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ABSTRACT
Carnivores are currently colonizing cities where they were previously absent. These
urban environments are novel ecosystems characterized by habitat degradation and
fragmentation, availability of human food, and different prey assemblages than
surrounding areas. Coyotes (Canis latrans) established a breeding population in
New York City (NYC) over the last few decades, but their ecology within NYC is
poorly understood. In this study, we used non-invasive scat sampling and DNA
metabarcoding to profile vertebrate, invertebrate, and plant dietary items with the
goal to compare the diets of urban coyotes to those inhabiting non-urban areas.
We found that both urban and non-urban coyotes consumed a variety of plants and
animals as well as human food. Raccoons (Procyon lotor) were an important food
item for coyotes within and outside NYC. In contrast, white-tailed deer (Odocoileus
virginianus) were mainly eaten by coyotes inhabiting non-urban areas. Domestic
chicken (Gallus gallus) was the human food item found in most scats from both
urban and non-urban coyotes. Domestic cats (Felis catus) were consumed by urban
coyotes but were detected in only a small proportion of the scats (<5%), which differs
markedly from high rates of cat depredation in some other cities. In addition, we
compared our genetic metabarcoding analysis to a morphological analysis of the
same scat samples. We found that the detection similarity between the two methods
was low and it varied depending on the type of diet item.

Subjects Biodiversity, Ecology, Genetics, Molecular Biology, Zoology
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INTRODUCTION
Urbanization results in the fragmentation of native ecosystems and creates a mosaic of
green spaces differing in size and shape and surrounded by human development (Norton,
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Evans & Warren, 2016). The heterogeneity of the urban environment alters ecological
communities and generally decreases native biodiversity (Medley, McDonnell & Pickett,
1995; Natuhara & Imai, 1996; Clergeau, 1998; Luck, 2007). For example, diet and habitat
specialists are usually not able to live in urban areas because of spatial and temporal
variation of the environment (Clavel, Julliard & Devictor, 2011). In contrast, generalist
species thrive in urban environments because they can utilize a variety of different habitats
and food resources (Kark et al., 2007). Additionally, many large and mid-sized animals
require larger contiguous habitats than are available in urban environments (Saito &
Koike, 2013).

Changing urban community composition also affects predator-prey relationships.
Urban assemblages of prey species differ from those in non-urban areas in that they
contain more human commensals and invasive species, such as brown rats (Rattus
norvegicus), European starlings (Sturnus vulgaris), pigeons (Columba livia), American
crows (Corvus brachyrhynchos), and domestic cats (Felis catus; McKinney, 2006).
In addition, some mesocarnivores, such as raccoons (Procyon lotor) and striped skunks
(Mephitis mephitis), reach higher population densities in urban areas than non-urban ones
(Gehrt, Riley & Cypher, 2010). Larger prey species, such as white-tailed deer (Odocoileus
virginianus), while quite abundant in suburban and exurban areas, are less prevalent in
truly urban landscapes due to a lack of suitable vegetation in the manicured understories
within urban green spaces such as recreational parks, golf courses, and cemeteries (Gallo
et al., 2017).

The increased impervious surface and smaller size of urban habitats may decrease the
diversity of prey species that predators consume (Grimm et al., 2008). For example, a
comparison of mammal species diversity among different land use types in Raleigh, N.C.
and Washington, D.C. showed that suburban and exurban areas had higher species
diversity than urban areas (Parsons et al., 2018). Similarly, mammalian species richness has
been shown to decline with an increase in impervious surfaces (Dickman, 1987) and bird
species richness to decline with increasing urbanization over time (Strohbach, Hrycyna &
Warren, 2014).

Food provided by humans through outside composting (Murray et al., 2016), trash (Oro
et al., 2013), bird feeders (Fuller et al., 2008), and pet food (Contesse et al., 2004) are also
abundant in all developed areas, including highly urbanized areas like large cities. As a
result, some urban wildlife species may alter their diets to include these novel resources.
For example, more than half of the diet of urban red foxes (Vulpes vulpes) in Zürich
consisted of anthropogenic food, such as processed meat, bread, pasta, and cheese
(Contesse et al., 2004). American white ibis (Eudocimus albus) were also found to eat more
anthropogenic food (bread and chips) as the level of urbanization in their habitat
increased. (Murray et al., 2018). Predictable food subsidies from humans can cause
ecological changes, including higher population densities, changes in foraging behavior,
and altered dispersal, migration, and gene flow (Oro et al., 2013). Human food
provisioning can also lead to human-wildlife conflict if animals associate humans with
food. Human-wildlife conflicts may be of particular concern when predator species are
involved. For instance, increases in coyote (Canis latrans) attacks on humans was related
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to coyote habituation to humans through either direct or indirect feeding (Timm et al., 2004;
Lukasik & Alexander, 2011). Negative human-wildlife interactions may occur if urban
predators consume domestic species such as domestic cats, domestic dogs (Canis familiaris),
or livestock. For example, Moss, Alldredge & Pauli (2016) found that lethal removal of
cougars (Puma concolor) was more likely when the cougars were observed near livestock.

Coyotes are predators that live in nearly every city in every state of the contiguous
United States, spanning a variety of urban and non-urban areas (Hody & Kays, 2018).
Coyotes are opportunistic generalists that will alter their feeding behavior to take
advantage of available food items (Andelt et al., 1987). In non-urban areas, coyotes
primarily consume cottontail rabbits (Sylvilagus spp.), rodents, and white-tailed deer,
(MacCracken & Uresh, 1984; Brillhart & Kaufman, 1995; Patterson, Benjamin & Messier,
1998; Bartel & Knowlton, 2005; Smith et al., 2018; Petroelje et al., 2021) and there is some
evidence that coyotes may regulate white-tailed deer populations (Chitwood et al., 2015).
They also consume vegetation, fruit, birds, insects, and human-associated foods such as
dump refuse (Bekoff, 1978). Moose (Alces alces) and elk (Cervus canadensis), and caribou
(Rangifer tarandus) also make up a large part of the coyote diet in areas where those species
co-occur (Sivy et al., 2018; Gifford, Gese & Parmenter, 2019; Balluffi-Fry, Nowell &
Humphries, 2020; Shi et al., 2021). Across a suite of cities, researchers have found that the
coyote diet is dominated by rodents and rabbits (e.g., Chicago:Morey, Gese & Gehrt, 2007;
Los Angeles: Fedriani, Fuller & Sauvajot, 2001; Tuscon: McClure, Smith & Shaw, 1995),
but also includes common urban mammals such as squirrels (Sciurus spp.) (Seattle:
Quinn, 1997) raccoons (Cleveland: Cepek, 2004), and birds (Morey, Gese & Gehrt, 2007).
Urban coyotes will consume deer where available (Los Angeles: Shargo, 1988; Fedriani,
Fuller & Sauvajot, 2001; Morey, Gese & Gehrt, 2007), as well as vegetation, fruits, and
anthropogenic food. (San Diego: MacCracken, 1982; Quinn, 1997). Generally, coyotes
consume more anthropogenically-sourced food in more urbanized areas (McClure, Smith
& Shaw, 1995; Fedriani, Fuller & Sauvajot, 2001; Morey, Gese & Gehrt, 2007; Newsome
et al., 2015; Larson et al., 2020), including items such as birdseed, dog kibble, domesticated
fruit, and bread (MacCracken, 1982; McClure, Smith & Shaw, 1995; Murray et al., 2015).
Domestic dogs and cats are sometimes consumed by urban coyotes (Gehrt, Riley &
Cypher, 2010). Cats are more prevalent in the coyote diet than dogs, but cat consumption
varies widely by geographic region.

