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ABSTRACT
Fasciola hepatica, commonly referred to as liver flukes, is a substantial zoonotic
parasitic disease of humans and livestock globally. While infection is readily
controlled by anthelmintics, namely triclabendazole, the heavy reliance on
triclabendazole has resulted in drug resistance appearing worldwide. Due to drug
resistance, it is imperative to adopt an integrated parasite management program to
preserve the efficacy of currently available anthelmintics. A integrated liver fluke
management plan would benefit from a simple rapid, field-deployable diagnostic for
detection of F. hepatica in environment and the host. Therefore, a rapid DNA test
using loop-mediated isothermal amplification was developed and optimised for the
detection of F. hepatica from faecal and water samples to enable the detection of
parasites both within the host and from the environment. The assay presented here is
fast, with amplification in ≤20 min, and highly sensitive, with a detection limit of
5 × 10−4 ng/µL. The workflow presented here provides a time to result of ≤60 min
without requiring a commercial kit for the extraction of DNA from faecal and water
samples, and pending further validation from field-samples, could potentially be used
to enable real-time decision making to mitigate parasite prevalence on a farming
property and with no requirement for sample transportation.
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INTRODUCTION
Fasciola hepatica is a globally distributed, zoonotic trematode causing the disease
Fascioliasis. Commonly referred to as liver flukes, these parasites are found in temperate
regions such as Europe and Australia (Durr, Tait & Lawson, 2005). Infection is most
common in livestock ruminants with an estimated 600 million animals infected worldwide
(Wilson et al., 2011). Fascioliasis is therefore a substantial animal health issue costing the
global agricultural sector USD $3.2 billion annually from a reduction in produce yields
including meat, milk, and wool (Piedrafita et al., 2010; Walker et al., 2004). In Australia
alone, Fascioliasis costs the agricultural sector AUD $50–80 million per annum, with a
further AUD $10 million spent on flukicidal treatments to reduce disease burden (Lane
et al., 2015).

The management of the disease is primarily by the administration of Triclabendazole
(TCBZ), an anthelmintic first introduced in the 1980’s, used frequently for Fascioliasis
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control (Walker et al., 2004). To date, it is the only flukicide that is lethal to both newly
excysted juveniles (NEJs); responsible for acute Fascioliasis and clinical symptoms, and
adults; associated with chronic disease resulting in ongoing production losses and
treatment costs (McManus & Dalton, 2006; Scarcella et al., 2012). Long-term alternatives,
for example vaccines, are still being researched with varying levels of efficacy, hindering
commercialisation (Toet, Piedrafita & Spithill, 2014). Consequently producers have limited
options and must rely on flukicides for parasite control (Hanna et al., 2015). Sustained
overuse and misuse of TCBZ has resulted in the emergence of TCBZ-resistant flukes
(TCBZ-R) with cases reported in Europe, South America, and Australia, in both livestock
and humans (Brockwell et al., 2014; Cabada et al., 2016; Gordon et al., 2012; Kelley et al.,
2016;Winkelhagen et al., 2012). Combination flukicides are available, but are underutilized
due to milk withholding periods in dairy cattle (Overend & Bowen, 1995).

The complex multi-host lifecycle of F. hepatica is essential for its development and
survival. Mature flukes in the definitive host bile ducts produce eggs which are shed in
faeces into the environment. These embryonate in water and miracidia emerge seeking out
a snail intermediate host, commonly Lymnaeid snails. Within the snail host, F. hepatica
undergoes multiple developmental stages before emerging as free-swimming cercariae
encysting on nearby vegetation as metacercariae which livestock or humans ingest. They
then excyst emerging as juveniles migrating through the liver parenchyma and mature
after 6–8 weeks in the bile ducts, repeating the lifecycle (Young et al., 2010). Currently
detection methods for F. hepatica are reliant on diagnosing the adults commonly
copromicroscopy such as faecal egg counts, Kato-Katz thick smear, or FLOTAC methods
(Zárate-Rendón et al., 2019). These methods are relatively simple and low-cost, and can
detect current mature infections. However, they are time consuming and prone to errors
due to low sensitivity and specificity in addition to intermittent egg shedding by F. hepatica
(Brockwell et al., 2013; Mazeri et al., 2016).

