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DNA barcoding is critical to conservation and biodiversity research, yet public reference
databases are incomplete. Existing barcode databases are biased toward cytochrome
oxidase subunit I (COI) and frequently lack associated voucher specimens or geospatial
metadata, which can hinder reliable species assignments. The emergence of
metabarcoding approaches such as environmental DNA (eDNA) has necessitated multiple
marker techniques combined with barcode reference databases backed by voucher
specimens. Reference barcodes have traditionally been generated by Sanger sequencing,
however sequencing multiple markers is costly for large numbers of specimens, requires
multiple separate PCR reactions, and limits resulting sequences to targeted regions. High-
throughput sequencing techniques such as genome skimming enable assembly of
complete mitogenomes, which contain the most commonly used barcoding loci (e.g. COI,
12S, 16S), as well as nuclear ribosomal repeat regions (e.g. ITS1&2, 18S). We evaluated
the feasibility of genome skimming to generate barcode references databases for marine
ûshes by assembling complete mitogenomes and nuclear ribosomal repeats. We tested
genome skimming across a taxonomically diverse selection of 12 marine ûsh species from
the collections of the National Museum of Natural History, Smithsonian Institution. We
generated two sequencing libraries per species to test the impact of shearing method
(enzymatic or mechanical), extraction method (kit-based or automated), and input DNA
concentration. We produced complete mitogenomes for all non-chondrichthyans (11/12
species) and assembled nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa.
The quality and completeness of mitogenome assemblies was not impacted by shearing
method, extraction method or input DNA concentration. Our results reaûrm that genome
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skimming is an eûcient and (at scale) cost-eûective method to generate all mitochondrial
and common nuclear DNA barcoding loci for multiple species simultaneously, which has
great potential to scale for future projects and facilitate completing barcode reference
databases for marine ûshes.
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27 Abstract

28 DNA barcoding is critical to conservation and biodiversity research, yet public reference 

29 databases are incomplete. Existing barcode databases are biased toward cytochrome oxidase 

30 subunit I (COI) and frequently lack associated voucher specimens or geospatial metadata, which 

31 can hinder reliable species assignments. The emergence of metabarcoding approaches such as 

32 environmental DNA (eDNA) has necessitated multiple marker techniques combined with 

33 barcode reference databases backed by voucher specimens. Reference barcodes have 

34 traditionally been generated by Sanger sequencing, however sequencing multiple markers is 

35 costly for large numbers of specimens, requires multiple separate PCR reactions, and limits 

36 resulting sequences to targeted regions. High-throughput sequencing techniques such as genome 

37 skimming enable assembly of complete mitogenomes, which contain the most commonly used 
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38 barcoding loci (e.g. COI, 12S, 16S), as well as nuclear ribosomal repeat regions (e.g. ITS1&2, 

39 18S). We evaluated the feasibility of genome skimming to generate barcode references databases 

40 for marine fishes by assembling complete mitogenomes and nuclear ribosomal repeats. We 

41 tested genome skimming across a taxonomically diverse selection of 12 marine fish species from 

42 the collections of the National Museum of Natural History, Smithsonian Institution. We 

43 generated two sequencing libraries per species to test the impact of shearing method (enzymatic 

44 or mechanical), extraction method (kit-based or automated), and input DNA concentration. We 

45 produced complete mitogenomes for all non-chondrichthyans (11/12 species) and assembled 

46 nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa. The quality and completeness 

47 of mitogenome assemblies was not impacted by shearing method, extraction method or input 

48 DNA concentration. Our results reaffirm that genome skimming is an efficient and (at scale) 

49 cost-effective method to generate all mitochondrial and common nuclear DNA barcoding loci for 

50 multiple species simultaneously, which has great potential to scale for future projects and 

51 facilitate completing barcode reference databases for marine fishes.

52 Introduction

53 DNA barcoding is a critical component of modern biodiversity research (Hebert et al., 2003; 

54 Hebert & Gregory, 2005; Ratnasingham & Hebert, 2007; Hajibabaei et al., 2007), but available 

55 barcode reference databases remain incomplete. Thus, it is essential to develop accurate regional 

56 reference databases, which support research goals such as discovering new species (Carpenter, 

57 Williams & Santos, 2017; Hoban & Williams, 2020), matching larval specimens to known adults 

58 (Johnson et al., 2009; Hubert et al., 2010), and authenticating seafood labeling (Marko, Nance & 

59 Guynn, 2011; Silva & Hellberg, 2021). Efforts to characterize community biodiversity patterns 

60 through metabarcoding (Leray & Knowlton, 2015; Timmers et al., 2021) and environmental 

61 DNA (eDNA) surveys (Ficetola et al., 2008)4which rely on well-curated barcode databases to 

62 accurately assign sequences to taxonomy4have expanded dramatically (Ruppert, Kline & 

63 Rahman, 2019). To develop more complete DNA barcode databases, we evaluated a method of 

64 genome skimming that has potential to rapidly recover multiple barcoding loci for many species 

65 simultaneously. 

