
Effects of jasmonic acid in foliar spray and
an humic acid amendment to saline soils
on forage sorghum plants’ growth and
antioxidant defense system
Adam Yousif Adam Ali1,2,*, Guisheng Zhou2,
Aboagla Mohammed Elsiddig2, Guanglong Zhu2, Tianyao Meng2,
Xiurong Jiao2, Irshad Ahmed2, Ebtehal Gabralla Ibrahim Salih2,3 and
Muhi Eldeen Hussien Ibrahim2,4,*

1 Department of Agronomy, Faculty of Agricultural and Environmental Science, University of
Gadarif, Al Gadarif, Sudan

2 Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry
of Education of China, Yangzhou University, Yangzhou City, China

3 Faculty of Forestry, University of Khartoum, Khartoum, Sudan
4 Department of Agronomy, College of Agricultural Studies, Sudan University of Science and
Technology, Khartoum, Sudan

* These authors contributed equally to this work.

ABSTRACT
Salinity is one of the primary abiotic stresses that cause negative physiological and
biochemical changes due to the oxidative stress caused by the generation of reactive
oxygen species (ROS). The effect of jasmonic acid (JA) as foliar spray and humic acid
(HA) as soil amendment on the growth and biochemical attributes of forage sorghum
plants exposed to salinity stress was investigated. Soil treated with NaCl at levels of 0,
2, and 4 g NaCl kg−1 dry soil (designated as S0, S1, and S2) and soil amendment with
humic acid at 0, 3, and 6 g HA kg−1 dry soil (designated as HA0, HA1, and HA2).
The plants were sprayed with three JA levels, including 0, 5, and 10 mM JA. Salinity
stress increased carotenoid and soluble protein content, superoxide dismutase (SOD)
activity, and malondialdehyde (MDA) content. In contrast, salinity stress reduced
plant height, leaf area, relative growth rate, proline content, and the activity of
peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). At the S2
salinity level, HA2 rate increased plant high by 9.7%, relative growth rate by 70.8%
and CAT by 45.5, while HA1 increased leaf area by 12.5%, chlorophyll content by
22.3%, carotenoid content by 38.1%, SOD activity by 20.9%, MDA content by 18.0%,
POD activity by 24.6% and APX value by 21.7%. At the S2 salinity level, the highest
plant height, chlorophyll content, soluble protein content and APX value were
recorded at 5 mM JA, while the highest leaf area, the content of carotenoid, proline,
and MDA, and the activity of POD and CAT were achieved at 10 mM JA. Generally,
10 mM JA and 3 g HA kg−1 dry soil produced the best positive effects on forage
sorghum plants physiological responses. Our study suggested that jasmonic acid and
humic acid at appropriate rates can successfully mitigate the adverse effects of salinity
stress on forage sorghum.
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INTRODUCTION
Salinity stress is one of the abiotic stresses limiting crop growth and productivity. Under
salinity stress, crop plants usually experience many profound changes in morphological
and physiological processes (Hussien Ibrahim et al., 2019). Sodium chloride is essential for
structural and functional parts of the vital machinery of plant cells. However, this
requirement is very low for normal growth and development of crop plants (Ali et al.,
2021). Unfortunately, plants under saline stress often have an oversupply and
accumulation of NaCl through their roots, triggering specific physiological responses
(Badawy et al., 2021). Salinity stress can affect at all plant growth stages. The root zone is
known to be more sensitive to salinity, causing significant inhibittion of root elongation,
and ultimately reducing crop yield due to osmotic stress, ion toxicity, and reduced
absorption of essential nutrients such as Ca+2 and K+ (Farhangi & Ghassemi, 2018).

The over accumulation of reactive oxygen species (ROS) are harmful to plant growth
and development as it affects the structure and functions of biomolecules (Shafiq et al.,
2014; Ahmad et al., 2016). Antioxidant enzymes such as catalase (CAT), peroxidase
(POD), and superoxide dismutase (SOD) usually remove H2O2 to hydrogen peroxide and
dioxygen (Dustgeer et al., 2021). The activities of SOD, CAT, and POD can increase during
biotic and abiotic stresses to protect cells from potentially hazardous effects of ROS
(Menezes et al., 2004). CAT is localized in leaf tissue in peroxisomes to scavenge the H2O2

produced by glycolate oxidase (Shafiq et al., 2014).
Jasmonates (JAs), including methyl jasmonate (MeJA) and jasmonic acid (JA) can

stimulate MDA accumulation and inhibit Fe-induced release of chelators that counteract
salt stress. It is suggested that MeJA triggers some other protective mechanisms (Kumari &
Sudhakar, 2003). Jasmonic acid (JA) is a lipid-derived plant hormone that mediates diverse
biological phenomena and is a critical regulator of plant responses to salinity (Ali et al.,
2019, 2020). It is a member of plant growth regulators, which are important cellular
regulators involved in many developmental processes such as germination, root growth,
and fertility (Sofy et al., 2020). Rakwal, Agrawal & Yonekura (1999) observed that high JA
level in wounded leaves caused significant changes in the protein pattern of rice plants.
Exogenous JA application can increase and regulate antioxidant activities in different
plants (Shafiq et al., 2014). dos Santos Soares et al. (2010) noticed a gradual accumulation of
H2O2 in Ricinus communis (L.) and a sharp formation of ROS at the initial moment of
MeJA and ascribed it to the decrease in the enzymatic antioxidants activities. In another
study with pomegranate (Punica granatum L.), Vatanparast, Mirdehghan & Karimi (2013)
observed an increase in antioxidant activity in the foliage treated with JAs. Wolucka,
Goossens & Inzé (2005) found that in the treatment of plants with JAs application, APX
activity was upregulated in tobacco (Nicotiana tabacum L.) plants.
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Humic acid (HA) is an organically charged bio-stimulant that significantly impacts
plant growth and development (Ali et al., 2020). HA can alleviate salt stress through
improving plant growth, maintaining water potential and increasing crop productivity
(Ebrahimi & Miri, 2016). Xueyuan et al. (2001) found that low level of HA significantly
increased wheat plant growth (Triticum aestivum L.). Kaya et al. (2018) showed that HA
application led to increased stem and root dry weight of corn plants (Zea mays L.).
Notably, humic acid can mitigate different stresses by increasing dry biomass weight and
promoting plant growth (Kaya et al., 2018).

Sorghum (Sorghum bicolor (L.) Moench) is one of the most important high-productive
cereal crops (Sun, Shi & Ding, 2017). It has become one of the most efficient sources of
food and feed. Additionally, it is used for bioenergy production (Seleiman et al., 2021).
It can adapt to diverse environmental conditions, especially in arid and semi-arid areas
(Mishra, Kumar & Rao, 2017). Sorghum is a C4 plant that is graded having moderate
tolerance to soil salinity. However, its growth and yield is significantly reduced when
cultivated under salinity stress (Maswada, Djanaguiraman & Prasad, 2018).

