those found by 

232 Chenchouni et al. (2020), demonstrating that the effects of local AMF strains on increasing 

233 different growth parameters of olive plantlets were better than those of commercial AMF species 

234 (Chenchouni et al. 2020). Several studies have highlighted that different isolates within the same 

235 species, rather than different species, can cause large variations in plant response (Angelard et al. 

236 2010; Gai et al. 2006; Munkvold et al. 2004). A study conducted earlier by Calvente et al. in 

237 2004, showed that the G. intraradices strain, isolated from the olive rhizosphere, was more 

238 effective than the exotic G. intraradices from the culture collection (Calvente et al. 2004). More 

239 importantly, exploring and exploiting native AMF can avoid any potential problems related to 

240 the application of nonnative AMF inoculum in terms of biodiversity losses and homogenization 

241 as a result of anthropogenic translocation of biota between biogeographic regions (Pellegrino et 

242 al. 2012; Schwartz et al. 2006).

243 There is evidence that AMF play a role in the uptake of nitrate and ammonium which are 

244 assimilated and transported within the mycelium as arginine (Olsson et al. 2005), but compared 

245 with ectomycorrhizas, rates of N uptake by the hyphae of AMF are too small to contribute 

246 substantially to the N nutrition of plants (Smith & Read 2008). Accordingly, N uptake was not 

247 significantly different in AMF inoculated plants compared to noninoculated plants in this study 

248 (Fig. 3). The lower N concentration of inoculated olive plantlets can be explained by a ‘dilution’ 

249 effect commonly observed in plants growing well in infertile conditions (Steenbjerg & Jakobsen 

250 1963), as Dela Cruz et al. (1988) reported previously in Albizia falcataria seedlings (Dela Cruz 

251 et al. 1988). In the present study, the N concentrations of olive plantlets inoculated with AMF1 

252 to AMF6 were 0.8346%, 0.9927%, 0.7827%, 0.7528%, 0.7730% and 0.6939% respectively, 

253 whereas the noninoculated poorly growing olive plantlets (CK) showed the highest N 

254 concentration (1.0047%) among all treatments (Fig. 2, 3).

255 Mycorrhizal symbiosis was found to be important for root system development, which is 

256 critical for better mineral nutrition and stress resistance of seedlings. Tobar et al. (1994) 

257 conclusively demonstrated that the root-to-shoot ratio reflects the degree of efficiency of AM 

258 fungi (Tobar et al. 1994). In the present study, inoculation with AMF3 significantly enhanced the 

259 aerial parts of olive plantlets, resulting in a low ratio of roots to shoots, whereas the plantlets 

260 treated with the other four inocula achieved root to shoot ratios higher than those of the control. 

261 In addition, the average root to shoot ratio of the plantlets treated with fertilizer was the lowest 

262 among all the treatments (Fig. 2). Under chemical fertilization, minerals are immediately 

263 available for the plant, which reduces the need and triggering for extensive root development, 

264 resulting in a low ratio of root to shoot. Later, when the young plants are transplanted in the field 

265 without fertilizers, an abrupt decrease in the nutrient uptake and growth rate occurs (Meddad-

266 Hamza et al. 2010).

267 Many studies have reported that mycorrhizal colonization can enhance P absorption by plants 

268 (Abdel-Fattah et al. 2014; Black et al. 2000; Bücking & Shachar-Hill 2005), including olive 

269 plants (Briccoli Bati et al. 2015; Dag et al. 2009; Estaún et al. 2003). Similarly, the results 

270 obtained from this study showed that the leaf P content of AMF inoculated plants was higher 
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271 than that of noninoculated plants (Fig. 3). In addition to dissolving insoluble phosphates into 

272 inorganic orthophosphate (Pi) and absorbing Pi from the rhizosphere beyond root depletion 

273 zones by AMF mycelium and transport to host plants (Harrison & van Buuren 1995), AMF can 

274 also induce the expression of some particular phosphate transporter genes in their host plants 

275 under Pi-deficient conditions (Rausch et al. 2001). For example, several AM symbiosis-induced 

276 Pht genes in plant roots have been identified, such as LePT3 and LePT4 in tomato (Lycopersicon 

277 esculentum) (Xu et al. 2007); StPT1, StPT3 and StPT4 in potato (Solanum tuberosum) (Nagy et 

278 al. 2005); MtPT1, MtPT4 and PHT2;1 in alfalfa (Medicago truncatula) (Harrison et al. 2002; 

279 Versaw & Harrison 2002); OsPT11 and OsPT13 in rice (Oryza sativa) (Paszkowski et al. 2002; 

280 Yang et al. 2012); ZmPT6 in corn (Zea mays) (Wright et al. 2005); PtPT8; and PtPT10 in black 

281 cottonwood (Populus trichocarpa) (Loth-Pereda et al. 2011). The transcripts of one tomato Pht 

282 gene (LePT4) exhibited significantly increased expression levels in low-P treatment and 

283 colonized by the Glomus intraradices (Xu et al. 2007). Potato’s Pht genes (StPT4 and StPT5) 

284 also exhibited mycorrhiza upregulation when inoculated with Gigaspora margarita, and both 

285 were highly functionally redundant (Nagy et al. 2005). In our study, the four olive Pht genes 

286 were differentially regulated, with OePht1;11 exhibiting mycorrhiza-specific regulation, similar 

287 to LePT4 and StPT4; OePht1;4 only mycorrhiza-upregulated in AMF1; OePht1;2 were not 

288 sensitive to AMF and fertilizer; OePho3 seemed more effective to fertilizer than AMF (Fig. 4). 