66

67 For DNA barcodes to be of long term value, they must be linked to physical (voucher) specimens 

68 in permanent natural history collections. This allows for verification of identification and 

69 refinements in taxonomy (Schander & Willassen, 2005; Ward, Hanner & Hebert, 2009; but see 

70 Collins & Cruickshank, 2013). Another consideration stems from natural genetic variation in 

71 populations. For example, Hawaiian populations of widespread Indo-Pacific fishes are often 

72 genetically divergent and can comprise cryptic lineages (DiBattista et al., 2010, 2012; Bowen et 

73 al., 2013). Thus, the most valuable barcode sequences are derived from voucher specimens 

74 associated with precise geospatial metadata (geotags), that are unfortunately missing for the 

75 majority of archived genomic datasets (Toczydlowski et al., 2021). Other attributes, such as 

76 color photographs of the specimen at the time of collection and detailed collection metadata, add 
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77 to barcode value. Finally, to increase discoverability and data access, specimen and sequence 

78 metadata must be linked through persistent digital identifiers across systems of record (Riginos 

79 et al., 2020). These best practices in data stewardship are necessary to support cross-domain 

80 cyberinfrastructure to enable transdisciplinary research, discovery and reuse of material samples 

81 and their derived data (Davies et al., 2021).

82

83 Traditionally, DNA barcoding efforts relied on Sanger sequencing of single mitochondrial 

84 markers, particularly cytochrome oxidase subunit I (COI) for metazoans. However, there is 

85 increasing utility for other mitochondrial genes and noncoding regions (e.g. 16S, 12S) as well as 

86 nuclear ribosomal genes that are present in tandem repeats (e.g. 18S-ITS1-5.8S-ITS2-28S) 

87 (Pochon et al., 2013; Berry et al., 2017; Alexander et al., 2020). In addition, approaches such as 

88 eDNA that are based on potentially fragmentary source material and/or those that target specific 

89 taxa are more precise with a multi-marker approach (Stat et al., 2017; West et al., 2020). Finally, 

90 targeting short hypervariable loci (e.g. Riaz et al., 2011; Miya et al., 2015) can be more 

91 compatible with read lengths produced by high-throughput sequencing (HTS) platforms. The 

92 availability of many barcoding markers associated with single voucher specimens also makes 

93 species identifications more broadly comparable across studies where researchers may employ 

94 different loci.

95

96 As high-throughput sequencing has become more accessible and cost-effective, techniques like 

97 genome skimming, which uses low-pass, shallow shotgun sequencing of whole genomes, have 

98 become practical (Trevisan et al., 2019). Genome skimming does not enrich samples for specific 

99 target loci, yet it is successful at recovering high-copy regions such as mitochondrial and plastid 

100 genomes as well as nuclear or cytosolic sequences like ribosomal DNA (Kane et al., 2012; 

101 Straub et al., 2012; Besnard et al., 2013; Malé et al., 2014; Ripma, Simpson & Hasenstab-

102 Lehman, 2014; Dodsworth, 2015; Denver et al., 2016; Grandjean et al., 2017; Liu et al., 2020; 

103 Raupach et al., 2022). Genome skimming has great potential to fill DNA barcode reference 

104 databases because it generates sequence data for commonly used barcoding markers 

105 simultaneously (Coissac et al., 2016). This potential has been realized in a range of taxa from 

106 plants (Alsos et al., 2020) to arthropods (Grandjean et al., 2017; Raupach et al., 2022). This work 

107 follows and complements that of Therkildsen & Palumbi (2017), who used a similar approach to 

108 examine genetic variation in Atlantic Silversides and Margaryan et al. (2021), who developed a 

109 mitogenome barcode database for vertebrates in Denmark, and extends it by showing that 

110 ribosomal barcoding loci are also readily accessible with a genome skimming approach. Despite 

111 previous applications of this method, genome skimming has yet to be tested broadly as a method 

112 to capture specimen-backed DNA barcodes for marine fishes.