Due to the progressive salinization of world arable lands, the practice of using
exogenous hormone protectants to mitigate salt-induced damages has been more
important than ever. However, to our knowledge, there are not adequate reports on the
effects of exogenous application of JA, soil amendment with HA, and their combination in
antioxidant system regulation, photosynthetic pigments, soluble protein, and proline
content of forage sorghum plants subject to salinity. We hypothesized that phytohormones
such as JA, soil amendment with HA, and their combination, could play a vital role in
plant tolerance toward salinity stress by boosting plant growth, antioxidant system
regulation, and photosynthetic of pigments of sorghum plants.

MATERIALS AND METHODS
Location and climate of the experimental site
A 2-year pot experiment was conducted in an unheated greenhouse in the two consecutive
years of 2018 and 2019 at Joint International Research Laboratory of Agriculture and
Agri-Product of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu
Province, China (32�39′N, 119�41′E). During the experiment, the average temperature was
31 �C, relative humidity was 76%, and cloud cover was 40%. Peat moss and vermiculite
mixture (1:2 v/v) was used as the germinating and growing media of sorghum plants.

Soil characteristics
The soil was collected from the surface of sandy loam soil (0–20 cm) of the Experimental
Farm of Yangzhou University. The soil was presented as a sandy loam texture. The
chemical and physical properties of the potting soil and chemical properties of HA are
presented in Table 1. The soil was air-dried and passed through a 5 mm mesh screen.
The soil was then spread over a piece of polyethylene sheet at a thickness of about
70 mm. The soil suspension was prepared in deionized water at a ratio of 1:2 (w/w)
soil:water. The suspension was shaken and allowed to stand overnight. After that, the
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electrical conductivity of the supernatant solution was determined at 0.26 dSm−1 using a
conductivity meter (TZS-EC-I; Zhejiang Top Instrument Co., Ltd., Hangzhou, China).

Plant material
The seeds of forage sorghum variety Abu Sabeein were obtained from Agricultural
Research Corporation, Khartoum, Sudan. The seeds were less than 8 months old and had
been stored in paper bags under laboratory conditions (RH 40–60% at 15–20 �C). Seeds
were surface-sterilized with 3% sodium hypochlorite solution for 1 min and then
thoroughly rinsed three times with deionized water and air-dried near to their original
weight for seeding. Seeds were germinated on 10th May in 2018, and on 15th May in 2019
in a seedbed for 15 days in the greenhouse. The strongest and uniform seedlings were
selected and transplanted into pots. Each pot (30 cm in diameter × 32 cm in depth) was
filled with 15 kg dry soil. On the 15th day after seedlings were transferred and applied with
the NPK fertilizer (50 kg N/ha + 50 kg P2O5/ha + 50 kg K2O/ha). Another half dose was
used on the 45th days of transplanting, and according to local recommendations, a spray of
pesticides and weed control were conducted. Furthermore, the plants were watered
regularly to maintain the water level every 3 days with a tap water.

All required approvals were obtained for the study, which complied with all relevant
regulations.

Experimental design and treatments
This study was a three-factorial experiment arranged in a split–split-plot randomized
complete block design with three replications. The main plots included three salinity levels
at 0 (S0), 2 (S1), and 4 g NaCl kg−1 dry soil (S2) (with an equivalent EC of 0.26, 2.3, and
4.7 dS m−1,respectively). The subplots included three rates of humic acid, including 0,
3 and 6 g HA kg−1 dry soil, designed as HA0, HA1 and HA2, respectively. The sub–sub-
plot included three levels of jasmonic acid, including 0, 5, and 10 mM JA.

Before seedling transplant, humic acid and NaCl at different levels were thoroughly
mixed with the soil to make nine different treatments of salinity and HA. Before salinity

Table 1 Analysis of variance of two season. Chemical and physical properties of soil and humic acid
used in this study.

Characters Soil Humic acid

pH 7.1 7.08

EC (dS.m−1) 1.2 ——————

CEC (c.molc kg−1) 12.0 ——————

Organic matter (%) 12.2 55

Available macronutrients N (mg kg−1) 94.8 4.87

P (mg kg−1) 14.1 0.01

K (mg kg−1) 77.3 11.21

Soluble ions Ca (meq L−1) 18.84 0.50

Mg (meq L−1) 17.20 0.22
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and humic acid treatment, a 100 g soil sample was collected and oven-dried at 75 �C to
constant weight, and the moisture content was calculated. On the 15th day after seedling
transplant, the plants at each NaCl level and humic acid rates were treated with exogenous
jasmonic acid solutions as a foliar application. The spraying was repeated every 15th day.
The plants were sprayed three times. During jasmonic acid application, care was taken to
avoid any drift of different levels using a plastic shelter to separate each treatment. There
were 27 treatments in the study with three replicates for each treatment. There were 81
pots, and all pots were placed in a greenhouse. Tap water (EC 0.26 dSm−1) was used. Pots
were weighed every 2 or 3 days to maintain soil water content at 80% field capacity.
The pots had no holes at the bottom to prevent drainage and leaching.

Observations and measurements
Plant height, leaf area, and relative growth rate
Plant height (cm) was recorded on the 50th (Time one) and 70th (Time two) day after
sowing. Three plants from every plot were randomly selected and tagged. Plant height was
measured from a point immediately above the soil surface to the top of the plant. Four
uppermost leaves including flag leaf from three plants of each pot were selected for
measuring leaf area with a leaf area meter (LI-3100C; LI-COR Biosciences, Lincoln, NE,
USA). The relative growth rate was calculated according to Hoffmann & Poorter (2002):

Relative Growth Rate ¼ Plant height at time two� Plant height at time one
Time two� Time one

Preparation of enzyme extracts

On the 50th day of seedling transplant, a healthy leaf from the middle of the plant excluding
the four uppermost leaves, was harvested and immersed in liquid nitrogen for 20 min and
stored in a low-temperature freezer to determine the activity of enzymes and the content of
proline and soluble protein. Leaf protein was extracted using a phosphate buffer solution
containing sodium phosphate dibasic dehydrate and sodium phosphate monobasic
dehydrate. Stored leaf tissue (0.2 g) was crushed in 2 ml of the phosphate buffer solution,
and the slurry was centrifuged at 10,000g for 20 min at 4 �C. The supernatant was used for
the determination of the activities of enzymes including SOD, CAT, POD, and APX.