Improvements have been made with the development of serological and coproantigen
ELISAs for F. hepatica detection. However, these methods have some limitations,
including: serum ELISAs returning potential false positive results from long-lived antibody
titres persisting after infection has cleared; or coproantigen methods being limited to
detecting patent infections (Brockwell et al., 2013; Mezo et al., 2004). These methods
demonstrate high sensitivity but are still restricted to diagnosing established infections
within the host from direct sampling through blood and/or faecal collection. Additionally,
ELISA detection is high with the average cost of submitting a coproantigen ELISA
(cELISA) sample estimated to be AUD $22/sample with testing restricted to a
well-equipped central laboratory confirm infection (Agriculture Victoria, 2019; Elliott
et al., 2015; Molloy et al., 2005). The requirement of host samples makes disruption of the
fluke lifecycle difficult as these life stages reside within the definitive host. Though these are
useful in influencing treatment decisions, these methods are unable to be applied to the
aquatic stages of the parasite, which ultimately give rise to the infectious metacercariae.
Shifting focus to these stages would enable indirect sampling to determine parasite
prevalence in an environment without having to individually sample animals.
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Improvements to F. hepatica detection have seen numerous nucleic acid amplification
tests (NAATs) developed, with recent examples applied for the detection of Fasciola spp.
from whole worm extract, species or strain differentiation, egg detection, and
environmental DNA studies (Calvani et al., 2017; Le et al., 2012; Rathinasamy et al., 2018).
These methods offer high sensitivity and specificity but are limited being for PCR-based,
and therefore requiring extensive nucleic acid extraction protocols and specialised
equipment (Lee, 2017). As Fascioliasis is typically prevalent in rural and under-resourced
areas, PCR testing is not financially or logistically viable. As such, there is a need for rapid
molecular tests, for which loop-mediated isothermal amplification (LAMP) could be a
suitable alternative.

Loop-mediated isothermal amplification (LAMP) is well-suited for rapid DNA
diagnostics due to amplification carried out using a strand-displacing DNA polymerase
active at constant temperatures between 60–65 �C and four-six primers for DNA
amplification within 1 h (Notomi et al., 2000). Multiple LAMP assays for pathogen
detection have been developed for use in low-resource settings, and in-field use in the
absence of a central processing laboratory on a range of pathogens (Amoah et al., 2017;
Nzelu et al., 2014; Poole et al., 2017; Tomlinson, Barker & Boonham, 2007). LAMP
detection of Fasciola spp. have been developed, however they require extensive DNA
extraction methods and specialised laboratory settings. These assays are mostly restricted
to either whole worm or faecal sampling, requiring a minimum of 2-h for DNA extraction,
and a minimum additional hour for LAMP cycling (Ai et al., 2010b; Martínez-Valladares
& Rojo-Vázquez, 2016). The total time-to-result, inclusive of DNA preparation and
amplification visualisation for current F. hepatica LAMP detection is at least 3 h and is
reliant on access to a sufficiently equipped central processing laboratory.

Here we report the development of DNA extraction methods and a specific LAMP
assay, suitable for field-use that allows rapid, reliable, and robust detection of F. hepatica in
water and faecal samples within a 1 h. This highlights the potential of the assay to inform
local treatment decisions in real-time for management of liver fluke infections.

MATERIALS AND METHODS
Fasciola hepatica genomic DNA extraction
Adult F. hepatica were sourced from Victorian abattoirs. Briefly, cattle and/or sheep
livers were collected and cut into ~10 mm sections following Reichel (2002) with minor
modifications: livers were palpated to remove adult flukes from the liver sections, flukes
were then washed three times in sterile phosphate buffered saline (100 mM Na2HPO4,
20 mM KH2PO4, 1.37 M NaCl, 30 mM KCl, pH 7.4), placed into nucleic acid preservation
buffer containing 19 mM EDTA, 18 mM Na3C6H5O7, 3.8 M (NH4)2SO4, pH 5.2
(Camacho-Sanchez et al., 2013) and frozen at −20 �C until required for either genomic
DNA (gDNA) extraction or egg collection. Genomic DNA was prepared following
manufacturer instructions using a Bioneer AccuPrep� Genomic DNA Extraction Kit
(Bioneer, Daejeon, South Korea) with minor modifications as follows: 20–25 mg of tissue
was cut from the posterior end, minced using a scalpel blade on a petri dish and transferred
to a microfuge tube containing tissue lysis buffer pre-heated to 60 �C for further
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homogenisation with a pellet pestle (Merck, Darmstadt, Germany). Elution was performed
in 100 µL volumes using TE buffer (10 mM Tris HCl, 0.1 mM EDTA, pH 8.4) pre-heated
to 65 �C and eluted twice to improve recovery. Eluted DNA was assessed using a
NanoDropTM 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA),
with absorbance readings for 280/260 and 260/230 ratios between 1.8–2.0 considered
acceptable. Samples were stored at −20 �C until required.