113

114 Natural history collections are reservoirs of massive genomic resources that have yet to be fully 

115 tapped. While many modern institutions voucher tissue samples and/or DNA extractions 

116 alongside collected specimens, they usually publish sequences solely for single barcoding loci. 
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117 Natural history collections hold valuable sources of material to support regional or taxon-specific 

118 barcode database development, allowing gaps to be filled without the need to collect new 

119 specimens. In our study, which is part of an ongoing effort to complete the barcode reference 

120 database for Hawaiian marine fishes, we evaluated genome skimming as a method to rapidly and 

121 (when scaled up to massively parallel sequencing platforms) inexpensively capture all 

122 commonly-used DNA barcoding loci for multiple samples and fish taxa simultaneously. In this 

123 process, we aimed to recover the complete mitochondrial genomes and ribosomal repeat regions 

124 of 12 taxonomically diverse species of marine fishes. For our test, we prepared and sequenced 

125 two libraries for each species (24 libraries total) from vouchered specimens in the National 

126 Museum of Natural History (NMNH) fish collection. To evaluate how differences in specimen 

127 age and DNA quality affect resulting sequence assemblies, we assessed the quality of sequences 

128 and our ability to assemble complete mitogenomes and ribosomal repeats in the context of: (1) 

129 taxonomic diversity; (2) DNA extraction method; (3) input DNA concentration; and (4) shearing 

130 method. Here we report the results of our test and discuss how to adapt this method for large-

131 scale generation of specimen-backed DNA barcodes.

132 Materials & Methods

133 Sample selection

134 We selected samples from 12 species across a broad taxonomic distribution of fishes, including 

135 one chondrichthyan and 11 teleosts (Fig. 1). This work is a component of an effort to generate 

136 specimen-backed barcodes for all species of Hawaiian marine fishes (~1,200 species; 

137 unpublished updated version of Mundy, 2005; Randall, 2007); thus, most specimens were 

138 Hawaiian species collected in Hawai8i (6/12) or species that occur in Hawai8i but that were 

139 collected elsewhere (3/12). We also included two western North Atlantic species: Brosme 

140 brosme (Cusk), which is a NOAA species of concern, and Gymnura altavela (Spiny Butterfly 

141 Ray), as a representative chondrichthyan. All samples were derived from specimens housed in 

142 the fish collection at NMNH (Table 1) and 10 of the 12 specimens have live color photographs 

143 (Fig. 1). No mitogenomes or ribosomal repeats were available in GenBank for any of the species 

144 selected except Gymnura altavela, which was published during preparation of this manuscript 

145 (Kousteni et al., 2021). All selected Hawaiian species lacked regionally localized specimen-

146 backed barcodes for at least one common fish barcoding locus (COI, 16S, 12S; Table S1).

147 DNA concentration and extractions

148 DNA extracts representing a range of concentrations (0.9334.0 ng/¿L) were retrieved from the 

149 NMNH Biorepository. We did not standardize concentrations prior to library preparation. To test 

150 for differences in sequencing outcome between extraction methods, we included four samples 

151 extracted with the Qiagen BioSprint DNA blood kit (Qiagen, Inc.; Venlo, Netherlands) and eight 

152 samples extracted by an AutoGenPrep 965 automated DNA extraction robot (Autogen; 
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153 Holliston, MA, USA) following the manufacturer9s tissue protocols. These are standard DNA 

154 extraction technologies used for Sanger-based DNA barcoding, similar to those that have been 

155 used to generate the majority of available DNA extracts in existing collections. 

156 Shearing method and library preparation

157 We prepared two libraries for each of the 12 fish species, one sheared enzymatically and the 

158 other sheared mechanically, for a total of 24 libraries. Input DNA for the mechanically sheared 

159 libraries was prepared using a Covaris ME220 sonicator (Covaris; Woburn, MA, USA), then 

160 libraries were constructed with the NEB Ultra II DNA library prep kit (New England Biolabs; 

161 Ipswich, MA, USA) according to the manufacturer9s protocols (with the exception noted below). 

162 We prepared enzymatically sheared libraries using the NEB Ultra II FS DNA library prep kit 

163 (New England Biolabs), which incorporates enzymatic shearing as part of the kit workflow. We 

164 targeted an insert size of approximately 200 bp and amplified libraries using six cycles of PCR 

165 according to the kit manufacturer9s chemistry and thermocycler settings. We used iTru y-yoke 

166 adapter stubs and iTru unique dual indices (Glenn et al., 2019) in place of NEB adapters and 

167 indices, and tailored the amount of adapter based on DNA concentration following NEB 

168 guidelines. Individual libraries were quantified with a Qubit dsDNA HS assay (Thermo Fisher 

169 Scientific; Waltham, MA, USA) and run on a High Sensitivity D1000 ScreenTape (Agilent; 

170 Santa Clara, CA, USA) to assess library size in bp. Finally, libraries were pooled to equimolar 

171 amounts prior to sequencing.

172

173 During library preparation, our enzymatically-sheared samples inadvertently sat at 4°C following 

174 the end of the ligation period for an additional 45 minutes compared to those mechanically 

175 sheared. This gave the enzymatically-sheared samples more time to ligate and likely impacted 

176 their ligation efficiency and subsequent library yield. 