Biochemical assays
The activity of SOD and CAT was determined following the method of Janmohammadi,
Abbasi & Sabaghnia (2012). The POD activity was assayed according to the method of Xu
& Ye (1989). The MDA content was determined following the method of Zhang et al.
(2007). The APX content was measured according to Nakano & Asada (1981).

Soluble protein was estimated for each extract (Bradford, 1976). A dye stock solution
was added to the earlier centrifuged samples and the samples were incubated at room
temperature for 25–30 min. The absorbance of the reaction mixture was recorded at
595 nm.
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Proline content was estimated using the protocol of Bates, Waldren & Teare (1973).
Fresh sample (0.5 g) was extracted with sulfosalicylic acid, and the extract was filtered to
separate the residue. All the filtrates were mixed with acidic ninhydrin, orthophosphoric
acid, and glacial acetic acid and incubated at 100 �C for 30 min. The mixtures was cooled,
incorporated in toluene, and vortexed. The absorbance of the reaction mixture was
recorded at 520 nm with a spectrophotometer.

Photosynthetic pigments
The determination of photosynthetic pigments such as total chlorophyll content and
carotenoid content were conducted according to the method reported by Lichtenthaler &
Wellburn (1983). Each fresh leaf sample was soaked in acetone solution (80%) in the dark
for 7 days. The absorbance readings were recorded at 453, 645, and 663 nm, respectively,
using a spectrophotometer.

Statistical analysis

This study was performed in two different seasons, and there were no significant
differences in all the parameters between the two seasons (Table 2). Therefore, the average
of each variable of the two seasons was applied for statistical analysis. The data of each
variable were subjected to analysis of variance (ANOVA) for factorial experiment arranged
in a split–split-plot randomized complete block design with the statistical package of
MSTAT-C (Freed et al., 1991). When F values were significant, means were separated by
the least significant difference (LSD) test (P ≤ 0.05) as described by Snedecor & Cochran
(1980). The standard error of the average were calculated for each trait.

RESULTS
The results revealed that jasmonic acid, humic acid, salinity, and their interactions
significantly affected most parameters measured on most occasions (Tables 2 and 3).

The growth parameters as affected by the combination between
salinity and humic acid
The growth parameters such as plant height, leaf areas and relative growth rate were
significantly decreased with increased salinity rate. In the interaction between salinity and
humic acid, at the control of humic acid (HA0), the high salinity rate of S2 reduced the
plant height by 9.1% (Fig. 1A), leaf area by 20.0% (Fig. 1B), and relative growth rate by
44.7% (Table 4), in comparison with the control of salinity (S0) at the control of humic
acid (HA0). The growth parameters were improved by humic acid. At the high salinity
level of S2, the high rate of humic acid (HA2) were increased the plant height by 9.7%
(Fig. 1A), and relative growth rate by 70.8% (Table 4), in comparison with control of
humic acid of HA0 (Fig. 1A) at the same salinity level. At the same salinity level of S2, the
rate of HA1 increased the leaf area by 12.45% (Fig. 1B), in comparison with HA0 (Fig. 1B)
at the S2. At the medium salinity rate of S1, the treatment of HA1 achieved the highest level
of plant height (Fig. 1A), leaf area (Fig. 1B), and relative growth rate (Table 4).
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The growth parameters as affected by the combination between
salinity and jasmonic acid
Regarding the combination between salinity and jasmonic acid, jasmonic acid improved
the plant height, leaf area and relative growth rate. Both jasmonic acid levels increased all
the growth parameters. According to the results of the interaction between salinity and
jasmonic acid, at the high saline rates of S2, both jasmonic acid levels of 5 and 10 mM JA
significantly increased the plant height by 23.63% and 14.20% respectively (Fig. 2A), and
leaf area by 10.07% and 14.71% respectively (Fig. 2B), as compared with control of salinity
(S0). Under the medium salinity rate of S1, the level of 5 mM JA increased the plant height
from 125.6 to 156.2 cm (Fig. 2A), and leaf area from 231.3 to 251.9 cm2 (Fig. 2B).

Table 2 Analysis of variance. Analysis of variance for effects of jasmonic acid, humic acid, salinity and their interaction on growth parameters,
chlorophyll content, soluble protein, proline content, and antioxidant enzymes of forage sorghum in two growing seasons (2017–2018 and
2018–2019).

Dependent variables Independent variables (F value)

Season Jasmonic acid (JA) Salinity (S) JA × S Humic Acid (HA) HA × S HA × JA JA × S × HA

Plant height 2018 357.6** 7.9** 21.6*** 6.9** 9.6*** 3.0* 3.8**

2019 6.6* 68.1*** 249.3*** 22.8*** 3.1* 4.7** 7.4***

Leaf area 2018 452.7*** 13.3*** 1.3ns 5.8** 1.4ns 6.8** 2.9*

2019 1.93ns 31.1*** 12.5*** 136.0** 7.4** 24.2** 17.7**

Relative growth rate 2018 284.2** 17.0** 27.3** 3.7* 10.5** 1.2ns 3.3**

2019 0.41ns 33.5** 74.7** 3.4* 1.7ns 2.1* 3.2**

Chlorophyll content 2018 23.9** 3.26* 2.1ns 4.9* 12.7** 7.4** 13.5**

2019 8.22* 35.4*** 4.22* 2.30ns 3.62* 0.52ns 1.14ns

Carotenoid content 2018 16.58* 25.88** 21.44** 81.80** 17.62** 52.72** 5.59ns

2019 6.50* 10.04* 0.69ns 4.59* 7.94* 3.15* 3.43ns

Soluble protein 2018 3.14* 11.32** 2.89* 3.30* 2.28* 0.68* 2.99ns

2019 52.03** 27.49** 3.30* 23.28* 1.54ns 1.67ns 1.59ns

Proline content 2018 121.51** 523.95** 47.22** 73.47* 38.27** 16.60* 27.41*

2019 16.08* 1.67ns 1.52ns 4.60* 2.76* 1.41ns 3.07*

Superoxide dismutase (SOD) 2018 14.53* 0.75ns 1.47ns 8.83*** 1.04ns 3.47* 6.64***

2019 4.30ns 6.73* 4.61* 2.67* 3.08* 5.28** 5.36***

Peroxidase (POD) 2018 3.25ns 16.34*** 2.28ns 6.30** 2.12* 3.73* 2.53*

2019 1.39ns 19.70*** 5.32* 2.22ns 4.04** 4.74** 3.11**

Catalase (CAT) 2018 5.81* 9.54** 12.34*** 90.94*** 3.92** 19.53** 9.06**

2019 2.10ns 0.67ns 7.74** 32.12*** 8.25** 4.82** 7.54**

Malondialdehyde content (MDA) 2018 42.07** 6.29* 8.75** 22.90** 10.25** 19.09** 16.29**