Helminth genomic DNA extraction for specificity panel
Common livestock helminths (Table 1), kindly provided by Dr Tim Elliot (Invetus,
Armidale, NSW, Australia), were washed three times with 70% EtOH. Adult helminths
were weighed, and 20–25 mg of tissue excised from the anterior end where possible,
minced using scalpel blades, and transferred to microfuge tubes. Larvae provided in
absolute EtOH were sedimented by centrifugation at 13,000g for 15 min and assessed for
visible pellet formation. Centrifugation was repeated if no pellet was observed and ethanol
was then removed. Total gDNA was extracted following Brindley et al. (1989) with minor
modifications as follows: 25 µL grinding buffer containing 80% (v/v) homogenisation
buffer (100 mMNaCl, 200 mM sucrose, 10 mM EDTA, 30 mM Tris-HCl pH 8.0) and 20%
(v/v) lysis buffer (250 mM EDTA, pH 8.0, 2.5% (w/v) SDS, 500 mM Tris-HCl, pH 9.2),
pre-heated to 60 �C was added to each tube containing each helminth species and were
mechanically disrupted using pellet pestles (Merck, Kenilworth, NJ, USA). Following
incubation at 65 �C for 30 min, 14 µL of 8 M ammonium acetate was added to achieve a
final concentration of 1 M, then placed on ice for 30 min. Tubes were centrifuged, 13,000g
at 4 �C, for 10 min to pellet precipitated proteins and the supernatant containing DNA was
transferred to a fresh microfuge tube for ethanol precipitation.

Briefly, 2.5 volumes of chilled absolute ethanol and 1:10 ratio 3 M sodium acetate was
added to the solution. Samples were inverted and incubated at −20 �C for 60 min, or
overnight and pelleted by centrifugation, 13,000g at 4 �C, for 15 min. Samples were
checked for visible pellets before removing the ethanol. Pellets were subsequently washed
with chilled 70% ethanol, re-pelleted by centrifugation, ethanol removed, and the process
repeated at least three times. After the final wash, pellets were inverted and air dried before
eluting in 50 µL TE buffer pre-heated to 65 �C. Sample quality and concentration was

Table 1 Common livestock helminths and life stages used for DNA extraction for specificity panel.

Species Abbreviation Life stage

Teladorsagia circumcincta Tec Adult

Haemonchus contortus Hc Adult

Trichostrongylus colubriformis Tc L3

T. axei Ta L3

Ostertagia spp. Ost L3

Cooperia spp. Coop L3

Paramphistomum cervi Pc L3
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assessed using a NanoDropTM 2000 Spectrophotometer as previously described,
standardised to a final concentration of 5 ng/µL in TE buffer and stored at −20 �C.

Plasmid DNA preparation for specificity panel
Recombinant plasmids were needed, owing to the difficulty in obtaining snail individuals
of species which either serve as intermediate host, or share the same habitat as F. hepatica
transmitting snails in South-East Australia. Such synthetic DNA constructs containing
the internal transcribed spacer (ITS-2) (Table 2) were cloned into pBHA vectors by
Bioneer and transformed into chemically competent XL1 Blue E. coli cells (New England
BioLabs, Ipswich, MA, USA) following manufacturer instructions. Total plasmid DNA
was extracted using the AccuPrep� Plasmid Mini Extraction Kit (Bioneer, Oakland, CA) as
per manufacturer instructions, eluting twice with TE buffer pre-heated to 65 �C. Samples
were assessed for quality and quantity using a NanoDropTM, standardised to 5 ng/µL, and
stored at −20 �C until needed.

Fasciola hepatica quantitative PCR
Quantitative PCR was used to validate and compare initial F. hepatica LAMP (FhLAMP)
results. A specific quantitative PCR (qFH) assay for F. hepatica detection was modified
from Rathinasamy et al. (2018) and performed as a singleplex. Reactions were run in 25 µL
volumes containing 1× SensiMix II Probe mastermix (Bioline, Alexandra, NSW,
Australia), 0.3 µM each of forward and reverse primers, 0.1 µM probe (Table 3), 1 mM
MgCl2 to achieve a final concentration of 4 mM MgCl2, and 2.5 µL template (diluted 1/50
for faecal samples). Amplification was performed using a MIC qPCR cycler (BioMolecular
Systems, Upper Coomera, Qld, Australia) under the following cycling conditions: 10 min
at 90 �C, followed by 40 cycles of 10 s at 95 �C and 20 s at 60 �C. All PCR runs contained a
positive control to monitor intra-assay variation, and a no template control (NTC)

Table 2 Commonly found Australian snails, key liver fluke transmitting snails, their relevance, and GenBank accession numbers encoding the
internal transcribed spacer two region used for plasmid DNA extraction for specificity panel.

Species Abbreviation GenBank accession Relevance

Physa acuta Pa KF316328.1 Common in South-East Australia, non-fluke transmitting

Pseudosuccinea columella Psc HQ283261.1 Common in NSW, northern VIC, fluke transmitting

Galba truncatula Gt KT280457.1 Not in Australia, fluke transmitting

Austropeplea lessoni Al EU556308.1 Common in Southern and Eastern Australia, non-fluke transmitting

A. viridis Av EU556313.1 Common in central NSW, southern QLD, fluke transmitting

A. tomentosa At EU556270.1 Common in South-East Australia, key fluke transmitting species in VIC

Table 3 Individual primer sequences used for Fasciola hepatica qPCR.