The recent founding of a coyote population in NYC provides an excellent opportunity
to examine the ecological niche of a mid-sized predator in a highly urbanized system.
Coyotes were first documented in NYC in 1994 (Toomey et al., 2012) and by 2016 evidence
of breeding groups was recorded (Nagy et al., 2016, 2017). Containing 8.8 million people,
NYC is the most densely populated city in the United States (United States Census Bureau,
2020). The dense human population may increase the amount of anthropogenic food
available to the coyotes. However, NYC also contains green spaces covering over
30,000 acres of land (NYC Parks Dept, 2022) that can provide naturalistic food items.

Using morphological analysis of scat samples, Duncan et al. (2020) previously found
that the percent occurrence (number of scats that contained the diet item/occurrence of all
diet items) of diet items in the NYC coyote diet consisted of approximately 36% mammals,
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15% birds, 33% plants, 9% invertebrates, and 7% anthropogenic items. The main prey
species detected were rodents, deer, rabbits, and racoons (Duncan et al., 2020). Birds were
also among the top prey items, but they could only be identified to the class Aves.
The morphological diet analysis of prey remains (e.g., bones, teeth) produced much
information about mammalian prey items, but was limited in the detection and
identification of plants and human food items. In this study, we analyzed the diet of
coyotes in the New York Metropolitan area using DNA metabarcoding of scat samples
with vertebrate, invertebrate, and plant primers. Additionally, we compared the diets of
urban coyotes to those in non-urban areas. This study is the first that we are aware of to use
next-generation sequencing (NGS) to examine the diet of any urban carnivore. DNA
metabarcoding using NGS amplifies a variable region of DNA to identify species
represented in a biological sample such as scat (Porter & Hajibabaei, 2018). NGS can
produce hundreds of thousands of DNA sequences for each sample, with many samples
examined at the same time (Shendure & Ji, 2008). DNA metabarcoding can identify highly
diverse diets, including both prey species and anthropogenic food sources. Vertebrates
consumed by coyotes can be identified to the species taxonomic level based on scat DNA,
which is not always possible with morphological analysis. Furthermore, in studies
comparing both techniques, NGS detected more prey items than morphological analysis
(Mumma et al., 2016; Gosselin, Lonsinger & Waits, 2017; Oja et al., 2017). However,
metabarcoding may also detect items that attach to the scat post-defecation, such as pollen,
seeds, or urine. By using metabarcoding to study the urban coyote diet we can find out
whether the coyotes rely on human associated foods or whether they can survive on
natural food items.

Here, we hypothesized that coyote diets in urban areas would be less diverse than
non-urban coyotes due to proportionally fewer prey species inhabiting urban areas.
We also predicted that urban coyotes would consume more human food due to
increased access to human refuse in urban areas. In addition, we predicted that deer would
make up less of the urban diet because deer are only found in a few small parts of NYC
(City of New York, 2020a). Furthermore, we hypothesized that metabarcoding analysis
would allow us to detect more species of diet items than morphological analysis.

METHODS
Sample collection and storage
We used fecal samples (scats) to examine the diets of urban and non-urban coyotes. Scat
sampling was opportunistic and occurred between 2007–2017. Urban scat samples were
collected at 10 New York City and New Jersey municipal parks and one recreational facility
(Fig. 1). Scat collection at NYC parks was approved under NYS Permit #1118. Non-urban
samples were collected on hiking trails at five New York state parks and preserves, which
are primarily made of hardwood forests (Nagy et al., 2011; New York State Park Service,
2019). Samples were also opportunistically collected at a residence in Stamford, CT.
All non-urban sites were located in Westchester, Orange, and Rockland Counties, all
situated north of NYC. The parks and preserves were surrounded by suburban and
exurban development. No permit was necessary to sample at the non-urban and New

Henger et al. (2022), PeerJ, DOI 10.7717/peerj.13788 4/29

http://dx.doi.org/10.7717/peerj.13788
https://peerj.com/


Figure 1 A map of sampling locations created in ArcGIS 10.7.1 (ESRI, 2019) using the 2016 National
Land Cover Database (Wickham et al., 2014). Areas in green indicate Deciduous, Evergreen, and Mixed
Forests, Developed Open Space, Barren Land, Shrub, Grassland, Pasture/Hay, and Cultivated Crops.
Areas in grey depict Low, Medium, and High Intensity Development. New York City is outlined in black.
Each sample location is displayed as a circle, with urban locations represented with grey circles and
non-urban locations with blue circles. The abbreviations represent the locations surveyed for this study
(BS, Butler Sanctuary; BX, Bronx Park; EJ, Elmjack Ballfield; FP, Ferry Point Park; HS, Harriman State
Park; IH, Inwood Hill Park; MRGP, Mianus River Gorge Preserve; PC, Pugsley Creek Park; PP, Palisades
Parkway; PB, Pelham Bay Park; RD, Riverdale Park; RR, Railroad Park; SF, Stamford Residence; ST,
Sterling Forest State Park; SV, Soundview Park; VC, Van Cortlandt Park; WPR, Ward Pound Ridge
Reservation). Full-size DOI: 10.7717/peerj.13788/fig-1
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Jersey sites because we were not collecting tissue or trapping animals. Dry scats were
collected whole and stored in paper bags containing silica desiccant. Samples that were
moist upon collection were stored in plastic bags and frozen within 24 h at −20 �C.
We used coyote and house fly (Musca domestica) tissue samples as positive controls for the
vertebrate and invertebrate PCRs, respectively. Detailed information about scat and coyote
tissue collection methodology is described in Henger et al. (2019).

Urbanization category
We define urban as areas containing considerably more impervious surface than other
areas (see Urbanization and Anthropogenic Food below). To categorize our samples into
urban and non-urban, we used the NLCD 2016 Percent Developed Imperviousness data
(Xian et al., 2011) to calculate the percentage of impervious surface around the sample
collection sites. We used zonal statistics in ArcGIS 10.7.1 to estimate the percent
impervious surface at 5 and 10 km buffers around each sample (Kays, Gompper & Ray,
2008). We considered samples with 30–80% impervious surface as urban and those with an
0–10% impervious surface as non-urban, (Fig. S1). No sites contained between 10–30%
impervious surface. We calculated the correlation between the percent impervious surface
and the count of anthropogenic food items for both the 5 and 10 km buffers using the corr.
test() function in the R package “psych”, version 1.8.12 (Revelle, 2022), specifying the
Kendall method for non-normal distribution of data. We also calculated the correlation
between the percent impervious surface and the percentage of reads of anthropogenic
items. In addition, to check whether anthropogenic food consumption is driven by a small
number of coyotes, we compared the counts of anthropogenic items found in the scats of
coyotes that were individually identified in a previous study (Henger et al., 2019).