2019 41.14** 7.47** 11.47** 3.49* 2.86* 2.67* 4.66**

Ascorbate peroxidase (APX) 2018 17.33* 12.86* 1.96ns 19.31** 2.62** 4.79** 3.55**

2019 11.40* 56.50** 0.64ns 8.21** 4.97** 5.19** 6.90ns

Notes:
* Significant differences at P ≤ 0.05 probability level.
** Significant differences at P ≤ 0.01 probability level.
*** Significant differences at P ≤ 0.001 probability level.
ns, no significant difference.
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Photosynthetic pigments as affected by the combination between
salinity and humic acid
Chlorophyll content was significantly decreased with increased soil salinity. However,
increased salinity rate significantly increased carotenoid content. In the interaction
between salinity and humic acid, at the control of humic acid (HA0), the high soil salinity
rate of S2 decreased the chlorophyll content by 43.4% (Fig. 2A) in comparison with S0 at
the same rate of humic acid (HA0). Moreover, at the same rate of humic acid (HA0), the
high salinity rate of S2 recorded the highest carotenoid content (2.05 mg g−1 FW), while S0
(control of salinity) showed the lowest value (1.65 mg g−1 FW) (Fig. 2B). The chlorophyll

Table 3 Interaction between salinity and humic acid on relative growth rate and APX. Analysis of variance table of the average of two seasons for
the effects of jasmonic acid, humic acid, salinity and their interaction on growth parameters chlorophyll content, carotenoid contents, soluble
protein, proline content, and antioxidant enzymes activities of forage sorghum.

F value

Plant
height

Leave
area

Relative
growth rate

Chlorophyll
content

Carotenoid
content

Soluble
protein

Proline
content

SOD POD CAT MDA APX

Salinity (S) 74.24*** 66.87*** 16.1*** 20.10** 6.9* 7.97* 5.28* 1.56ns 22.44** 0.29ns 11.6* 25.9**

Humic acid (HA) 22.6*** 120.7** 0.1ns 10.31** 12.3** 5.37* 12.56** 0.88ns 2.4ns 4.11* 48.0*** 6.34*

S × HA 7.91** 10.95** 7.5*** 5.99* 20.6*** 2.36ns 2.18ns 4.06* 11.62** 6.44** 19.8** 2.6*

Jasmonic acid (JA) 342.2** 17.09* 12.1* 25.09** 80.5*** 3.30* 14.83** 8.11** 2.3ns 40.96*** 9.46* 23.8**

S × JA 246.0*** 10.98*** 4.6* 8.60* 41.3*** 0.68ns 6.41** 1.74ns 3.32* 6.23*** 13.1** 4.0**

HA × JA 5.37** 11.24ns 2.5* 10.11* 14.2*** 2.28* 0.88ns 2.69* 2.21* 8.33*** 2.44ns 6.5ns

S × HA × JA 0.85ns 1.90ns 0.9ns 1.14ns 3.2ns 0.99ns 0.37ns 1.67ns 0.95ns 0.63ns 8.21ns 0.84ns

Notes:
* Significant differences at P ≤ 0.05 probability level.
** Significant differences at P ≤ 0.01 probability level.
*** Significant differences at P ≤ 0.001 probability level.
ns, no significant difference; SOD, superoxide dismutase; POD, peroxidase; CAT, catalase; MDA, malondialdehyde content; and APX, ascorbate peroxidase.

Figure 1 The interaction between salinity and humic acid on plant height and leave area. Plant height (A) and leaf area (B) of forage sorghum
(Sorghum bicolor (L.) Moench) variety Abu Sabeein as effluence by the interaction between different salinity levels S0 = 0, S1 = 2 and S2 = 4 g NaCl
kg−1 dry soil and different humic acid rates (HA0 = 0, HA1 = 3 and HA2 = 6 g HA kg−1 dry soil). Data were averaged over two growing seasons.
The values of each trait labeled by different letters indicate significant differences separated by the LSD test (P < 0.05).

Full-size DOI: 10.7717/peerj.13793/fig-1
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content and carotenoid content were improved by humic acid application. At the high
salinity rate of S2, the treatment of HA1 increased the chlorophyll content by 22.3%
(Fig. 3A), and carotenoid content by 38.1% (Fig. 3B), in compared with control. At the rate
of S1, the highest value of chlorophyll and carotenoid content were recorded at the
treatment HA2 (Figs. 2A and 2B respectively).

Table 4 Interaction between humic and salinity on plant height, relative growth rate, total
chlorophyll content and carotenoid content. The average of two season of relative growth rate and
ascorbate peroxidase (APX) activity of forage sorghum (Sorghum bicolor (L.) Moench) variety Abu
Sabeein as effected by the interaction between different salinity levels (S0 (0 g NaCl kg−1 dry soil), S1
(2 g NaCl kg−1 dry soil) and S2 (4 g NaCl kg−1 dry soil)) and different humic acid rates (0 (HA0),
3 (HA1), and 6 g HA kg−1 dry soil (HA2)).

Salinity rates Humic acid rates Relative growth rate APX (U g−1 min−1)

S0 HA0 3.65 ± 0.48cd 51.68 ± 18.53d

HA1 4.45 ± 1.20ab 91.66 ± 38.52a

HA2 4.65 ± 1.28a 77.81 ± 24.00b

S1 HA0 3.02 ± 0.81e 46.27 ± 8.87g

HA1 4.27 ± 1.12b 67.96 ± 31.60e

HA2 3.85 ± 0.81c 72.27 ± 19.70c

S3 HA0 2.02 ± 0.69f 39.72 ± 14.70h

HA1 3.00 ± 1.19e 54.79 ± 12.13f

HA2 3.45 ± 1.49d 33.35 ± 14.55i

Note:
All analyzed data are expressed as mean ± SD values of three biological replicates per treatment. Within the same
parameter, means followed by different letters are statistically different at the 0.05 probability level. Means separated by
the LSD test.