177 Sequencing

178 Libraries were split into two pools, and each pool was sequenced in a single run on the Illumina 

179 MiSeq (Illumina Inc.; San Diego, CA, USA) using V3 chemistry at the Laboratories of 

180 Analytical Biology, NMNH. We limited the sequencing run length to 150bp (paired end) to test 

181 scalability to higher-throughput platforms such as the Illumina NovaSeq 6000.

182 Assembly

183 We assessed two approaches to mitogenome assembly using Geneious Prime 2021.2.2 

184 (https://www.geneious.com). First, we used the Map to Reference function and built-in Geneious 

185 mapper with the sensitivity set to <medium/low= and iterations set to <up to 10 times=, starting 

186 with published COI sequences (Table 1) for each of the 24 libraries. Resulting assemblies were 

187 inspected and trimmed at the ends (up to 50 bp) where coverage was low (<5X). Consensus 

188 sequences were generated from the assembly results and used as subsequent reference seeds and 
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189 the Map to Reference step repeated until the assemblies stopped increasing in size and identical 

190 stretches of sequences were detected at the 59 and 39 ends. The second approach used a complete 

191 mitogenome from either a congeneric or confamilial taxon as the reference sequence, and Map to 

192 Reference, using the same parameters for a single set of up to 10 iterations. Assemblies of 

193 ribosomal repeat regions were conducted similarly, with reiterations using the Map to Reference 

194 function in Geneious, using ribosomal sequences from closely-related taxa published in 

195 GenBank (Table S2). In addition to assembling mitogenomes, we constructed nuclear genome 

196 preassemblies using SPAdes 3.15.3 (assembly module only) on paired forward and reverse read 

197 libraries (Prjibelski et al., 2020), and filtered out preassembly contigs shorter than 200 bp.

198 Genome sequencing coverage estimation 

199 We estimated species genome sizes (Table 1) based on data available in GenBank or the Animal 

200 Genome Size Database (Gregory, 2021). Where specific estimates were unavailable, we 

201 calculated an average genome size of congeners or closely-related confamilials. Since no 

202 congener or confamilial genomes were available for G. altavela, we estimated genome size 

203 based on the average genome size for Batoidea. We then calculated sequencing coverage 

204 estimates (C) for each sample using the equation , where L was the sequencing read ÿ= ÿý/ÿ
205 length, N was the number of reads, and G was the estimated haploid genome length.

206 Annotation

207 We annotated assembled mitogenomes using the MitoAnnotator tool from the MitoFish 

208 Mitochondrial Genome Database of Fish (Iwasaki et al., 2013). We manually annotated 

209 ribosomal repeat regions by aligning to complete ribosomal repeat regions for fishes in GenBank 

210 (Table 2). We did not annotate preassembly contigs.

211 Data availability

212 All voucher and material sample properties can be found in GeOMe, the Genomic Observatories 

213 Metadatabase (Riginos et al., 2020), under the expedition NMFS_FISHES_MiSeq_01 

214 (https://n2t.net/ark:/21547/DyW2). We deposited BioSample records, annotated mitogenome and 

215 ribosomal repeat assemblies, and raw reads in GenBank (BioProject Accession: PRJNA720393). 

216 Results

217 DNA Concentration

218 Total input DNA for library preparation ranged from 4.6 to 170 ng. Final libraries ranged from 

219 0.16 to 3.34 ng/µL in concentration, with mechanically-sheared and enzymatically-sheared 

220 libraries averaging 0.71 ± 0.67 ng/µL (mean ± sd) and 1.72 ± 0.94 ng/µL, respectively. The 

221 average total library size ranged from 318 to 392 bp, with mechanically-sheared and 
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222 enzymatically-sheared libraries averaging 345 ± 16 bp and 373 ± 18 bp, respectively. A 

223 summary of library quantification results can be found in Table 3.

224 Sequencing results

225 We recovered 0.46 to 5.2 million reads (2.5 ± 1.1 million) per library. AutoGen and Qiagen 

226 extractions performed comparably (2.6 ± 1.3 million reads for AutoGen vs. 2.0 ± 0.4 million for 

227 Qiagen). Enzymatic shearing yielded more reads per library than mechanical shearing (2.9 ± 1.1 

228 million reads for enzymatic vs. 1.8 ± 0.6 million reads for mechanical). Based on estimated 

229 genome sizes, these read counts equate to 0.07× to 1.04× genome coverage, with enzymatic 

230 shearing (0.50 ± 0.30×) averaging higher than mechanical shearing (0.30 ± 0.19×). A summary 

231 of sequencing results across libraries is presented in Table 3.