DNA extraction
We extracted DNA from 127 urban scat samples, 59 non-urban scat samples, and three
positive PCR controls with the Qiagen DNeasy Blood and Tissue Kit (Qiagen Inc., Hilden,
Germany) and modified extraction protocol where we used ethanol that we stored in the
freezer for 1 h and we heated the AE buffer at 70 �C before eluting the DNA. We eluted
with 100 µl AE buffer by performing two rounds of pipetting 50 µl of heated AE buffer to
the DNeasy membrane, incubating at ambient temperature for 30 min, and centrifuging
for 3 min at 8,000 rpm. Prior to extraction, we homogenized the scat (hand-mixing it from
outside of the collection bag for 10–15 s) and sampled scat fragments from 3–4 different
areas of the scat to increase the chance that DNA from all food items would be extracted
(Gosselin, Lonsinger & Waits, 2017). We did not use the Qiagen Stool Mini Kit (Qiagen
Inc., Hilden, Germany) because the InhibitEX tablets contain potato DNA (Valentini et al.,
2009) that might interfere with our plant DNA results. Samples were extracted in groups of
10–12 collected from the same sites or from sites that were located close together.
We quantified total DNA concentration with a Qubit 2.0 Fluorometer (Invitrogen,
Waltham, MA, USA). We excluded 10 urban samples and five non-urban samples from
future analyses because the DNA concentrations were below 2.0 ng/µl.
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Species identification
To distinguish coyote scat from domestic dog, red fox, or other wildlife species, we
PCR-amplified the samples with the dye-labelled (6FAM) forward primer SIDL and two
different reverse primers, H16145 and H3R (De Barba et al., 2014) that amplify the
mitochondrial DNA control region and have a variable fragment number and size across
species. The 25 µl PCR consisted of 12.5 µl Qiagen Multiplex PCR Master Mix, 2.5 ×
Qiagen Q solution, 1 µl SIDL, 1 µl H16145, 1 µl µM H3R, 2 µl DNA extract, and 5 µl sterile
water. PCR thermocycler conditions included a 15-min denaturation at 94 �C, followed by
35 cycles of 30 s at 94 �C, 90 s at 46 �C, 60 s at 72 �C, and a 30-min elongation at 60 �C.
Samples that exhibited no amplification were PCR-amplified with a second set of primers,
KFSPID-F and KFSPID-R (Bozarth et al., 2010). The 25 µl PCR contained 12.5 µl Platinum
Taq (ThermoFisher Scientific, Waltham, MA, USA), 1 µl KFSPID-F, 1 µl KFSPID-R, 2 µl
DNA extract, and 8.5 µl sterile water. PCR thermocycler conditions included a 10 min
denaturation at 96 �C, followed by 35 cycles of 60 s at 94 �C, 60 s at 53 �C, 90 s at 72 �C, and
a 5 min elongation at 72 �C. PCR products were sent to Genewiz (Frederick, MD) for
fragment analysis and genotypes were assigned using Geneious with the microsatellite
plugin.

Library preparation
We PCR-amplified the 117 urban and 54 non-urban coyote samples with using universal
vertebrate (12SV5) (Riaz et al., 2011), invertebrate (16MAV) (De Barba et al., 2013), and
plant (trnL) (Taberlet et al., 2007) primers to identify potential food items present in
coyote scats. A subset of samples were PCR amplified twice with the vertebrate primer set
and the amplified PCR products of both reactions were sequenced and the results of both
sequencing runs were used to identify the diets for those samples. Time and financial
constraints prevented us from amplifying all samples twice with each of the three primer
sets. The range of amplified fragments was 36–98 bp. Our amplicon sizes were too short
(<300 bp) to use the Nextera XT Library Prep Kits (Illumina Inc., San Diego, CA, USA) to
attach the Illumina adapters to the primers. Instead, we created primers that consisted of
the universal primers attached to the ends of the Illumina adapter sequences (Table 1).
To prevent the 12SV5 primers from amplifying coyote DNA, we developed a blocking
primer, CanisB, that is modified to prevent elongation during PCR and binds to the
associated sequence of coyote DNA to prevent amplification (Vestheim & Jarman, 2008)
(Table 1). We also used the blocking primer MammMAVB1 to prevent mammal DNA
from amplifying with the invertebrate primers 16SMAV-F and 16SMAV-R (De Barba
et al., 2013). We ran three 25 µl amplicon PCRs for each sample, each using a different
primer pair (vertebrate, invertebrate, plant), using both positive and negative PCR
controls. The positive controls were coyote (C. latrans tissue; vertebrate), wheat germ
(Triticum aestivum; plant), and whole house fly (M. domestica; invertebrate). We included
30 negative PCR controls (11 vertebrate, 11 plant, 8 invertebrate). The vertebrate and
invertebrate PCRs consisted of 12.5 µl Kapa HiFi HotStart ReadyMix (Kapa Biosystems,
Wilmington, MA, USA), 1 µl F/R primer, 5.0 µL of blocking primer, 2.0 µl DNA and 4.5 µl
sterile water. The plant PCRs included 12.5 µl Kapa Hifi HotStart ReadyMix, 1 µl F/R
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primer, 2.0 µl DNA and 9.5 µl sterile water. All forward and reverse primers were at
concentrations of 10 µM and the blocking primers were at concentrations of 20 µM.
The PCR profile had an initial denaturation step of 3 min at 95 �C, followed by 45 cycles of
30 s at 94 �C, 90 s at 55 �C, and no elongation. The PCR products were purified using a
Sera-MagMagnetic Speed-bead mix (Rohland & Reich, 2012) at a volume of 1.8x Sera-Mag
beads to PCR product. We used MiSeq Reagent Kit v2 (2 × 150 bp). The Nextera XT
Index kit v2 Sets A, C, and D (Illumina Inc., San Diego, CA, USA) were used to label each
PCR product with a unique sequence for individual identification. We generated
sequencing reads from the scat libraries using two runs of an Illumina MiSeq sequencer
(Table S1). The first was at the Bioinformatics and Computational Genomics Laboratory,
Hunter College, City University of New York and contained 269 pooled PCR products.
The second run was performed at Genewiz Inc., and contained 270 pooled PCR products.

Sequence analysis and filtering
The first and second sequencing runs contained 12,757,690 and 12,993,587 reads,
respectively. The results from both runs were combined and analyzed. We used the
ecoPCR program, version 1.0.1 (Ficetola et al., 2010) to generate reference databases for
vertebrate, invertebrate, and plant sequences. The ecoPCR program uses in silico PCR to
identify sequences from the European Molecular Biology Laboratory (EMBL) genetic
database that would be amplified with the associated primer sets. We used the OBITOOLS
software, version 1.2.11 (Boyer et al., 2016) to align sequences using the illuminapairedend
command. Next, we used the cutadapt program (Martin, 2011) to trim the forward and
reverse primers from the aligned sequences. We then employed the OBITOOLS command
obiannotate to add the individual sample names to each sample. Afterwards, all sequences
from each sample were concatenated into one file. We used the obiuniq command to
merge duplicate sequences and to remove low quality sequences from further analysis
(alignment quality <40, read count <10, vertebrate sequence length <80 bp and >150 bp,

Table 1 The primers used to amplify vertebrate, invertebrate, and plant DNA (De Barba et al., 2013).