Figure 2 The interaction between salinity and jasmonic acid on plant height and leave area. Plant height (A) and leaf area (B) of forage sorghum
(Sorghum bicolor (L.) Moench) variety Abu Sabeein as effluence by the interaction between different salinity levels S0 = 0, S1 = 2 and S2 = 4 g NaCl
kg−1 dry soil and different jasmonic acid levels. Data were averaged over two growing seasons. The values of each trait labeled by different letters
indicate significant differences separated by the LSD test (P < 0.05). Full-size DOI: 10.7717/peerj.13793/fig-2
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Photosynthetic pigments, soluble protein and proline content as
affected by the combination between salinity and jasmonic acid
Soluble protein and proline content were significantly decreased with increased salinity
rates. In the interaction between salinity and jasmonic acid, at the control of jasmonic acid
(0 mM JA), the high salinity rate of S2 reduced the proline content by 54.6% (Fig. 4C), in
comparison to control of salinity (S0) at the control of jasmonic acid (0 mM JA).
Moreover, at the same rate of jasmonic acid (0 mM JA), the high salinity rate of S2
increased soluble protein content by 26.2% (Fig. 4D). Jasmonic acid improved the soluble
protein, proline content, chlorophyll content and carotenoid content. According to the
results of the interaction between salinity and jasmonic acid, at high saline rate of S2, 5 mM
JA level increased the chlorophyll content and soluble protein content by 48.2% (Fig. 4A)
and 4.5% (Fig. 4C) respectively, in comparison with control of salinity. At the same salinity
rate, the level of 10 mM JA were increased the carotenoid content by 10. 7% (Fig. 4B), and
proline content by 58.5% (Fig. 4D) as compared with the 10 mM JA at the same salinity
rate.

Growth parameters and photosynthetic pigments as affected by the
combination of jasmonic acid and humic acid
The growth parameters (plant height and relative growth rate) and photosynthetic
pigments (chlorophyll content and carotenoid) were affected by the interaction between
jasmonic acid and humic acid (Table 3). According to the results of the interaction
between jasmonic acid and humic acid, the treatment with the high rate of humic acid of
HA2 and with 5 mM JA achieved the highest plant height (263.6 cm) and relative growth
rate (5.3). However, the treatment of HA1 + 5 mM JA were recorded the highest
chlorophyll content (3.53 mg g−1 FW) and carotenoid content (1.77 mg g−1 FW) (Table 5).

Figure 3 The interaction between salinity and humic acid on total chlorophyll content and carotenoid content. Total chlorophyll content
(A) and carotenoid content (B) of forage sorghum (Sorghum bicolor (L.) Moench) variety Abu Sabeein as effluence by the interaction between
different salinity levels S0 = 0, S1 = 2 and S2 = 4 g NaCl kg−1 dry soil and different humic acid rates (HA0 = 0, HA1 = 3 and HA2 = 6 g HA kg−1 dry
soil). Data were averaged over two growing seasons. The values of each trait labeled by different letters indicate significant differences separated by
the LSD test (P < 0.05). Full-size DOI: 10.7717/peerj.13793/fig-3
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Antioxidants enzyme activities as affected by the interaction between
salinity and humic acid
Salinity stress significantly reduced antioxidant enzyme activities except SOD activity and
MDA content. However, increased salinity rate significantly increased SOD activity and
MDA content. In the interaction between salinity and humic acid, at the control of humic
acid (HA0), high salinity rate of S2 decreased POD activity by 33.8% (Fig. 5A), CAT by
40.1% (Fig. 5D), and APX by 36.4% (Table 4) over the control (S0) at HA0. Moreover, at
the same rate of humic acid (HA0), as compared with S0, S2 increased SOD activity from
14.3 to 17.0 U g−1 min−1 (Fig. 5A) and MDA content from 5.7 to 9.8 µmol/g FW (Fig. 5B).
The activities of antioxidant enzymes were enhanced and increased by humic acid
application. At S2 salinity rate, the medium rate of humic acid of HA1 increased SOD
activity by 20.9% (Fig. 5A), MDA content by 18.0% (Fig. 5B), POD activity by 24.6%

Figure 4 The interaction between salinity and jasmonic acid on total chlorophyll content, carotenoid content, soluble protein content and
proline content. Total chlorophyll content (A), carotenoid content (B), soluble protein (C) and proline content (D) of forage sorghum (Sor-
ghum bicolor (L.) Moench) variety Abu Sabeein as effluence by the interaction between different salinity levels S0 = 0, S1 = 2 and S2 = 4 g NaCl kg−1

dry soil and different jasmonic acid levels. Data were averaged over two growing seasons. The values of each trait labeled by different letters indicate
significant differences separated by the LSD test (P < 0.05). Full-size DOI: 10.7717/peerj.13793/fig-4
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(Fig. 5C), and APX activity by 21.7 (Table 4), in comparison to control of humic acid
(HA0). At the same salinity level of S2, the HA2 treatment increased the CAT activity by
45.5% (Fig. 5D) over the control of humic acid at the same salinity.

Antioxidants enzyme activities as affected by interaction between
salinity and jasmonic acid
Regarding the combination between salinity and jasmonic acid, both jasmonic acid levels
improved the antioxidants enzyme activities. At the S2 salinity rate, 5 and 10 mM jasmonic
acid increased MDA content by 20.7% and 43.2% respectively (Fig. 6A), POD activity by
29.7% and 47.5% respectively (Fig. 6B), CAT activity by 22.6% and 51.8% respectively
(Fig. 6C), and APX activity by 67.8% and 22.6% respectively (Fig. 6D) in comparison
with control of jasmonic acid (0 mM JA) at high salinity rate. At the S1 salinity level, 5 mM
JA were more effective on the antioxidants enzyme activities except for APX activity.
As compared with 0 mM JA at the S1 salinity level, 5 mM JA increased MDA content from
6.8 to 8.6 µmol/g FW (Fig. 6A), POD activity from 52.9 to 58.8 U g−1 min−1 (Fig. 6B), and
CAT activity from 21.2 to 28.2 U g−1 min−1 (Fig. 6C), while 10 mM JA increased the APX
activity from 6.8 to 8.6 U g−1 min−1 (Fig. 6D).

Soluble protein and antioxidants enzyme activities as affected by the
combination of jasmonic acid and humic acid
Soluble protein and antioxidants enzyme activities such as SOD, POD and CAT activities
were significantly affected by the combination between jasmonic acid and humic acid
(Table 3). In the interaction between jasmonic acid and humic acid, sorghum plants
treated with HA1 + 5 mM JA achieved the highest soluble protein content (147.4 mg g−1

FW) and CAT activity (40.6 U g−1 min−1). However, sorghum plants treated with

Table 5 Interaction between humic acid and jasmonic acid on soluble protein content and most antioxidants enzyme activities traits. The
average of two season of plant height, relative growth rate, chlorophyll content and carotenoid content of forage sorghum (Sorghum bicolor (L.)
Moench) variety Abu Sabeein as effluence by the interaction between different jasmonic acid levels (0, 5 and 10 mM JA as a foliar application) with
different humic acid rates (0 (HA0), 3 (HA1), and 6 g HA kg−1 dry soil (HA2)).