Primer name Primer direction Primer sequence 5′–3′

qFhITS-2_FP Forward GGTTGGTACTCAGTTGTCA

qFhITS-2_RP Reverse CAAAGTGACAGTGACGGAA

qFhITS-2_P Probe FAMCCTAGTCGGCACACTTATGATTTCTG-BHQ-1
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containing nuclease-free water (NFW) to monitor contamination. All qPCR runs were
assessed using the MIC PCR program (V2.6.4) applying a dynamic normalisation method,
with a set threshold of 0.5 normalised fluorescence units, excluding the first give
amplification cycles.

Further optimisation of a Fasciola hepatica LAMP
F. hepatica LAMP (FhLAMP) primers (Table 4) were sourced fromMartínez-Valladares &
Rojo-Vázquez (2016), and two loop primers, LF and LB (Table 4) were manually designed
using CLC Genomics (Qiagen, Hilden, Germany) following loop primer design
requirements (Nagamine, Hase & Notomi, 2002) Amplification was optimised in final
volumes of 25 µL consisting of 15 µL isothermal mastermix (ISO-DR004; OptiGene,
Horsham, United Kingdom), 5 µL primer mix with optimised final concentrations of 2 µM
inner primers (FIP & BIP), 0.2 µM outer primers (F3 & B3), 2 µM loop primers (LF & LB),
and 5 µL template following manufacturer instructions. All reactions contained a positive
control to monitor inter-assay variation, and NTC reactions containing NFW to monitor
contamination. Reactions were performed in either a Genie II or Genie III fluorometer
(OptiGene) with an initial pre-heat of 40 �C for 1 min, followed by amplification at 65 �C
for 30 min, and anneal from 94–84 �C at 0.5 �C/s. Results were reported as time to positive
(Tp) in minutes and seconds (mm.ss), with anneal derivative melting temperature (Ta)
reported in degrees Celsius (�C). Performance was determined by assessing the analytical
sensitivity and specificity, with inter-assay variation of FhLAMP assessed by performing
10 replicate runs using a 10-fold serial dilution of F. hepatica gDNA with starting
concentrations of 5 × 100 ng/µL − 5 × 10−5 ng/µL in duplicate replicates. The limit of
detection was determined where at least 95% of samples recorded Tp values with standard
deviations below a value of ten, and analytical specificity assessed using prepared helminth
and snail DNA as described earlier.

Determining optimal dilution factor for FhLAMP amplification from
cattle faecal samples
Known negative cattle faecal samples confirmed by liver fluke faecal egg counts (LFEC)
and coproantigen ELISA (cELISA) used in this study were kindly provided by Dr Jane
Kelley, La Trobe University. During initial validation to mimic sample preparation under
field conditions and to assess the effects of inhibitory substances on DNA amplification,

Table 4 Individual primer sequences used for Fasciola hepatica LAMP.

Primer Primer sequence (5′–3′) Sequence region
(5′–3′)

Source

FIP TCTGCCAAGACAAGGGTGCATGTGAGGTGCCAGATCTATGG F1, F2 Martínez-Valladares & Rojo-Vázquez (2016)

BIP GTGCAGTGGCGGAATCGTGGTGTGCCGACTAGGGGATC B1, B2

F3 GCTGGCGTGATCTCCTCTA F3

B3 AACGTGCCTGGTATGGAATT B3

LF ATACATTAGGGAAACGC LF This study

LB AACGTGCCTGGTATGGAATT LB
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samples were measured using disposable 5 µL inoculating loops. Two large loopfuls of
faeces was transferred into a microfuge tube ranging between 190–350 mg (average
239 mg) faeces per sample. Faecal samples were spiked with decreasing quantities of
F. hepatica gDNA; 1, 0.5, 0.25, and 0.125 µg equivalent to 1.96 × 100, 9.9 × 10−1,
4.98 × 10−1, and 2.49 × 10−1 ng/µL respectively when back calculated on the
assumption of 500 µL faecal content volume. DNA extraction was performed following the
method by Matsui et al. (2007) with minor modifications as follows: 500 µL 10% w/v
Chelex resin (Bio-Rad, Hercules, CA, USA) prepared in NFW and 50 µL 10% w/v
polyvinylpolypyrrolidone (average molecular weight 360,000) was added to samples
described above then shaken by hand to form an even homogenate before boiling at 100 �C
for 10 min. After boiling, samples were cooled to ambient temperature and to sediment
any debris, including the Chelex resin. The supernatant was used for DNA amplification
and assessed using a range of dilution factors from neat, 1/10, 1/20, 1/50, 1/100, 1/200,
1/500, and 1/1,000 for each sample to determine the optimal dilution factor required for
diluting out faecal inhibitory substances known to interfere with DNA polymerases.