Taxon DNA
region

Primer name Forward/
reverse/
blocking

Sequence (5′-3′)

Vertebrates 12S mtDNA 12SV5-F Forward GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTAGATACCCCACTATGC

12SV5-R Reverse TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGAACAGGCTCCTCTAG

CanisB Coyote CCACTATGCTTAGCCCTAAACATAGATAATTTTACAACA-C3

Blocking

Invertebrate 16S mtDNA 16SMAV-F Forward GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCAACATCGAGGTCRYAA

16SMAV-R Reverse TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGARTTACYNTAGGGATAACAG

MammMAVB1 Mammal CCTAGGGATAACAGCGCAATCCTATT-C3

Blocking

Plant trnL (UAA) ITS1-F Forward GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGGCAATCCTGAGCCAA

ITS2-R Reverse TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCATTGAGTCTCTGCACCTATC

Note:
The CanisB blocking primer was identified by this study.
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plant sequence length <30 bp and >80 bp, invertebrate sequence length <15 bp and
>80 bp). We employed the obigrep command to remove sequences that were unaligned.
We used the ecotag command in OBITOOLS to match the sequences to each of the
reference databases, and then filtered out sequences that were lower than a 98% match
to the vertebrate and plant reference databases and lower than a 97% match to the
invertebrate database. To filter out environmental contamination and PCR artifacts, we
only considered items as part of the diet if they comprised at least 1% of the total vertebrate
reads (Elfström et al., 2014) and 5% of the total plant and invertebrate reads and were
present in the sample at 500 copies or more.

For some of the diet items, it was unclear whether they were found naturally or as
human food. We placed such ambiguous items in the most likely category depending on
the natural distribution of the taxa. For example, the grape sequences could be from wild
grape plants or from grapes eaten as anthropogenic food. We categorized grape as a plant
instead of human food because several species of grapevine grow throughout New York
and are found in the parks where we sampled the scats (New York Flora Association, 2019).
Similarly, we included turkey as a natural food item because turkeys inhabit parks and
other green spaces within NYC and throughout New York state (City of New York, 2020b).
In contrast, we categorized chicken and pig as human food because those species are
common as human food but are not naturalized in NYC parks. We were unable to detect
domestic dog in the diet because coyotes and dogs have the same genetic sequence at the
12SV5 region of the mitochondrial genome. In addition, taxonomy assignment is
restricted to local species. For example, white-tailed deer shares the same nucleotide
sequence in the 12SV5 region as mule deer, but only white-tailed deer live in the
Northeastern United States.

We grouped the diet items into eight categories: small mammals, other mammals,
white-tailed deer, birds, plants, insects, aquatic, and anthropogenic. We chose similar
categories as those used in previous coyote diet research (cited in Introduction) to better
enable comparisons between studies. In general, those coyote diet studies grouped diet
items into mammals, birds, invertebrates, plants, and anthropogenic food. However, they
differ in how they subdivide the mammal section into small groups. We chose to use “small
mammals” and “other mammals” to differentiate small prey such as rodents and rabbits
from larger prey items including raccoon and beaver. We added an “aquatic” category to
reflect the prey items that live in or near the water, such as salamander and fish, and were
not already categorized by any of the other groups. For example, the genus Anas (dabbling
ducks) is listed in the bird category instead of the aquatic category. We report the coyote
diet as frequency of occurrence (FO) calculated as FOi(%) = (ni/N) � 100, where ni
represents the number of scats containing the diet item and N is the total number of scats.
We also report the relative frequency of occurrence for each diet category, calculated as the
number of occurrences of each food item in the category divided by the total number of
food items.
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Diet diversity analyses
We compared the diet species diversity between the urban and non-urban coyotes using
the Shannon-Weiner index with the R package “vegan, version 2.5.7” (Oksanen et al.,
2019). We calculated the diversity at the molecular operational taxonomic unit (MOTU)
level. We standardized for uneven sampling sizes between the two groups by dividing the
total count of each species by number of individual coyotes included in the group.
Statistically significant differences in Shannon diversity indices were examined using
Hutchinson’s t-test (Hutcheson, 1970) in the R package “ecolTest, version 0.0.1” (Salinas &
Ramirez-Delgado, 2021). We used the R package “EcoSimR, version 0.1.0” (Gotelli, Hart &
Ellison, 2015) to calculate Pianka’s niche overlap indices (Pianka, 1973) in resource
categories between the two groups of coyotes. The indices range from 0–1, where 0
indicates no overlap and 1 complete overlap. To investigate whether differences in the
dietary species richness (the number of unique diet items) of the two groups was solely due
to disparity between the sample sizes of scats, we performed a rarefaction analysis using the
R package iNEXT, version 2.0.20 (Chao et al., 2014). The rarefaction analysis extrapolates
the number of diet items detected with increased sample sizes. In addition, we calculated
the correlation between percentage of impervious surface and the percentage of reads from
anthropogenic items in each sample. We used the ANOSIM test (Clarke, 1993; Warton,
Wright & Wang, 2012) in the R package “vegan, version 2.5.7” to test for a significant
difference between the diets of urban and non-urban coyotes. To visualize the difference in
diet composition between the two groups, we used the R package “FactoMineR, version
1.41” (Le, Josse & Husson, 2008), to perform a Principal Components Analysis (PCA) and
“factoextra”, version 1.0.5 (Kassambara & Mundt, 2017) to generate a PCA biplot. A PCA
reduces many correlated variables into a few variables that are uncorrelated with each
other. A biplot displays the results of a PCA along with a representation of the degree to
which each variable is associated with the samples. The SIMPER test (Clarke, 1993) in the
R package “vegan, version 2.5.7” was used to determine which diet categories contributed
to the differences between the diets.

Methodological comparison
We compared our metabarcoding analysis to a morphological analysis of the same scat
samples (Duncan et al., 2020). The two diet studies shared 68 urban samples (Table S2).
We calculated the Jaccard Similarity Index (Jaccard, 1912) between the two datasets using
the equation: J(X,Y) = |X∩Y|/|X∪Y|, comparing the number of diet items shared between
the two datasets (the item was detected in the same sample by both methodologies) to the
total number of items. We hypothesized that the Jaccard similarity between the two
methodologies would be close to 1, reflecting very similar results. However, we expected to
detect more items with the genetic analysis than the morphological analysis because the
genetic analysis should be able to amplify DNA from human food as well as DNA that
remains in the stomach after morphologically identifiable remains have been excreted.
Therefore, we also used Jaccard Similarity Index to compare only the diet items detected by
morphological analysis that were also detected by metabarcoding. Additionally, we
compared the Jaccard Similarity Index of different diet categories (mammals, plants,
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invertebrates, anthropogenic) to determine whether either method was better than the
other at detecting diet items within certain categories. Due to differences in the sensitivities
of the two methodologies, we compared mammals at the Species taxonomic level, but for
the rest of the diet items we only compared the number of scats that contained any birds,
plants, invertebrates, and anthropogenic food items.

RESULTS
Among urban samples, we identified 110 coyotes, no red foxes or domestic dog, and seven
samples exhibited no amplification. Out of 110 urban coyote samples, 80 amplified with
the vertebrate primers, 35 amplified with the invertebrate primers, and 77 amplified with
the plant primers, and 15 did not amplify with any of the primers. Among non-urban
samples, we identified 32 coyotes, 15 red foxes, three domestic dog, and four samples
exhibited no amplification. Our final dataset consisted of 95 urban scats and 31 non-urban
scats. The vertebrate and plant sequences could all be identified to Family, and most of the
vertebrates could be identified to genus and species. Invertebrate sequences could be
identified to order.