Humic acid rates Jasmonic acid levels Plant height
(cm)

Relative growth rate Chlorophyll
content (mg g-1 FW)

Carotenoid content
(mg g−1 FW)

HA 0 0 mM 193.39 ± 18.92e 2.79 ± 0.43ed 2.33 ± 0.43e 0.96 ± 0.14ef

5 mM 226.93 ± 20.47d 4.54 ± 0.78b 2.77 ± 0.56d 1.14 ± 24cd

10 mM 178.90 ± 27.46f 3.91 ± 0.54c 2.80 ± 0.38cd 1.13 ± 0.16cd

HA1 0 mM 231.38 ± 29.16d 2.63 ± 0.41d 2.81 ± 0.74cd 0.81 ± 0.14f

5 mM 227.99 ± 32.64d 3.79 ± 0.98c 3.53 ± 0.23a 1.77 ± 1.25a

10 mM 192.41 ± 22.67e 2.86 ± 0.21d 3.03 ± 0.64bc 1.23 ± 0.24c

HA2 0 mM 254.30 ± 27.99b 3.94 ± 0.85c 2.74 ± 0.59d 1.00 ± 0.18de

5 mM 263.56 ± 22.05a 5.28 ± 0.65a 2.99 ± 0.42bc 1.51 ± 0.33b

10 mM 240.37 ±27.68c 4.99 ± 0.65ab 3.21 ± 0.59b 1.20 ± 0.20c

Note:
All analyzed data are expressed as mean ± SD values of three biological replicates per treatment. Within the same parameter, means followed by different letters are
statistically different at the 0.05 probability level. Means separated by the LSD test.
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HA2 + 10 mM JA recorded the highest SOD activity (25. 7 U g−1 min−1) and POD activity
by 66.7 U g−1 min−1. On the other hand, the treatment of JA0 + HA0 recorded the lowest
content of soluble protein and the lowest activities of most antioxidants enzymes (Table 6).

DISCUSSION
When plants are grown under saline stress conditions and during the elongation process of
new plant cells, the excess of salts modifies the cell wall’s metabolic activities, causing the
deposition of various materials that limit cell wall elasticity. Cell walls become rigid, and
consequently, the turgor pressure efficiency in cell enlargement decreased (Ali et al., 2004).
The management of saline soils is considered a major challenge due to its unfavorable
physical and chemical properties and low soil microbial activity, which lead to a reduction
in soil quality and crop productivity (Ali et al., 2021, 2022).

Figure 5 The interaction between salinity and jasmonic acid on SOD, MDA, POD and CAT activities. Superoxide dismutase (SOD)
(A), malondialdehyde (MDA) (B), peroxidase (POD) (C) and catalase (CAT) (D) activities of forage sorghum (Sorghum bicolor (L.) Moench) variety
Abu Sabeein as effluence by the interaction between different salinity levels (S0 = 0, S1 = 2 and S2 = 4 g NaCl kg−1 dry soil) and different humic acid
rates (HA0 = 0, HA1 = 3 and HA2 = 6 g HA kg−1 dry soil). Data were averaged over two growing seasons. The values of each trait labeled by different
letters indicate significant differences separated by the LSD test (P < 0.05). Full-size DOI: 10.7717/peerj.13793/fig-5
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Figure 6 The interaction between salinity and jasmonic acid on MDA, POD, CAT and APX activities.Malondialdehyde (MDA) (A), peroxidase
(POD) (B), catalase (CAT) (C) and ascorbate peroxidase (D) (APX) activities of forage sorghum (Sorghum bicolor (L.) Moench) variety Abu Sabeein
as effluence by the interaction between different salinity levels S0 = 0, S1 = 2 and S2 = 4 g NaCl kg−1 dry soil and different jasmonic acid levels. Data
were averaged over two growing seasons. The values of each trait labeled by different letters indicate significant differences separated by the LSD test
(P < 0.05). Full-size DOI: 10.7717/peerj.13793/fig-6

Table 6 The interaction between different jasmonic acid levels (0, 5 and 10 mM JA as a foliar application) with different humic acid rates (0
(HA0), 3 (HA1), and 6 g HA kg−1 dry soil (HA2)). The average of two season of soluble protein and most antioxidants enzyme activities of forage
sorghum (Sorghum bicolor (L.) Moench) variety Abu Sabeein as effluence by the interaction between different jasmonic acid levels (0, 5 and 10 mM
JA as a foliar application) with different humic acid rates (0 (HA0), 3 (HA1), and 6 g HA kg−1 dry soil (HA2)).

Humic acid rates Jasmonic acid levels Soluble protein
(mg g−1 FW)

SOD
(U g−1 min−1)

POD
(U g−1 min−1)

CAT
(U g−1 min−1)

HA 0 0 mM 103.0 ± 07.61g 13.52 ± 0.97g 34.93 ± 08.44f 19.45 ± 1.32g

5 mM 110.9 ± 04.22f 16.52 ± 1.74f 43.43 ± 10.50e 26.38 ± 1.91de

10 mM 118.9 ± 05.87e 17.38 ± 2.37ef 58.70 ± 21.19c 21.27 ± 3.53fg

HA1 0 mM 125.8 ± 06.26cd 18.58 ± 2.47de 50.55 ± 09.90cd 23.94 ± 3.90ef

5 mM 147.4 ± 14.88a 20.59 ± 2.32c 62.78 ± 20.85ab 40.57 ± 10.79a

10 mM 139.1 ± 22.39b 19.13 ± 2.55 d 50.95 ± 13.77cd 32.78 ± 5.92c

HA2 0 mM 127.6 ± 11.04cd 19.65 ± 3.40c 62.78 ± 11.66b 27.77 ± 3.30d

5 mM 132.0 ± 07.75c 23.15 ± 2.49b 65.53 ± 21.49ab 35.57 ± 7.29bc

10 mM 123.5 ± 07.26de 25.65 ± 3.40a 66.68 ± 23.92a 36.90 ± 7.50b

Note:
All analyzed data are expressed as mean ± SD values of three biological replicates per treatment. Within the same parameter, means followed by different letters are
statistically differentat the 0.05 probability level. Means separated by the LSD test.
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Growth parameters
In the current study, NaCl salinity stress significantly inhibited plant growth traits of
forage sorghum, including plant height, leaf area, and relative growth rate. The inhibition
in the growth parameters may be due to osmotic impacts of salt stress or increments in
growth retardants, water imbalance (Taha et al., 2020), ions toxicity, decreased nutrient
absorption, reduced internode elongation and length (Ali et al., 2022), and formation of
new apical tissues (Ibrahim et al., 2016b). The contrary results were reported by Qados
(2011) noted that the plant height significantly was increased at the low salinity levels.
However, similar findings were reported by Taffouo et al. (2010) on cowpea (Vigna
unguiculata L.), Ali et al. (2021) on sorghum seedling, and Taha et al. (2021b) on wheat
plant.