232 Assembly and sequencing coverage

233 We readily assembled and annotated complete mitochondrial genomes for the 11 teleosts (see 

234 Table 2 for assembled mitogenome accession numbers). Assembled sequences were identical 

235 whether we started from a small seed (COI) or mapped to a complete mitochondrial reference 

236 genome derived from a congeneric or confamilial taxon. We did not recover a complete 

237 mitogenome from Gymnura altavela (Spiny Butterfly Ray), but assembled large sections of it 

238 (e.g., ~12,000 bp including COI; ~3,000 bp including 16S). During the course of this work a 

239 complete mitochondrial genome was published for G. altavela (MT274571) based on a specimen 

240 from Greece (Kousteni et al., 2021). This allowed us to improve our assembly, resulting in a 

241 mitochondrial genome with a short gap in COI and a second gap in the D-loop. Fortunately, the 

242 gap spanned the published COI sequence for this specimen (USNM 433343; MH378654), 

243 allowing us to use 24 bases from that sequence to fill the missing space. As a result, we 

244 ultimately derived a nearly-complete mitochondrial genome (19,022 bp in our assembly as 

245 compared to 19,472 bp in MT274571) for the Spiny Butterfly Ray. 

246  

247 Mitogenome coverage of the 22 successful assemblies ranged from 7× to 108× (34 ± 26×; Table 

248 3). The Gymnura altavela libraries had a comparable number of reads to other species in our 

249 study, but coverage of the mitogenome was low for unknown reasons (11.2× with both libraries 

250 combined). Across all libraries, assembled mitogenome reads comprised 0.05% to 0.32% (0.17 ± 

251 0.1%) of the total raw reads generated per specimen.

252

253 Using Geneious Map to Reference, we assembled and annotated ribosomal repeat regions (18S-

254 ITS1-5.8S-ITS2-28S) for all 12 taxa by using 18S or 28S reference seeds (see Table 2 for 

255 assembled ribosomal repeat accession numbers). 

256

257 Genome preassemblies generated by SPAdes (>200 bp) were uploaded to Zenodo (along with 

258 basic assembly statistics) and assigned persistent identifiers (Table 2). As expected, the 
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259 preassemblies were limited, with a small fraction of contigs exceeding 1 kb in length. 

260 Nevertheless, preassembly contigs that correspond to the complete or nearly complete 

261 mitochondrial genomes and the ribosomal repeat regions were recovered for 7 and 8, 

262 respectively, of the 12 species in our study. 

263 Mitogenome organization and structure

264 Mitogenomes for all species were arranged similarly, with some minor length variations, 

265 particularly in the control region (see Fig. 2 for example assembly (Canthigaster amboinensis), 

266 Fig. S1 for all mitogenome assemblies). We detected no mitochondrial gene rearrangements 

267 among the 12 species we investigated. All species had 36 genes comprising 13 protein-coding 

268 genes (PCGs) and 23 tRNAs, with two rRNAs and the control region. In all cases, the majority 

269 strand encoded 12 PCGs, 15 tRNAs, both rRNAs, and the control region. The remaining eight 

270 tRNAs and a single PCG were encoded on the minority strand. GC content ranged from 43.1% 

271 (Neoniphon sammara) to 52.1% (Gymnothorax fimbriatus) (mean: 45.5 ± 2.3%). 

272 Discussion

273 Our results show that genome skimming is an efficient method for generating mitogenomes and 

274 ribosomal repeats of marine fishes and that the methods are robust for a broad range of taxa, 

275 extraction types, shearing methods, and DNA concentrations. Both manual (Qiagen) and 

276 automated (AutoGen) extraction methods resulted in high quality sequence libraries, which 

277 indicates that this method can leverage existing DNA extractions housed in museum collections 

278 that were prepared for other purposes (e.g. single-marker Sanger sequencing).

279  

280 As noted in Methods, our enzymatically-sheared samples were held at 4°C following the end of 

281 the ligation period for an additional 45 minutes compared to those with mechanical shearing. 

282 This likely impacted their ligation efficiency and subsequent library yield. As a result, we cannot 

283 confirm that differences in final library yield resulted directly from the shearing method used. 

284 However, enzymatically sheared libraries yielded higher read counts than mechanically sheared, 

285 with greater average mitogenome coverage, demonstrating that the method is effective for 

286 genome skimming. In addition, enzymatic shearing is less expensive (~$4 less/library; Tables S3 

287 and S4), less labor intensive, and requires less specialized laboratory equipment.

288

289 We assembled mitogenomes with as few as half a million reads, but had more consistent success 

290 with 233 million reads/library, which resulted in an average of 34× coverage of the mitogenome. 