Amplification was observed in all 11 vertebrate, six plant, and two invertebrate PCR
negative controls. The vertebrate species amplified in the negative controls were
pigeon/dove, pig, chicken, and turkey. The plant families amplified were Poaceae,
Fabaceae, Fagaceae, Oleaceae, Juglandaceae, Rosaceae, Musaceae, and Salicaceae.
The order Diptera was the only invertebrate order amplified in the negative controls.
We removed any sequences from the samples comprising the corresponding PCR batch
that were identical to those detected in the PCR negative controls.

Both urban and non-urban coyotes consumed a variety of mammals and plant species,
as well as anthropogenic food items (Table 2). Raccoons were one of the most common
food items detected in the scat of both urban and non-urban coyotes (27% and 48% of
scats, respectively). Urban coyotes consumed more species of birds than non-urban
coyotes (10 bird species compared to two species in the non-urban diet). Many of the birds
consumed by urban coyotes were from three taxonomic groups commonly found in urban
environments: Anas (dabbling ducks), Columbidae (pigeons and doves), and Sturnidae
(European starlings).

The coyotes inhabiting urban areas consumed proportionally more plants, anthropogenic
food items, and insects than the non-urban coyotes, but fewer deer, other mammals, and
birds than non-urban coyotes (Table 2, Fig. 2). Both groups of coyotes ate similar
proportions of small mammals and aquatic species (dusky salamander, sunfish, prawn, and
decapods). Bobcat was detected in both urban and non-urban scats and red fox was only
found in non-urban scats. Urban coyotes ate a variety of human foods, includingmeat (pork,
beef, goat, sheep, chicken), fruit and vegetables (chickpeas, olives, pear, banana), and rice,
whereas non-urban coyotes only consumed chicken and pork. Chicken was the most
detected human food item in the urban and non-urban coyote scats (Table 2).

Urban coyotes consumed more species of anthropogenic food (13 compared to two)
than non-urban coyotes, but they had similar proportions of it in their diets (urban
FO = 64.2%, non-urban FO = 54.8%). We found a slight correlation between the count of
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Table 2 The count of scats that contained each diet item from the metabarcoding analysis. The
frequency of occurrence (FO) is listed in parentheses. The total count and FO are also listed for each of
the eight diet categories. The following representative silhouettes of groups were obtained from phylopic.
org. Small Mammals image (mouse) courtesy of Anthony Caravaggi under the Attribution-Non-
Commerccial ShareAlike 3.0 Unported license, https://creativecommons.org/licenses/by-nc-sa/3.0/.
Birds image (pigeon) (http://phylopic.org/image/a62a398d-793c-48cf-9803-e52118a28639/) courtesy of
Luc Viatour under the Attribution-ShareAlike 3.0 Unported license, https://creativecommons.org/
licenses/by-sa/3.0/. Other Mammals image (raccoon) courtesy of Mathieu Basille (http://phylopic.org/
image/e805d164-21e7-4657-979a-226f6ccc7f15/), Deer image courtesy of Oscar Sanisidro (http://
phylopic.org/image/bb553480-e37f-4236-8c69-ce9fa8116b39/), and Aquatic image (salamander) cour-
tesy of zoosnow (http://phylopic.org/image/d1644001-d86d-4541-9501-295a873aed2a/), all under the
Public Domain Dedication 1.0 license, https://creativecommons.org/publicdomain/zero/1.0/. Plants
image (grass) is uncredited (http://phylopic.org/image/2af0a13e-69a8-4245-832e-ee3d981089b7/) and
the Insects image (cricket) (http://phylopic.org/image/b80d830b-155a-4ca5-9119-9a9fde019cc6/) cour-
tesy of Thomas Hegna are both under the Public Domain Mark 1.0 license, https://creativecommons.org/
publicdomain/mark/1.0/. The Anthropogenic image (drumstick) was obtained from https://www.
vectorstock.com/royalty-free-vector/fried-chicken-drumstick-vector-1166263 courtesy of Tribaliumvs,
under the standard license.

Scientific name (Common name) Count (Urban) Count (Non-Urban)

Small mammals 33 (34.7%) 11 (35.48%)

Peromyscus leucopus (white-footed mouse) 2 (2.1%) 3 (9.7%)

Rattus norvegicus (brown rat) 5 (5.3%) 0 (0%)

Blarina brevicauda (northern short-tailed shrew) 1 (1.1%) 0 (0%)

Sylvilagus (rabbit) 13 (13.7%) 4 (12.9%)

Microtus pennsylvanicus (meadow vole) 12 (12.6%) 4 (12.9%)

Sciurus carolinensis (eastern grey squirrel) 3 (3.2%) 2 (6.5%)

Tamias striatus (eastern chipmunk) 3 (3.2%) 2 (6.5%)

Ondatra zibethicus (muskrat) 5 (5.3%) 0 (0%)

Other mammals 30 (31.6%) 16 (51.6%)

Lynx rufus (bobcat) 1 (1.1%) 1 (3.2%)

Castor canadensis (North American beaver) 0 (0%) 1 (3.2%)

Didelphis virginiana (Virginia opossum) 2 (2.1%) 0 (0%)

Marmota monax (groundhog) 0 (0%) 2 (6.5%)

Vulpes vulpes (red fox) 1 (1.1%) 2 (6.5%)

Procyon lotor (raccoon) 26 (27.4%) 13 (41.9%)

Mephitis mephitis (striped skunk) 2 (2.1%) 0 (0%)

Odocoileus virginianus

(white-tailed deer) 9 (9.5%) 13 (41.9%)

Birds 26 (27.4%) 10 (32.3%)

Accipitridae (bird of prey) 1 (1.1%) 0 (0%)

Anas (dabbling duck) 8 (8.4%) 0 (0%)

Corvus brachyrhynchos (American Crow) 1 (1.1%) 0 (0%)

Leucophaeus atricilla (laughing gull) 1 (1.1%) 0 (0%)

Turdidae (Thrush) 1 (1.1%) 0 (0%)

Anatidae (swan, goose, duck) 2 (2.1%) 0 (0%)

Columbidae (pigeon and dove) 9 (9.5%) 4 (12.9%)
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Table 2 (continued)

Scientific name (Common name) Count (Urban) Count (Non-Urban)

Catharus ustulatus (Swainson’s thrush) 2 (2.1%) 0 (0%)

Sturnus vulgaris (European starling) 5 (5.3%) 0 (0%)

Meleagris gallopavo (turkey) 9 (9.5%) 6 (19.4%)

Plants 76 (80.0%) 22 (71.0%)

Anacardiaceae (sumac) 4 (4.2%) 0 (0%)

Asteraceae (aster) 36 (37.9%) 2 (6.5%)

Celastraceae (Staff-vine) 0 (0%) 2 (6.5%)

Convolvulaceae (morning glory) 2 (2.1%) 0 (0%)

Fabaceae (legume) 5 (9.5%) 0 (0%)

Fagaceae (beech) 14 (14.7%) 12 (38.7%)

Juglandaceae (walnut) 12 (12.6%) 5 (5.3%)

Morus (mulberry) 4 (4.2%) 0 (0%)

Pinus (pine) 1 (1.1%) 0 (0%)

Poaceae (grass) 19 (20.0%) 3 (9.7%)

Vitis (grape) 13 (13.7%) 1 (3.2%)

Rosaceae (rose) 24 (25.3%) 7 (22.6%)

Salicaceae (willow) 12 (12.6%) 0 (0%)

Solanum (nightshade) 2 (2.1%) 0 (0%)