In this study, leaf area was decreased with increasing salinity stress. The decrease in leaf
area under salinity stress has been attributed to suppressed cell division, the shrinkage of
the cell contents leading to reduced development and differentiation of tissues, unbalanced
nutrition, and disturbed avoidance mechanism (Katerji et al., 2003). In this regard, Taha
et al. (2020) reported that under saline conditions all growth characteristics including leaf
area of soybean plants were significantly lower than those of plants grown in normal soils.
The decrease in leaf area has primarily been a result of the inhibition of owing to Na
accumulation, cell growth and division (Al Ashkar et al., 2020). Our findings agreed with
those of Omer & Abdalla (2017) and Badawy et al. (2021), who reported a negative
correlation between salinity and leaf area.

Relative growth rate depends on canopy photosynthesis per area of land. In the present
study, the relative growth rate of salt-stressed plants in the high salinity treatment was
lower than that of the other salinity treatments. Decreases in plant growth under salinity
stress might be endorsed to the reduction in water absorption due to reduced osmotic
pressure in the soil solution (Taha et al., 2021a). Our results disagreed with those of
Rasmuson & Anderson (2002) who mentioned that the salinity stress increased the relative
growth rate. These results confirm by Seleiman et al. (2020) reported that relative growth
rate was markedly decreased under high NaCl salinity stress.

Plant hormones play essential roles in stress responses and adaptation. It is clearly
defined that jasmonic acid (JA) increased in response to salinity (Verma, Ravindran &
Kumar, 2016). In this study, growth parameters were increased with the application of
jasmonic acid (JA) and humic acid (HA) under both saline and non-saline conditions. This
can be due to the mitigation of adverse effects of salinity stress on plant height, leaf area
and relative growth rate when JA and HA were applied (Ali et al., 2020). This results agreed
with Alavi-Samani, Kachouei & Pirbalouti (2015) who reported that JA application
recorded the highest plant height and leaf area at the high salinity stress.

Organic fertilizer application such as vermicompost and humic acid were optimal for
improving soil properties because of the increased organic matter, nutrient contents, the
vital role of soil enzyme action, improved soil aeration, and enhanced microbial action in
soil, thus improving soil physical and chemical properties (Ding et al., 2021). Humic acid
(HA) can improve plant growth by increasing cell membrane permeability, which can
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promote water absorption and nutrients uptake (Ali et al., 2020). In this study, the results
revealed that, under different salinity levels, soil amendment with humic acid improved
growth traits such as plant height, leaf area, and relative growth rate under salinity stress
conditions. The increase in the plant height in the HA amended treatments was most
probably due to the root zone improved by humic acid (Ding et al., 2021). Similar impacts
were shown by Heidari & Minaei (2014), Ghorbani et al. (2010), and Haghighi, Saki-Nejad
& Lack (2011), who reported that HA application had remarkable effects on vegetative
growth and increased plant height, relative growth rate, leaf area and photosynthetic
activity.

Total chlorophyll content and carotenoid content
The chlorophyll content is widely used as an index to indicate the abiotic tolerance level in
plants. Protection of chloroplast and photosynthetic machinery is the first target of defense
under stressful conditions (Anjum et al., 2011). In this study, total chlorophyll content
decreased with increasing salinity levels. The negative impact of high NaCl salt stress on
chlorophyll content might be caused by inhibited nutrient uptake (Seleiman et al., 2020),
inhibited biosynthesis of chlorophyll, and increased chlorophyll-degrading enzyme
chlorophyllase (Taha et al., 2021a). Similar results were showed by Latif & Mohamed
(2016) in common bean and Akladious & Mohamed (2018) in the pepper plants.
The reduction in chlorophyll content under salt stress may be due to the reduction in
carbon use efficiency and uptake of minerals such as Mg and Fe (Latif & Mohamed, 2016).

In the present study, jasmonic acid application increased the total chlorophyll content
and carotenoid content under saline conditions, which is one of the factors contributing to
higher photosynthetic of forage sorghum plants under salinity conditions. Our results were
similar to those of Sofy et al. (2020), who mentioned that the application of JA improved
the accumulation of photosynthetic pigments under abiotic stress conditions. This may be
due to the protective role of JA, which can enhance photosynthesis and the absorption of
important minerals under abiotic stress. These results suggested that exogenous JA
treatment could alleviate salinity stress, allowing plants to increase their tolerance to
unfavorable conditions.

The stimulation in photosynthetic pigments caused by humic acid caused may be due to
the decrease of pH value and increase in the activity of soil organisms which release more
nutrients from the soil such as Fe (Latif & Mohamed, 2016). In the present study, under
salinity conditions, application of humic acid improved the total chlorophyll content and
carotenoid content. These results have been confirmed by Akladious & Mohamed (2018)
and Kaya et al. (2018). It has also been confirmed that HA application can enhance
photosynthesis activity like chlorophyll and increase tolerance in stress conditions by
increasing the enzyme rubisco (Latif & Mohamed, 2016).

Soluble protein and proline content
Improving soluble protein and proline content are an important mechanism that plants
use to alleviate the harmful effect of salinity stress (Hatami et al., 2018). In the present
investigation, soluble protein was increased at the high salinity level and subsequently
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decreased at the control of salinity level. This result were contradicted with the results of
Ibrahim et al. (2018) and Dustgeer et al. (2021) who noted that under salinity stress, the
soluble protein was significantly reduced. The reduction in soluble protein under salinity
may be due to decreased potassium content, reduction in sodium content, protease enzyme
activity, and hydrolysis of the rubisco enzyme (Hatami et al., 2018). In the present study,
proline content was decreased by increasing salinity levels. This result agreed with the
results of Zrig et al. (2015) and Nimir et al. (2015), but disagreed with the findings of Qiu
et al. (2014) who reported that salinity stress significantly increased the proline content.
The varied changes in the downregulation and upregulation of the contents of soluble
protein and proline in different studies are caused by many reasons, including different
crops studied, genetic variance in the same crops, and the levels of salt applied.

In the study, humic acid improved the contents of soluble protein and proline of forage
sorghum. Our results were dissimilar with Farahat, Mazhar & Mahgoub, (2012) who
reported that humic acid significantly decreased proline content. However, our results are
same as Kumari et al. (2006) who reported that humic acid improved the proline content.
The increase in proline content might be due to a rapid accumulation of a specific protein
set. In the present investigation, HA improved the protein content. Similar findings were
reported by Fernández et al. (2013) and Hatami et al. (2018).