291 Mitogenome assemblies used only 0.05% to 0.32% of the total raw sequence reads. The majority 

292 of unassembled reads were nuclear (e.g. chromosomal) and cytosolic (e.g. ribosomal RNA) 

293 sequences. The most common barcoding markers for fishes are mitochondrial: COI (Leray et al., 

294 2013), 16S rRNA (Berry et al., 2017), and 12S rRNA (Miya et al., 2015). However, primer sets 

295 designed to amplify other taxa or communities often target nuclear ribosomal loci such as the 
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296 18S rRNA and/or internal transcribed spacers (ITS1/2) (marine eukaryotes: Pochon et al., 2013; 

297 scleractinian corals: Alexander et al., 2020). We successfully recovered complete ribosomal 

298 repeat regions (18S-ITS1-5.8S-ITS2-28S) from all of our sequence libraries, illustrating that our 

299 approach has applications beyond mitogenome assembly. Importantly, we recovered sequences 

300 for the most commonly-used barcoding loci for all targeted taxa in a single pass. We provided 

301 raw sequence data in the NCBI Sequence Read Archive under BioProject PRJNA720393 

302 because there are likely additional sequences of interest to other researchers. In addition, we 

303 constructed genome preassemblies for each sample, which are also available (Table 2).

304

305 To test whether our methods are applicable across fish diversity, we included one 

306 chondrichthyan, the Spiny Butterfly Ray Gymnura altavela. Despite high success across teleosts, 

307 we did not recover a complete mitogenome for the chondrichthyan. The G. altavela libraries had 

308 read counts comparable to bony fish libraries, but mitogenome coverage was low and initial 

309 assemblies had gaps. However, a complete mitochondrial genome was published from a 

310 specimen from Greece (Kousteni et al., 2021), and although it is ~3% diverged from our 

311 mitochondrial sequences, we used it to improve our assembly such that it included complete loci 

312 other than the D-loop. Gaps in the control region are relatively common in mitochondrial 

313 genome assemblies, particularly among rays (Poortvliet et al., 2015; Hinojosa-Alvarez et al., 

314 2015). This region often contains tandem repeats that present difficulty to bioinformatic 

315 assemblers (White et al., 2018) and have been attributed to heteroplasmy in other taxa (Mundy, 

316 Winchell & Woodruff, 1996). However, despite the D-loop gap in the complete mitogenome 

317 assembly of G. altavela, we still recovered targeted mitochondrial barcoding loci (COI, 12S, 

318 16S). Future studies will include additional sharks, rays, and chimaeras, as well as further 

319 exploration of laboratory and bioinformatic approaches.

320

321 We used the MiSeq platform to test extraction and shearing methods on a limited number of 

322 samples and to assess sequencing reads and coverage necessary to generate mitogenomes and 

323 ribosomal repeats across a broad phylogenetic sample of fishes. To further our goal of 

324 completing barcode reference databases (for mitochondrial and ribosomal genes) for all species 

325 of Hawaiian fishes, we will sequence future genome skimming runs on an Illumina NovaSeq. 

326 The NovaSeq platform produces higher read output than MiSeq and therefore supports increased 

327 multiplexing of samples, allowing us to pool 384 samples (species) in a single sequencing run. 

328 This will reduce sequencing costs from ~$145 per sample on the MiSeq to ~$16 on the NovaSeq, 

329 while also increasing the data yield from 234 million reads to 13 million per sample on average. 

330 The increased multiplexing capability of the NovaSeq brings the total cost (library preparation, 

331 quantitation, and sequencing) from ~$161 per sample on the MiSeq to ~$31 per sample, which 

332 will facilitate economical and rapid generation of complete mitogenomes and ribosomal repeats 

333 (encompassing all major barcoding loci) (see Tables S3 and S4). Preliminary data (not reported 

334 here) from a NovaSeq run of 384 species shows that our methods for mitogenome and ribosomal 

335 repeat recovery via genome skimming can be scaled to the higher-throughput platform. In this 
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336 study, we employed manual assembly methods using Geneious Prime, whereas future assemblies 

337 will employ an automated bioinformatic pipeline to enable production of multilocus DNA 

338 barcode sequences at scale. 

339

340 We enhanced the reference value of our derived genetic data through use of persistent digital 

341 identifiers. Raw reads and assembled sequences are linked through NCBI accessions (BioProject, 

342 BioSample, SRA and nucleotide) to museum voucher specimens, as well as to derived tissues 

343 and DNA extracts registered with NMNH. Further, to ensure that data derived from, and 

344 associated with, these biomaterials can easily be accessed and reused, we cross linked NCBI and 

345 GeOMe records through Archival Resource Key (ARK) identifiers (Kunze, 2021). Such best 

346 practices in data stewardship and the use of persistent identifiers across systems of record will 

347 facilitate cross-domain cyberinfrastructure and enable transdisciplinary research, discovery and 

348 reuse of material samples and their derived data (Davies et al., 2021).