Apiaceae (parsley) 2 (2.1%) 0 (0%)

Oleaceae (ash) 0 (0%) 3 (9.7%)

Prunus (wild cherry) 3 (3.2%) 1 (3.2%)

Insects 32 (33.7% ) 7 (22.6%)

Gryllidae (cricket) 2 (2.1%) 0 (0%)

Diptera (fly, mosquito, gnat, midge) 23 (24.2%) 5 (16.1%)

Coleoptera (beetle) 10 (10.5%) 3 (9.7%)

Lepidoptera (butterflies and moths) 1 (1.1%) 2 (6.5%)

Aquatic 7 (7.4%) 1 (3.2%)

Desmognathus fuscus (dusky salamander) 3 (3.2%) 1 (3.2%)

Lepomis (sunfish) 1 (1.1%) 0 (0%)

Penaedae (prawn) 2 (2.1%) 0 (0%)

Decapoda (shrimp, crab, lobster) 1 (1.1%) 0 (0%)

Anthropogenic 61 (64.2%) 17 (54.8%)

Capra (goat) 3 (3.2%) 0 (0%)

Ovis (sheep) 1 (1.1%) 0 (0%)

Oryza (rice) 5 (5.3%) 0 (0%)

Bos Taurus (cow) 4 (4.2%) 0 (0%)

Pyrus (pear) 1 (1.1%) 0 (0%)

Glycine (soybean) 4 (4.2%) 0 (0%)

Felis catus (domestic cat) 4 (4.2%) 0 (0%)

Gallus gallus (chicken) 46 (48.4%) 14 (45.2%)

(Continued)
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Table 2 (continued)

Scientific name (Common name) Count (Urban) Count (Non-Urban)

Musa (banana) 2 (2.1%) 0 (0%)

Sus scrofa (pig) 17 (17.9%) 4 (12.9%)

Thunnus (tuna) 1 (1.1%) 0 (0%)

Pisum (pea) 2 (2.1%) 0 (0%)

Numida meleagris (guineafowl) 3 (3.2%) 0 (0%)

Total 387 138

Figure 2 A comparison of the frequency of occurrence (FO) of diet items detected in the urban
(n = 95) and non-urban (n = 31) coyotes. From left to right, categories are small mammals, other
mammals, deer, birds, birds, plants, insects, aquatic, and anthropogenic. Urban bars are located on the
left (red) and non-urban bars are on the right (blue). The following representative silhouettes of groups
were obtained from phylopic.org. Small Mammals image (mouse) courtesy of Anthony Caravaggi under
the Attribution-NonCommerccial ShareAlike 3.0 Unported license, https://creativecommons.org/
licenses/by-nc-sa/3.0/. Birds image (pigeon) (http://phylopic.org/image/a62a398d-793c-48cf-9803-
e52118a28639/) courtesy of Luc Viatour under the Attribution-ShareAlike 3.0 Unported license,
https://creativecommons.org/licenses/by-sa/3.0/. Other Mammals image (raccoon) courtesy of Mathieu
Basille (http://phylopic.org/image/e805d164-21e7-4657-979a-226f6ccc7f15/), Deer image courtesy of
Oscar Sanisidro (http://phylopic.org/image/bb553480-e37f-4236-8c69-ce9fa8116b39/), and Aquatic
image (salamander) courtesy of zoosnow (http://phylopic.org/image/d1644001-d86d-4541-9501-
295a873aed2a/), all under the Public Domain Dedication 1.0 license, https://creativecommons.org/
publicdomain/zero/1.0/. Plants image (grass) is uncredited (http://phylopic.org/image/2af0a13e-69a8-
4245-832e-ee3d981089b7/) and the Insects image (cricket) (http://phylopic.org/image/b80d830b-155a-
4ca5-9119-9a9fde019cc6/) courtesy of Thomas Hegna are both under the Public Domain Mark 1.0
license, https://creativecommons.org/publicdomain/mark/1.0/. The Anthropogenic image (drumstick)
was obtained from https://www.vectorstock.com/royalty-free-vector/fried-chicken-drumstick-vector-
1166263 courtesy of Tribaliumvs, under the standard license.

Full-size DOI: 10.7717/peerj.13788/fig-2
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anthropogenic items consumed and the percent impervious surface at both a 5 km buffer
(p = 0.08) and a 10 km buffer (p = 0.08) (Fig. 3), but it was not statistically significant.
Similarly, the correlation between percent of impervious surface and percentage of reads
from anthropogenic items was not statistically significant at a 5 km buffer (p = 0.06)
and a 10 km buffer (p = 0.06) (Fig. S2). To determine whether anthropogenic food
consumption was driven by only a small number of coyotes, we analyzed the diets of
individuals who could be differentiated by unique microsatellite genotypes (Henger et al.,
2019). We found that 57 of the 94 urban scats were deposited by 25 individuals.
We detected anthropogenic food in scats of 22 of those 25 individuals (88%). Domestic cats
were detected in 4.2% of the urban scats and were not found in non-urban scats.

Overall, the urban coyotes had a more species-rich diet than the non-urban coyotes (61
species compared to 29). This pattern still holds if anthropogenic sources are not included
in the analysis (48 species compared to 27 species). The results of the rarefaction analysis
indicate that the non-urban coyotes would still have a lower species-rich diet even if we
had included more samples in the analysis (Fig. 4). The ANOSIM test returned a
significant difference between the two coyote groups (R = 0.073, p = 0.049). The PCA
showed that the differences in diets between the urban and non-urban coyotes were mostly
driven by more plants and human food in the urban diet and the category of “other
mammals” in the non-urban diet (Fig. 5). The difference was reflected in the SIMPER test
which listed plants, anthropogenic food, and other mammals as the categories contributing
to the most to dissimilarities between the diets (cumulative dissimilarity
contribution = 55.8%). The Shannon diversity index was 3.4978 for the urban coyotes and
3.0026 for the non-urban coyotes, but the difference was not significant (p = 0.4636).
We calculated Pianka’s niche overlap at 0.85.
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Figure 3 The number of anthropogenic food items detected in coyote scat at varying levels of impervious surface in New York.
Full-size DOI: 10.7717/peerj.13788/fig-3
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Methodological comparison
The relative frequencies of the diet categories analyzed by morphological analysis were
36% mammals, 15% birds, 33% plants, 9% invertebrates, and 7% anthropogenic.
In comparison, the metabarcoding analysis returned relative frequencies of 29%mammals,
12% birds, 25% plants, 12% invertebrates, and 22% anthropogenic. When comparing the
percentage of diet items detected by morphological analysis that were detected by
metabarcoding, the Jaccard similarity was 61.3%.When comparing diet categories between
the two methodologies, the Jaccard Similarity Index ranged from 29.6% to 66.2% (Table 3).

DISCUSSION
Both urban and non-urban coyotes consumed a broad range of plants, mammals and
anthropogenic food. Raccoons were one of the most common mammals detected in the
scats of both groups of coyotes. This finding is in contrast to previous research that has not
found raccoons to be a significant part of the coyote diet (Quinn, 1997; Grigione et al.,
2011; Crimmins, Edwards & Houben, 2012; Poessel, Mock & Breck, 2017; Larson et al.,
2020). Since raccoons have become abundant in urban and suburban areas due to the lack
of top-down control by larger predators (Hadidian et al., 2010), coyotes in the New York
metropolitan area may be opportunistically preying on a plentiful and widely available
resource. However, it is unclear how much the coyotes scavenged, as opposed to predated,
raccoons and other mesocarnivores. In San Francisco, CA, raccoons were the most
common identified roadkill species (Kreling, Gaynor & Coon, 2019). It is possible that the
NYC coyote population scavenged raccoons that had already died from vehicle collisions.
Similarly, many of the birds that urban coyotes consumed were from Sturnidae,
Columbidae, and Anas, which contain species that are very common and abundant in
urban areas. It is likely that the urban coyotes opportunistically prey upon or scavenge
adult birds and/or their eggs because they are such a plentiful resource.