Acquisition of F. hepatica eggs for faecal spiking trials from adults
Eggs were collected from previously obtained adult liver flukes obtained (as described
earlier), by placing a single adult in a 35 mm diameter petri dish under a stereo microscope
with the specimen placed ventral side up to locate the ventral sucker. The specimen was
then covered in MilliQ water to prevent desiccation. Fine forceps and an angled teasing
needle were used to gently open the specimen immediately underneath the ventral sucker
where the uterus, containing eggs was located and agitated to release eggs into solution.
Specimens were then rinsed with MilliQ water using a wash bottle prior to removal to
dislodge residual eggs. The contents of the dish were thoroughly washed with MilliQ water
into a Falcon� 40 µm cell strainer (Corning, Corning, NY, USA) to ensure no residual eggs
remained on the petri dish. The strainer was rinsed three times with MilliQ water before
carefully being placed upside down over a 50 mL conical tube and washed with MilliQ
water to dislodge any trapped eggs into the tube. Washed eggs were sedimented by
centrifugation at 3,000g for 10 min and checked for pellet formation before transferring
them into a microfuge tube containing 200 µL NFW, covered with foil and stored at 4 �C
for up to 1 month, or until required. Prior to use, the egg solution was gently swirled and
50 µL of egg suspension transferred into a 35 mm diameter petri dish to count the required
number of F. hepatica eggs. Eggs were checked for integrity, discarding damaged eggs,
counted and then transferred by pipetting into known negative faecal samples for spiking
trials.

Optimisation of a minimal processing DNA extraction method from
cattle faecal samples
Different lysis buffers were trialled to assess which one yielded the most consistent
amplification and lowest Tp values using minimal processing steps. Each lysis buffer was
trialled using known F. hepatica negative cattle faecal samples and F. hepatica eggs (as
described earlier), with lysis buffers assessed in this study described in Table 5 below.

Tran et al. (2022), PeerJ, DOI 10.7717/peerj.13778 7/21

http://dx.doi.org/10.7717/peerj.13778
https://peerj.com/


For each buffer analysed microfuge tubes containing faecal samples weighing between
190–350 mg (prepared as described earlier) were spiked with 1, 5, 10, 20, and 50 F. hepatica
eggs each (as described earlier). Samples were vigorously shaken by hand to form an even
homogenate before boiling at 95–100 �C for 10 min, then cooled to ambient temperature
and allowed to sediment prior to LAMP amplification.

Environmental DNA concentration of water samples
Water known to be free from F. hepatica was collected from the La Trobe University moat
(GPS coordinates: −37.718, 145.044) and spiked with F. hepatica gDNA to evaluate a
field-appropriate sampling method of circulating free gDNA from water sources. It was
necessary to validate the water sampling method this way due to COVID-19 travel
restrictions limiting access to F. hepatica positive properties. Samples were aliquoted into
50 mL conical tubes and spiked with the same quantities of F. hepatica gDNA used for the
faecal spiking trials, with starting DNA quantities of 1, 0.5, 0.25, and 0.125 µg added to
each aliquot to final concentrations of 2 × 10−2, 1 × 10−2, 5 × 10−3 and 2.5 × 10−3 ng/µL per
spiked sample. Additionally, 250 mL volumes with the same starting quantities of
F. hepatica DNA were used (1. 0.5, 0.25, and 0.125 µg), to yield approximate final
concentrations of 4 × 10−3, 2 × 10−3, 1 × 10−3, and 5 × 10−4 ng/µL each. A negative control
of moat water with no spiked gDNA was also included to assess non-target gDNA
amplification. Each sample was aspirated through a 50 mL Luer-Lok� syringe before
attaching a 0.22 µmMillipore Express (PES) cartridge (Cat #: SVGP1050, Sigma). Contents
were filtered until either the entire contents were filtered or the filter was clogged and the
filtrate discarded. The syringe and filter were then reversed and the filter contents back
drawn, with the resulting eluate transferred to a fresh microfuge tube. A dilution factor of
1/10 was chosen from previous studies for DNA amplification to reduce the presence of
DNA amplification inhibitors present from environmental samples (Rathinasamy et al.,
2018).

RESULTS
Analytical performance of the Fasciola hepatica LAMP (FhLAMP)
The analytical performance of FhLAMP was assessed using a ten-fold serial dilution of
F. hepatica gDNAwith starting concentrations ranging from 5 to 5 × 10−5 ng/µL. Reactions

Table 5 Lysis buffers used to assess optimal F. hepatica egg DNA extraction methods using minimal processing steps.