349 Conclusions

350 Our study shows that genome skimming is an efficient and cost-effective method that will allow 

351 a shift in the DNA barcoding workflow from sequencing targeted loci in individual specimens to 

352 generating complete suites of barcode markers for many taxa in a single sequencing run. The 

353 methods we employed enable use of genetic samples housed in natural history collections to 

354 rapidly generate specimen-based, regionally localized DNA barcode reference data. This work 

355 has important implications for several large US-based initiatives: NOAA 8omics (Goodwin et al., 

356 2021), NMNH Ocean DNA Initiative (https://www.smithsonianmag.com/blogs/national-

357 museum-of-natural-history/2021/07/07/meet-reef-expert-collecting-environmental-time-

358 capsules/), and the U.S. Ocean Biocode (Meyer et al., 2021), each of which involve explicit aims 

359 to provide complete DNA barcode reference databases based on voucher specimens housed in 

360 museum collections. Techniques and methods developed here are applicable to taxa and regions 

361 beyond marine fishes and the Hawaiian Islands. Taxonomically comprehensive voucher-based 

362 reference databases are necessary to advance sequence-based detection, censusing, and 

363 monitoring of marine communities in the face of global change.
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Figure 1
Species included in this MiSeq-based pilot study.

(A) Gymnura altavela, Spiny Butterûy Ray, length unknown. (B) Gymnothorax ûmbriatus,
Fimbriated moray, USNM 395396, 850 mm TL. (C) Gymnothorax undulatus, Undulated moray,
USNM 442319, 132 mm TL. (D) Saurida nebulosa, Clouded Lizardûsh, USNM 442473, 56.2
mm SL. (E) Brosme brosme, Cusk, length unknown. (F) Myripristis vittata, Whitetip
Soldierûsh, USNM 411102, 120.1 mm SL. (G) Neoniphon sammara, Sammara Squirrelûsh,
USNM 442483, 130 mm SL. (H) Tylosurus crocodilus, Houndûsh, USNM 442362, 13.6 mm SL.
(I) Scomberoides lysan, Doublespotted Queenûsh, USNM 442297, 22.3 mm SL. (J) Forcipiger

ûavissimus, Longnose Butterûyûsh, USNM 411089, 129.1 mm SL. (K) Ostracion whitleyi,
Whitley's Boxûsh, USNM 411029, 81.2 mm SL. (L) Canthigaster amboinensis, Ambon Toby,
USNM 442417, 64 mm SL. All photographs except A and E are the individuals for which we
sequenced the mitogenome. Photographs A and E by Donald D. Flescher, NOAA; photographs
B, F, J, and K by Jeû Williams, NMNH; and photographs C, D, G, H, I, and L by Diane Pitassy
NMNH.
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Figure 2
Assembled and annotated mitogenome of Canthigaster amboinensis, Ambon Toby,
USNM 442417, 64 mm SL.

Photograph by Diane Pitassy, NMNH.
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Table 1(on next page)

Summary of species and museum specimens included in this study. Species in this and
subsequent tables are arranged by taxonomic order, family, and scientiûc name, with
the chondrichthyan presented separately.

Species in this and subsequent tables are arranged alphabetically by taxonomic order,
family, and scientiûc name, with the chondrichthyan presented separately.
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Scientific name Order Family Extraction method Estimated genome 

size (Gb)

USNM catalog 

number

COI reference 

accession

Gymnura altavela

(Linnaeus, 1758)

Myliobatiformes Gymnuridae AutoGen 1.80b 433343 MH378654

Gymnothorax 

fimbriatus

(Bennett, 1832)

Anguilliformes Muraenidae BioSprint 2.31c 395396 MK658634

Gymnothorax 

undulatus

(Lacepède, 1803)

Anguilliformes Muraenidae AutoGen 2.31c 442319 MG816692

Saurida nebulosa

Valenciennes, 1850

Aulopiformes Synodontidae AutoGen 1.53c 442473 MG816726

Tylosurus crocodilus

(Péron & Lesueur, 

1821)

Beloniformes Belonidae AutoGen 1.00s 442362 MG816741

Myripristis vittata

Valenciennes, 1831

Beryciformes Holocentridae BioSprint 0.90c 411102 MZ598162

Neoniphon sammara

(Forsskål, 1775)

Beryciformes Holocentridae AutoGen 0.80s 442483 MG816708

Brosme brosme

(Ascanius, 1772)

Gadiformes Lotidae AutoGen 0.41s 433199 MH378533

Scomberoides lysan

(Forsskål, 1775)

Perciformes Carangidae AutoGen 0.73c 442297 MG816730

Forcipiger 

flavissimus

Jordan & McGregor, 

1898

Perciformes Chaetodontidae BioSprint 0.72s 411089 MK657435

Ostracion whitleyi

Fowler, 1931

Tetraodontiformes Ostraciidae BioSprint 0.98c 411029 MK658705
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Canthigaster 

amboinensis

(Bleeker, 1864)