Jasmonic acid can protect the plant from toxicity ions in the different stages by
managing the antioxidant machinery and synthesis of proteins (Sirhindi et al., 2015).
In the study, jasmonic acid increased the contents of soluble protein and proline of forage
sorghum. An increased in proline contents in comparison with the control by jasmonic
acid was also reported by Ali et al. (2020). However, different results were noted by
Farhangi & Ghassemi (2018) which reported that jasmonic acid reduced proline content
under salt stress in the wheat.

Superoxide dismutase and malondialdehyde contents
Superoxide dismutase (SOD) is one of the enzymes responsible for eliminating O−

2 and is
considered an essential antioxidant in cells. In our study, high salinity stress increased SOD
activity and MDA content. The increased in SOD activity coincided with an increasing in
the activities of Mn-SOD and Fe-SOD (Anjum et al., 2011). These results were contrary to
Sekmen et al. (2012) who reported that the SOD activity was decreased under salinity stress
in Gypsophila oblanceolate plant. Similar results were noticed by Ali et al. (2020), and
Nimir et al. (2015) who suggested that under soil saline conditions, MDA content was
substantially increased by increasing soil salinity.

Our study showed that significant increases in SOD activity and MDA content were
observed in forage sorghum plants treated with JA. The increase in SOD activity agreed
with the results of Anjum et al. (2011), Noriega et al. (2012) and Ali et al. (2019) who
reported that exogenous JA application significantly improved SOD activity and MDA
content under salinity stress. However, the increase in MDA content under salinity stress
by jasmonic acid differed from the findings of Qiu et al. (2014).

In our results, the application of HA under saline condition increased SOD activity and
MDA content. Different result was showed by Kaya et al. (2018) who reported that HA

Ali et al. (2022), PeerJ, DOI 10.7717/peerj.13793 17/25

http://dx.doi.org/10.7717/peerj.13793
https://peerj.com/


reduced the activity of SOD in the maize plant under NaCl salinity stress. Similar results
were reported by Kesba & El Beltagi (2012) who found that HA increased the antioxidant
enzyme activity, including SOD activity in response to salinity stress. Similar results were
reported by Gautam & Singh (2011) who found that MDA content under NaCl-stressed
plants was increased significantly by applying humic acid. Ali et al. (2019) noted that
humic acid and jasmonic acid application increased antioxidant enzyme activities
including CAT, POD and SOD in sorghum seedling.

Catalase and peroxidase activity
Enhancement of the activities of antioxidative enzymes in plants under saline conditions
could improve the protecting mechanism to decrease adverse impacts by salt stress. In this
study, soil saline stress caused reductions in CAT and POD activities. Reduced CAT
activity under salinity stress might have promoted H2O2 accumulation, which could result
in a Haber–Weiss reaction from hydroxyl radicals (Ali et al., 2021). The decrease in POD
and CAT activities in our study confirmed with the results of Qiu et al. (2014) and Sekmen
et al. (2012). However, a disconfirmed result has been shown by Ibrahim et al. (2018) and
Ibrahim et al. (2016a) on wheat plants treated with soil salinity, reporting that POD and
CAT activities increased under NaCl stress.

In this study, foliar application of jasmonic acid improved CAT and POD activities in
the leaves of forage sorghum plants under soil saline conditions. Our result was similar to
the findings of Anjum et al. (2011), who suggested that the wheat and soybean plants
exposed to salinity and treatment with JA application significantly increased the
antioxidant enzyme activities including CAT and POD and played an essential role in
antioxidant defense required for salt tolerance. In addition, Farhangi & Ghassemi (2018)
noted that the treatment of soybean plants under salt stress by salicylic acid and jasmonic
acid promoted the antioxidant enzyme activities. In this study, the application of HA
improved plant defense systems such as POD and CAT in the forage sorghum plants, and
the both rates increased POD and CAT activities. Many studies have also noted that the
POD and CAT activities increased by application of HA, and it efficient in improving
tolerance of salt in cucumber (Karakurt et al., 2015), date palm (Phoenix dactylifera L.),
and hot pepper (Aminifard et al., 2012). However, our result differed from the findings of
Kaya et al. (2018) who found that the humic acid application decreased CAT and POD
activities under salt stress. Ali et al. (2019) reported that CAT and SOD activities increased
after application of jasmonic acid and humic acid under salt stress.

Ascorbate peroxidase activity
Under salt stress, the APX plays an essential role in protecting plants by reducing H2O2

(Anjum et al., 2011). Our study showed that increasing salinity level reduced APX activity.
Similar result was reported by Qiu et al. (2014), Ali et al. (2021) and Sekmen et al. (2012).
However, different results were noted by Ozdener & Kutbay (2008) and Farhangi &
Ghassemi (2018) who reported that salinity stress reduced APX activity. In the
aforementioned results, the application of jasmonic acid and humic acid enhanced the
antioxidant enzyme activities including APX activity under salinity condition. Increased
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APX activity by HA application has been reported in maize plants exposed to salinity
(Kaya et al., 2018). Kesba & El Beltagi (2012) also reported that HA improved APX activity
response to salinity stress. Our results showed that exogenous JA significantly increased
APX activity. Ali et al. (2019) reported that APX and SOD activities were increased by the
application of jasmonic acid and humic acid under salt stress. Our work was in line with
the findings of Kaya & Doganlar (2016), who suggested that exogenous JA increased APX
activity in tobacco (Nicotiana tabacum L.) plants under salt stress. Also, Piotrowska et al.
(2009) report that APX activity we increased in the plants treated with JA exposed to Pb
stress. Moreover, exogenous JA induced the synthesis of antioxidant metabolites that
provided additional resistance to neutralize the toxic effects of ROS generated by salt stress
(Qiu et al., 2014).

CONCLUSIONS
Our study examined the effects of different rates of humic acid as soil amendment and
jasmonic acid as foliar spray on growth parameters, total chlorophyll content, carotenoid
content and antioxidant enzyme activities of forage sorghum exposed to salinity. High soil
salinity rate of 4 g NaCl kg−1 soil decreased all the parameters tested, except for protein
content, SOD activity, and MDA content. Jasmonic acid significantly improved salt stress
tolerance in forage sorghum plants; and the plants sprayed with 10 mM JA level had higher
POD and SOD activities. Among different humic acid rates, 3 g HA kg−1 dry soil
successfully increased all the parameters tested. Generally, 10 mM JA and 3 g HA kg−1 dry
soil produced the best positive effects on forage sorghum plants physiological responses.
Our study suggested that proper management of humic acid as soil amendment and
jasmonic acid as foliar spray could be conducted in salt-affected soils to sustain forage
growth and increase crop yield and productivity of forage sorghum.
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