Deer was one of the main food items detected in the non-urban coyote population
(FO = 41.9%). This finding is in accordance with the results of Peterson et al. (2021) which

20

40

60

100 200 300

Count of Diet Items

S
pe

ci
es

 R
ic

hn
es

s
Urban Non-Urban

Figure 4 A rarefaction analysis to compare the species richness of diet items consumed in the urban
(top, red) and non-urban (bottom, blue) coyote groups. The non-urban group would still have a less
species-rich diet than the urban group even if more samples were used in the analysis.
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Figure 5 PCA biplot comparing categories of diet items consumed by the urban (red triangles) and
non-urban (blue circles) coyote groups. Each point represents one sample and ellipses surround the
majority of sample points in each group. Blue arrows indicate the degree to which the diet categories are
associated with the variation in the data. Clockwise from the top, the categories are small mammals,
insects, birds, anthropogenic, deer, aquatic, plants, and other mammals. The following representative
silhouettes of groups were obtained from phylopic.org. Small Mammals image (mouse) courtesy of
Anthony Caravaggi under the Attribution-NonCommerccial ShareAlike 3.0 Unported license, https://
creativecommons.org/licenses/by-nc-sa/3.0/. Birds image (pigeon) (http://phylopic.org/image/
a62a398d-793c-48cf-9803-e52118a28639/) courtesy of Luc Viatour under the Attribution-ShareAlike
3.0 Unported license, https://creativecommons.org/licenses/by-sa/3.0/. Other Mammals image (raccoon)
courtesy of Mathieu Basille (http://phylopic.org/image/e805d164-21e7-4657-979a-226f6ccc7f15/), Deer
image courtesy of Oscar Sanisidro (http://phylopic.org/image/bb553480-e37f-4236-8c69-ce9fa8116b39/),
and Aquatic image (salamander) courtesy of zoosnow (http://phylopic.org/image/d1644001-d86d-4541-
9501-295a873aed2a/), all under the Public Domain Dedication 1.0 license, https://creativecommons.org/
publicdomain/zero/1.0/. Plants image (grass) is uncredited (http://phylopic.org/image/2af0a13e-69a8-
4245-832e-ee3d981089b7/) and the insects image (cricket) (http://phylopic.org/image/b80d830b-155a-
4ca5-9119-9a9fde019cc6/) courtesy of Thomas Hegna are both under the Public Domain Mark 1.0
license, https://creativecommons.org/publicdomain/mark/1.0/. The Anthropogenic image (drumstick)
was obtained from https://www.vectorstock.com/royalty-free-vector/fried-chicken-drumstick-vector-
1166263 courtesy of Tribaliumvs, under the standard license.

Full-size DOI: 10.7717/peerj.13788/fig-5

Table 3 The Jaccard Similarity Index of diet categories between this study and the results of Duncan et al. (2020).

Mammal (# detections) Birds (# scats) Invertebrates (# scats) Plants (# scats) Anthropogenic (# scats)

Morphological (Duncan et al., 2020) 70 24 14 54 11

Metabarcoding (This study) 66 19 27 56 49

Jaccard similarity 29.6% 17.6% 24.2% 66.2% 15.1%

Note:
Mammals were compared at the species taxonomic level and birds, invertebrates, plants, and anthropogenic items were compared by the number of scats that contained
those items.
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detected deer in 60% of coyote scats in Westchester, New York. Eastern coyotes are larger
than coyotes in other areas of the United States, and it is hypothesized that their larger size
may help them to hunt deer more effectively (Monzõn, Kays & Dykhuizen, 2014). Studies
performed in Pennsylvania and South Carolina found that coyotes are the top predator of
fawns (Vreeland, Diefenbach & Wallingford, 2004; Kilgo et al., 2012). Of the non-urban
coyote samples that contained white-tailed deer DNA 69.23% were collected from
April–June, which overlaps with fawning season in New York (Cheatum &Morton, 1946).
Chitwood et al. (2015) found that fawn survival was low enough to cause deer population
declines. Other studies, however, concluded that deer populations continued to grow
even in the presence of coyotes (Parker, 1995; Bragina et al., 2019). As is possible with
raccoons, the presence of deer in the coyote diet does not necessarily indicate that coyotes
actively hunted and killed the deer found in their diets. A portion, or even all of the deer
detected in the diet, may be the result of coyotes scavenging roadkill deer. Deer was
detected in only 9.5% of the urban coyote scats. The low proportion of deer in the urban
coyote diet was likely influenced by the relatively few urban parks in our study area known
to contain deer. Out of 36 scats collected in the two NYC parks (Pelham Bay and Van
Cortlandt) that have deer populations, only seven contained deer (19.4%). Even if deer are
available, they are consumed at a lesser rate in urban areas.

We detected red fox in the non-urban diet and bobcat in both the urban and non-urban
diets, which may be evidence of competition between urban predators. Coyotes typically
exclude red foxes from coyote territory (Gosselink et al., 2003; Lombardi et al., 2017),
presumably because of high dietary overlap between the two species (Major & Sherburne,
1987). This competitive exclusion ensures that Eastern coyotes do not overlap with foxes in
predation of small mammals. Competitive exclusion has not been found in areas where
bobcats and coyotes have territorial overlap, but coyotes have predated on bobcats
(Fedriani et al., 2000). Alternatively, it is possible that the coyote scats were contaminated
with fox and bobcat urine or that coyotes scavenged road-killed animals.

Urban coyotes had a more species-rich diet than the non-urban coyotes. Fedriani, Fuller
& Sauvajot (2001) also found a positive correlation between diet diversity and level of
urbanization in California coyotes. They reasoned that the diversity was due to the
increased availability of anthropogenic foods. Similarly, in this study, many of the
additional species included in the urban diet were anthropogenic food items. The urban
parks are surrounded by densely populated neighborhoods with a diverse assortment of
restaurants, food trucks, and apartment buildings that could all provide refuse for coyotes.
Parks themselves may also be sources of refuse from garbage containers and litter.
However, after removing human food items from the analysis, the diet of urban coyotes
still contained more species than the non-urban diet. One reason for this finding may be
that the urban parks offer a greater number of microhabitats that can accommodate more
types of species. The urban coyote diet included more species of mammals, plants, and
insects than the non-urban diet. New York City parks include a mixture of wetlands,
forests, and meadows (NYC Parks Dept, 2019) whereas New York state parks mostly
consist of hardwood forests (Nagy et al., 2011; New York State Park Service, 2019).
Additionally, relatively higher numbers of white-tailed deer in non-urban areas may
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decrease plant species richness and contribute to the lower species diversity (Habeck &
Schultz, 2015). Another reason for the more species rich diet of the urban coyotes could be
that the prey species’ abundances are lower in urban areas, which requires more frequent
prey switching (Randa et al., 2009).