Tetraodontiformes Tetraodontidae AutoGen 0.41c

 

442417 MG816661

1 s Genome size estimates were available for this exact species on NCBI and/or genomesize.com

2 c Genome size estimates were calculated based on an average of available congeners or confamilials on NCBI and/or genomesize.com

3 b Genome size estimate for this species was based on an average of members of Batoidea available on NCBI and/or genomesize.com

4
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Table 2(on next page)

Accession numbers of assembled mitogenomes and ribosomal repeat regions.
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Species Accession 

Number 

(mitogenome)

Mitogeone length 

(bp)

Accession number 

(ribosomal repeat 

region)

DOI for Genome preassemblies 

and assembly statistics

Gymnura altavela OK104094 19,022a MZ286332 10.5281/zenodo.5507151

Gymnothorax fimbriatus MZ297479 16,567 MZ286333 10.5281/zenodo.5507064

Gymnothorax undulatus MZ329992 16,566 MZ286339 10.5281/zenodo.5507172

Saurida nebulosa MZ329994 16,717 MZ286340 10.5281/zenodo.5507186

Tylosurus crocodilus MZ329993 16,533 MZ286342 10.5281/zenodo.5507182

Myripristis vittata MZ329989 16,520 MZ286336 10.5281/zenodo.5507128

Neoniphon sammara MZ329995 16,743 MZ286341 10.5281/zenodo.5507201

Brosme brosme MZ329990 16,483 MZ286337 10.5281/zenodo.5507143

Scomberoides lysan MZ329991 16,767 MZ286338 10.5281/zenodo.5507164

Forcipiger flavissimus MZ329988 16,600 MZ286335 10.5281/zenodo.5507111

Ostracion whitleyi MZ297480 16,461 MZ286334 10.5281/zenodo.5507077

Canthigaster amboinensis MZ188982 16,444 MZ188965 10.5281/zenodo.4753123

1 a  based on nearly-complete mitogenome assembly

2

3
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Table 3(on next page)

Library quantiûcation and sequencing results; values shown are for both shearing
methods (mechanical; enzymatic).
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Species Input DNA 

for library 

preparation 

(ng)

Average 

library size 

(bp)

Final library 

concentration 

(ng/µL)

Total raw 

reads

Calculated 

genome 

coverage

Reads 

mapped to 

mitogenome

Percent reads 

mapped

Avg. 

mitogenome 

coverage

Gymnura 

altavela

170 318; 326 2.50; 1.98 2,193,690; 

2,224,022

0.18; 0.19 201; 1,141 0.01; 0.05 1.6; 8.9

Gymnothorax 

fimbriatus

78 353; 370 0.498; 1.31 1,522,912; 

1,809,632

0.10; 0.12 2,336; 2,647 0.15; 0.15 20.7; 23.0

Gymnothorax 

undulatus

51 356; 379 0.984; 2.82 2,146,906; 

5,168,856

0.14; 0.34 984; 2,245 0.05; 0.04 8.7; 19.5

Saurida 

nebulosa

27.6 353; 391 0.382; 1.87 2,120,606; 

3,174,282

0.21; 0.31 5,290; 5,603 0.25; 0.18 47.1; 48.7

Tylosurus 

crocodilus

4.6 380; 390 0.156; 0.27 463,424; 

2,451,640

0.07; 0.37 1,065; 5,507 0.23; 0.22 9.4; 48.6

Myripristis 

vittata

25.1 337; 354 0.352; 1.42 1,290,468; 

2,342,102

0.21; 0.39 754; 1,615 0.06; 0.07 6.7; 13.8

Neoniphon 

sammara

17.1 352; 375 0.286; 0.876 2,276,566; 

4,265,046

0.43; 0.80 2,169; 3,957 0.10; 0.09 19.3; 34.6

Brosme 

brosme

41 334; 392 0.366; 1.79 1,027,598; 

1,635,836

0.37; 0.69 3,321; 5,148 0.32; 0.31 29.4; 45.1

Scomberoides 

lysan

33.9 340; 378 0.344; 1.30 2,621,818; 

4,818,598

0.54; 0.99 7,249; 12,324 0.28; 0.26 64.2; 107.9

Forcipiger 

flavissimus

109 351; 378 1.06; 2.96 1,993,702; 

2,116,356

0.41; 0.44 1,193; 1,311 0.06; 0.06 10.5; 11.1

Ostracion 

whitleyi

86.5 340; 371 1.32; 3.34 2,054,668; 

2,473,712

0.31; 0.38 2,369; 3,069 0.12; 0.12 20.596; 27.089

Canthigaster 

amboinensis

19.1 331; 371 0.224; 0.678 1,880,384; 

2,868,978

0.68; 1.04 6,070; 8,672 0.32; 0.30 53.132; 76.469
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