289 Although OePht1;11 and OePht1;2 were closer in the phylogenetic tree (Fig. 5), it remains to be 

290 clarified whether they function differently.

291

292

293

294 Conclusions

295 Although mycorrhizal networks ubiquitously exist in the soil, in intensively managed fields, 

296 mycorrhizal networks are usually absent or low in abundance because of regular soil disturbance 

297 destroying the mycelia or the absence of permanent vegetation cover that is needed to maintain 

298 mycorrhizal networks. During relatively long periods of development in the nursery, olive 

299 plantlets do not have AMF since they are usually grown in inert or fumigated potting media. 

300 AMF inoculation at the nursery stages is therefore critical and necessary and can also help plants 

301 cope with various stress conditions in the field. In this study, we report the effect of AMF 

302 inoculation on growth responses and the expression levels of four phosphate transporter genes in 

303 olive plantlets. Research indicates that there is great potential in using native AMF consortia as 

304 inoculants for the production of high-quality and robust olive planting stocks. The present work 

305 concentrated on the response of olive plantlets to AMF inoculation during the nursery process, 

306 further research is required to evaluate the long-term performance of AMF-inoculated plants in 

307 the field. In addition, this study also highlights the necessity of further exploring and exploiting 

308 the natural diversity of AMF in more olive growing sites.

309

310
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Table 1(on next page)

Primer sequences of four Pht genes and the internal control gene OeEF1α in the root of
Olea europaea
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Gene name Accession number Sequences (5’-3’) Produce size / bp

Pht1;11 NC_036237 F–ATCCACTTGCCACTCACTGA

R–ATATCTCCTCCAGCGACAGC

201

Pht1;4 XM_023017225 F–GACTGCGATCTACATGCCATG

R–GCCTAACACGATGAGCGAATT

164

Pht1;2 XM_023031284 F–GCTCAAGAATCAACGAGGTCA

R–CGAGTTGGCTGAGACGCATTA

159

Pho XM_023005125 F–AGCACATATTGGGACATTGTA

R–CAGGCTAACCTTAACAAGACA

143

OeEF1α XM_002527974 F–GAATGGTGATGCTGGTTTCG

R–CCCTTCTTGGCAGCAGACTTG

191

1
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Table 2(on next page)

Root colonization parameters of olive plantlets inoculated with six AMF inocula

Values are means ± SE (n = 4), columns marked with different letters differed significantly (p
< 0.05).
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Treatment AMF hypha colonization (H%) AMF arbuscule colonization (A%) AMF vesicle colonization (V%)

AMF1 73.78±2.35b 17.07±4.40c 12.11±3.14b

AMF2 78.30±9.76ab 20.80±2.84c 10.91±1.88b

AMF3 93.78±2.13a 37.69±5.23ab 47.35±8.17a

AMF4 40.20±6.51c 3.32±0.53d 2.07±1.05c

AMF5 93.38±4.19a 42.46±7.62a 49.56±11.95a

AMF6 67.17±5.23b 28.79±4.18bc 11.53±2.92b

1
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Figure 1
Typical structures of AMF colonizing the roots of olive plantlets.

Plantlets inoculated with AMF1 (a), AMF2 (b and c), AMF3 (d), AMF4 (e), AMF5 (f),

and AMF6 (g). Plantlets with compound fertilize application, the treatment Fert1

(h). Uninoculated plantlets, the treatment Control (i). H: hypha, HC: hyphal coil, A:
arbuscule, V: vesicle.
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Figure 2
Box plots representing growth parameters of six-month-inoculated plantlets by native
and commercial AMF, fertilizers, control (uninoculated).

(a) Plant height; (b) Root collar diameter; (c) Shoot fresh weight; (d) Shoot dry

weight; (e) Root fresh weight; (f) Root dry weight; (g) Leaf area; (h) Root:shoot

ratio. Solid white circles indicate the means, bold black line indicates the median, whereas
black dots are outliers. Letters on white circles are the results of Tukey's HSD tests, where
the same letters are not significantly different at p>0.05.
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Figure 3
Box plots representing the foliar nutrient content of olive plantlets treated with AMF,
fertilizers and the control.

(a) Nitrogen content (Ncon); (b) Phosphorus content (Pcon); (c) Potassium content

(Kcon); (d) Boron content (Bcon). Labeling is the same as in Figure 2.
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Figure 4
Expression levels of Pht1;11, Pht1;4, Pht1;2 and Pho3 in olive mycorrhizal roots by qRT-
PCR analysis.
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Figure 5
Phylogenetic relationships of the Pht DNA sequences in different plants built with the
GTR substitution model.

Le: Lycopersicon esculentum; Mt: Medicago truncatula; Oe: Olea europaea; Os: Oryza sativa;
St: Solanum tuberosum; Zm: Zea mays.
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