Buffer name Composition Source

Chelex 10% w/v Chelex-resin prepared in nuclease free water, 1:10 vol 10% w/v
polyvinylpolypyrrolidone (average molecular weight 360,000)

Adapted from Matsui et al. (2007)

Gram positive lysis
buffer (GP)

20 mM Tris-HCl, 2 mM EDTA, 1.2% v/v Triton x-100
Note: lysozyme was omitted

Qiagen DNEasy Blood & Tissue Handbook

Tissue lysis buffer (TL) 100 mM Tris-HCl, 5 mM EDTA, 200 mM NaCl, 0.2% w/v SDS Adapted from van der Giessen et al. (1999)

SET buffer 10 mM Tris-HCl, 0.5 mM EDTA, 0.2% w/v SDS, 5% w/v Chelex-100 Berry et al. (2007)

Extraction buffer (EB) 100 mM Tris-HCl, 150 mM NaCl, 1% w/v Sarkosyl
Note: 5 mM DTT was omitted

Greco et al. (2014)
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were performed in duplicate and repeated 10 times to assess analytical sensitivity and
inter-assay variation (Table 6). Amplification times ranged from 07.15–22.25 (mm.ss),
with Ta values ranging from 88.3–89.4 �C. At a starting concentration of 5 × 10−5 ng/µL,
this resulted in some Tp values exceeding 20 min with high inter-assay variation assessed
by percent coefficient of variation (CV%) as being above the 10% cut-off value, where
amplification was deemed unacceptable due to high Tp variability. At this concentration
(5 × 10−5 ng/µL) amplification was unreliable, with Tp values ranging from 16.30–22.30.
Therefore 5 × 10−4 ng/µL was considered the assay limit of detection producing an average
Tp value of 13.78, with all replicates consistently amplifying through all ten runs and low
inter-assay variation of <5% CV.

The analytical specificity of FhLAMP was assessed using two measures: (i) gDNA from
common livestock helminths (Figs. 1A and 1B) (Table 1) and synthetic constructs of snails
(Fig. 1C) relevant to either the F. hepatica lifecycle or fluke ecology (Table 2), (ii) assessing
non-target amplification from known F. hepatica negative cattle faecal samples (Fig. 1D),
with all specificity panel results displayed in Fig. 1. Samples were considered negative for
F. hepatica if no Tp values were recorded. Some intermittent ramping was visible in some
of the Genie amplification curves after 25 min (Figs. 1B and 1D), however no time to
positive detection was recorded for those samples when analysed using the Genie Explorer
program or directly on the Genie fluorometer. This is likely due to fluorescence values
from these samples failing to exceed the automatically defined detection threshold set by
the manufacturer, and were subsequently considered negative. This may be explained by
intermittent non-target amplification being occasionally observed in late-stage
amplification, probably caused by primer-dimer formation and/or a deterioration in
polymerase activity.

No Tp values were recorded for all non-target samples used in this study, suggesting that
this assay has high specificity even from samples containing large quantities of non-target
DNA from a broad range of samples.

Determining the optimum dilution factor from faecal DNA sampling
The initial trial of known negative samples spiked with F. hepatica gDNA was assessed
using both qFh and FhLAMP, with samples screened using FhLAMP across a range of
dilutions from 1 to 1/1,000 (Fig. 2). A dilution factor of 1/50 was chosen as this dilution
provided the most reliable Tp values ranging from 10–14 min (± ≤0.81 SD) across all

Table 6 Inter-assay co-efficient of variation of F. hepatica gDNA serial dilutions using LAMP.

Starting DNA concentration (ng/µL) Average Tp (mm:ss) Inter-assay CV (%)

5 × 100 7:32 ± 0.16 SD 2.22

5 × 10−1 8:37 ± 0.19 SD 2.28

5 × 10−2 9:46 ± 0.31 SD 3.33

5 × 10−3 11:05 ± 0.42 SD 3.82

5 × 10−4 13:78 ± 0.53 SD 3.88

5 × 10−5 19:49 ± 2.48 SD 12.71
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starting DNA quantities (Fig. 2C). Although the fastest Tp values (between 10–14 min, ±
≤1.52 SD) were observed using a 1/100 dilution (Fig 2D), at lower starting quantities of
DNA (from 0.25 µg) amplification was inconsistent or Tp values between replicates were
highly variable. Dilution factors of 1/20 (Fig. 2B) and 1/200 (Fig. 2E) produced slower Tp

values (between 11–17 min for 1/20, and 11–15 min 1/200) relative to the 1/50 and 1/100
dilutions. Higher standard deviations and mean Tp values of 15.75, ±0.60 SD and 16.30,
±1.52 SD for 1/20 and 1/200 respectively where also recorded at a starting DNA quantity of
0.125 µg in comparison to the 1/50 dilution factor (Fig. 2). This suggests that the
amplification at these dilutions may have been affected by either amplification inhibition
(1/20) or excess dilution of samples (1/200). All samples prepared using a 1/50 dilution
were further analysed using qFh to assess Cq variation (SI 1) between intra-assay replicates
to confirm that a 1/50 dilution factor is sufficient for both assays, as faecal samples are
known to contain inhibitors that interfere with DNA polymerases. Both qFh and FhLAMP
were able to reliably detect F. hepatica gDNA from spiked cattle faecal samples with
minimal variation between replicates (± ≤0.5 SD qFh, ± ≤0.81 SD FhLAMP), using a 1/50