Though the urban coyotes consumed more species of anthropogenic food than the
non-urban coyotes, they had similar proportions of it in their diets (64.2% of scats of urban
coyotes, 54.8% of non-urban coyote scats). Similarly, we found no correlation between
anthropogenic food consumed and the impervious surface associated with each sample.
This result differed from previous research showing more anthropogenic food
consumption by coyotes inhabiting more urbanized areas (Fedriani, Fuller & Sauvajot,
2001;Morey, Gese & Gehrt, 2007; Newsome et al., 2015; Larson et al., 2020; but see Santana
& Armstrong, 2017). It is likely that anywhere that humans and coyotes share the same
space, coyotes can find anthropogenic food. However, the proportion of anthropogenic
food use does not seem to increase relative to the human population density (Table S3).
We also found no indication of anthropogenic food use being driven by just a few coyotes.
Instead, anthropogenic food items were detected in 88% of the scats of individually
identified coyotes. Diet supplementation with human food appears to be a universal trend
among coyotes instead of a behavior performed by a small number of individuals.
We detected domestic cats only in the urban coyote scats and they were present in less than
5% of the scats. Studies from Chicago, San Diego, Los Angeles, Tucson, Cleveland, and
Albany also found low incidences of cats (≤3%) in the coyote diet (MacCracken, 1982;
McClure, Smith & Shaw, 1995; Fedriani, Fuller & Sauvajot, 2001; Cepek, 2004;Morey, Gese
& Gehrt, 2007; Bogan, 2012).

Methodological comparison
The relative frequency of occurrence (RFO) of the diet categories differed between the
metabarcoding and the morphological studies. One reason for the difference is that more
anthropogenic items were detected with DNA metabarcoding. Metabarcoding may be a
more accurate way to infer anthropogenic food use than visual detection of
human-associated items. We were able to detect anthropogenic items in the diet that
would not have been detected morphologically because usually such items are mostly or
entirely digested. When a coyote eats a wild animal, there will be hair, skin, feathers, bones,
etc. consumed as well as the meat that will persist through the digestive tract and appear in
the scat. Anthropogenically-sourced meat (e.g., chicken or port) have no or far less
persistent body parts since they were prepared (deboned, de-feathered, sliced, etc.) for
human consumption. Instead of relying on human-associated items, such as plastic and
food wrappers to infer anthropogenic food consumption, metabarcoding allowed us to
detect the actual species consumed.

The Jaccard Similarity Index between the metabarcoding and morphological analyses
was low (30.8%), even when we limited the comparison to evaluate the percentage of food
items detected by morphological analysis that were also detected by metabarcoding
(66.2%). We found that the results from the two methodologies were most similar in the
number of scats containing plants (66.2%) and least similar in the number of scats
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containing anthropogenic items (15.1%). The metabarcoding analysis detected more
invertebrates and anthropogenic food items than the morphological analysis. The counts
of mammals, birds, and plants are similar for both methodologies, but they were rarely
detected by both metabarcoding and morphological analysis in the same samples.
One reason for the low similarity between the twomethodologies could be that the scat was
not sufficiently homogenized and thus was not amplified by the PCR. Another reason
could be that some species were amplified better than others with the universal primers.
For example, Pawlucyk et al. (2015) found that the primers for the matK and rbcL genes
detected only 50% and 82% of the total plant species, respectively. It is also possible that
fewer species amplified in the more degraded scat samples than the fresher samples
(McInnes et al., 2017; Alberdi et al., 2019).

The metabarcoding analysis allowed us to identify most vertebrate prey to Species. This
is not always possible with morphological analysis of scats, in which some vertebrates are
identified to Family (Murray et al., 2015) or cannot be identified and are categorized as
“other mammals” (McClure, Smith & Shaw, 1995), “other vertebrates” (Fedriani, Fuller &
Sauvajot, 2001), “other” (Quinn, 1997), or “unknown” (Cepek, 2004;Morey, Gese & Gehrt,
2007). We were also able to identify the different bird species in the diet, which is very
difficult with morphological and isotopic techniques. When those taxa are recorded as part
of the coyote diet, they are only grouped as “birds” instead of identified to Species (Quinn,
1997;Morey, Gese & Gehrt, 2007;Murray et al., 2015). Additionally, we could detect plants
to Family and invertebrates to Order with metabarcoding but could only identify them as
“plants” and “insect” in the morphological analysis.

However, the ability to detect species in scat with only microscopic residues present in
the fecal material has drawbacks, especially when characterizing a generalist species in
which nearly any DNA present potentially represents a legitimate diet item. First, cells of
species that end up in or on the scat after it was defecated, from sources such as pollen,
seeds, and potentially urine, can be genotyped and cause a form of false positive error.
Second, secondary predation, where the prey items of a prey item are genotyped and added
as primary items is a real possibility (Tercel, Symondson & Cuff, 2021). For example, if a
coyote eats a raccoon that had previously eaten chicken from a garbage can, both the
chicken and raccoon may be genotyped and added to the coyote’s diet assemblage. Third,
metabarcoding is unable to differentiate between prey items that were directly predated vs
those that were scavenged; while both are legitimate diet items in terms of characterizing
what the target species is eating overall, this distinction is often important to ecologists
studying interspecific interactions or predator-prey dynamics. To be sure, morphological
and isotopic diet analyses suffer from these same three drawbacks, but metabarcoding in
particular has the potential to detect items in the scat that appear at microscopic levels.
Thus, the rates of these errors are likely higher, though the magnitude is unknown. More
research is needed on this topic for all of these diet analysis methods. A final drawback is
the higher cost compared to other methods. Due to constraints on cost, we were not able to
sequence every available scat, which limited our sample sizes. However, the costs of DNA
metabarcoding have gone down precipitously over the last decade, and cost may not be a
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deterrent for much longer. Additionally, metabarcoding is less labor-intensive than
morphological analysis, and may not be more expensive considering the entire workflow.

Due to the different advantages and disadvantages associated with the different
methodologies, the best method to analyze the diet from scat samples will depend on the
research questions. For example, morphological analysis detected most mammals to
Species, and it detected mammals in some scats that metabarcoding did not detect. Studies
interested only in detecting mammals in the diet may benefit from the morphological
method. Conversely, the metabarcoding method should be used when more sensitivity is
needed in identifying birds, plants, invertebrates, and anthropogenic food. Diet results also
differed between molecular and morphological analysis of the same black bear samples
(Bonin et al., 2020) and they recommended using both methods to gain a comprehensive
understanding of omnivore diets.

CONCLUSION
We found that the urban coyote diet is more diverse than the non-urban diet. Urban
coyotes consumed a variety of naturalistic food items and there is no indication that they
rely on anthropogenic food to meet their energy needs. More human food was found in the
urban coyote diet, but anthropogenic food use was not significantly correlated with the
proportion of impervious surface associated with each sample. Urban coyotes consumed
deer, but it was much more prevalent in the non-urban coyote diet. As predicted, the
metabarcoding diet analysis allowed us to detect more species than the morphological
analysis. The metabarcoding approach enabled us to gain a more comprehensive
understanding of the diet of an urban predator, and can be a useful tool for population
management. Furthermore, this study underscores the importance of maintaining
biodiversity within urban parks and other green spaces. Cities should also designate
undeveloped green space, which is vital ecologically but often forgotten compared to
maintaining developed (i.e., recreational) green space.
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