Figure 1 Specificity panel used to determine FhLAMP specificity using common livestock helminths and snail species. (A, B) Specificity panels
for FhLAMP using commonly found helminths; (C) snails important in F. hepatica ecology and/or lifecycle; (D) assessed non-target amplification
from F. hepatica free cattle faecal samples. No Tp values were observed for all non-target specimens used.

Full-size DOI: 10.7717/peerj.13778/fig-1
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dilution factor with Cq values for qFh ranging from 26–28, and Tp values for FhLAMP
from 10–14 min (Table 7). This suggests that a dilution of 1/50 is sufficient for DNA
amplification and that subsequent clean-up steps are not necessary prior to DNA
amplification.

Comparison of lysis buffers for use in cattle faecal samples spiked
with F. hepatica eggs
Cattle faecal samples were spiked with known quantities of F. hepatica eggs containing:
1, 5, 10, 20, and 50 eggs per lysis buffer. Samples were boiled for 10 min at 95–100 �C for
DNA extraction using the minimal processing method described earlier and assessed
by FhLAMP. Various lysis buffers were used as detailed in Table 5, and a dilution factor of
1/50 chosen for all samples. Figure 3A represents the mean of all duplicate replicate Tp

values using different lysis buffers, with extraction and alkaline lysis buffers failing to
amplify any F. hepatica DNA. Additionally, Chelex and gram-positive buffers amplified
inconsistently, with one of two duplicate replicates returning Tp values. Tissue lysis and
SET buffers returned positive Tp values for both replicates from samples containing 20

Figure 2 Average time-to-positive (Tp, represented in minutes:seconds) values of cattle faecal samples spiked with varying quantities of
F. hepatica gDNA by LAMP. Multiple dilutions (1/20, 1/50, 1/100, and 1/200) of Fasciola hepatica genomic DNA spiked in faecal samples were
detected by FhLAMP. Dilution factors producing the lowest Tp’s were assessed with a 1/50 dilution factor chosen producing the lowest and most
consistent Tp values. Error bars represent standard deviation of Tp’s.

† denotes n = 1/2 replicates amplifying, hence no standard deviation values.
Full-size DOI: 10.7717/peerj.13778/fig-2

Table 7 Comparison of qFh and FhLAMP amplification values and their standard deviations
assessed using spike faecal samples to determine faecal inhibition on F. hepatica DNA amplification.

Fh gDNA starting DNA quantity diluted 1/50 qFh average Cq FhLAMP average Tp

1 µg 26.59 ± 0.30 SD 10:83 ± 0.34 SD

0.5 µg 26.15 ± 0.13 SD 10:22 ± 0.05 SD

0.25 µg 28.84 ± 0.03 SD 13:58 ± 0.81 SD

0.125 µg 28.61 ± 0.05 SD 11:47 ± 0.09 SD
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and 50 eggs with an average Tp for samples prepared using tissue lysis buffer of 12.22
(±1.10 SD) and 14.88 (±0.81 SD) for 20 and 50 eggs respectively, with mean Tp values of
15.58 (±0.60 SD) and 13.73 (±0.60 SD) for 20 and 50 eggs prepared using SET buffer
(Fig. 3B). As standard deviations were higher in samples prepared using tissue lysis buffer,
SET buffer was therefore determined to be the optimal lysis buffer for use in F. hepatica egg
DNA extraction from faecal samples, consistently amplifying F. hepatica DNA from as
little as 20 eggs per sample.

Evaluation of an extraction free water DNA isolation method
Water known to be F. hepatica free was collected from the La Trobe University moat and
used to assess an extraction-free DNA capture method suitable for field-use and LAMP
detection. Each sample, containing either 50 or 250 mL of water was spiked with
decreasing quantities of DNA (1, 0.5, 0.25 and 0.125 µg) and a negative extraction control
of untreated moat water, was filtered and diluted 1/10 for use in FhLAMP assays.
The average Tp values for each sample, with all spiked samples using 50 mL volumes
amplifying, returned Tp values ranging from 10.30–20.15 (mm.ss) (± ≤4.21 SD) (Table 8).
Increasing sample volume to 250 mL, whilst retaining the same starting DNA quantities,
provided slower Tp values of 13.15–21.15 (mm.ss) (± ≤5.06 SD) and samples spiked with
0.125 µg F. hepatica gDNA failed to amplify. This is likely due to the Sterivex� filters
clogging after ~100 mL and therefore were unable to filter the entire sample volume to
sufficiently concentrate the free DNA in that sample. Regardless, this suggests that the
extraction free method of DNA capture described here is suitable for field-use with all
50 mL spiked samples and three of four 250 mL spiked samples recording positive Tp

values. Despite whole gDNA being spiked into moat water, samples containing high levels
of competing non-target DNA and DNA amplification inhibitors with no DNA

Figure 3 (A–B) Average time-to-positive (Tp, represented in minutes:seconds) values of cattle faecal samples spiked with varying quantities of
F. hepatica eggs, detected by FhLAMP. Average Tp values and standard deviations of F. hepatica negative cattle faecal samples spiked with varying
quantities of F. hepatica eggs, assessed using different lysis buffers for use in FhLAMP using minimal processing methods for DNA extraction.
Samples were diluted 1/50 and the most consistent Tp values for each lysis buffer assessed, with SET buffer chosen producing the most consistent
amplification with lowest Tp standard deviation relative to other lysis buffers used. Error bars represent standard deviation of Tp values.

†denotes
n = 1/2 replicates amplifying, hence no standard deviation values. Full-size DOI: 10.7717/peerj.13778/fig-3
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denaturation or clean-up steps used, produced detection levels as low as 1 × 10−3 ng/µL
F. hepatica gDNA from partially filtered 250 mL spiked water amplifying in under 20 min.

DISCUSSION
Fascioliasis is an economically important, zoonotic disease affecting livestock. Infection
heavily reduces animal production yields, with additional costs required for treatment and
management of this disease (Young et al., 2011). Infections are further compounded with
the increasing prevalence of TCBZ-R flukes globally as there are limited alternative
flukicides (Walker et al., 2004). Until a long-term treatment such as a vaccine is available,
additional methods to manage fluke abundance should be considered. An option is
implementing integrated parasite management (IPM), which includes a multi-faceted
approach to manage liver fluke prevalence and assists in reducing anthelmintic
overreliance (Kahn & Woodgate, 2012; Kelley et al., 2016; Woodgate & Besier, 2010).
Real-time diagnostics for the detection of Fasciola spp. in various environmental samples
will improve non-chemical management of Fasciola spp. infection.

We have described the development and optimisation of the Fasciola LAMP with
field-applicable environmental sampling, with decreased amplification times (<20 min
down from >1 h), and five-fold increased sensitivity (5 × 10−4 ng/µL compared to
1 × 10−3 ng/µL) through the addition of loop primers to the previously developed Fasciola
LAMP assay byMartínez-Valladares & Rojo-Vázquez (2016). Although additional primers
could have potentially impacted FhLAMP specificity, no cross-reactivity was observed
from non-target helminths particularly C. daubneyi and P. cervi which are frequently
reported co-infections in cattle (Gordon et al., 2013), various snail species, liver fluke free
faeces or environmental water samples.

Current LAMP assays for Fasciola spp., are reliant on DNA extraction kits requiring
well-equipped facilities (Ai et al., 2010b; Arifin, Höglund & Novobilský, 2016;
Martínez-Valladares & Rojo-Vázquez, 2016). These studies report amplification times
between 55–70 min and detection limits between 1 × 10–3 and 1 × 10−5 ng/µL, requiring an
additional 1 h for DNA preparation. In comparison, the FhLAMP was completed within
1 h, requiring 15 min for crude DNA preparation and amplification completed within

Table 8 Known negative F. hepatica free water spiked with varying starting quantities of F. hepatica
gDNA, used to assess minimal DNA sample preparation methods from 50 and 250 mL water
samples.

50 mL volume 250 mL volume

DNA starting quantity (µg) Average Tp (mm:ss) Average Tp (mm:ss)

1 12:98 ± 2.11 SD 15:30 ± 3.04 SD

0.5 13:80 ± 1.80 SD 17:58 ± 5.06 SD

0.25 13:73 ± 1.75 SD 17:00 ± 1.41 SD

0.125 14:23 ± 4.21 SD ND

Neg ND ND

Note:
ND = Not detected.
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30 min irrespective of starting material used whilst improving sensitivity from previous
studies above to 5 × 10−4 ng/µL.

Field-appropriate sampling for faeces and water was assessed using the improved
FhLAMP as collection of these is non-invasive and provides indicators of fluke presence.
Currently no crude methods are available in the literature for F. hepatica faecal egg
detection which may be attributed to eggs requiring extensive mechanical disruption and
multiple clean-ups to remove common PCR inhibitors in faecal contents (Ai et al., 2010a;
Calvani et al., 2017). Therefore the crude lysis buffer, boiling and diluting method was used
to prepare DNA extracts from faeces containing F. hepatica eggs, and SET buffer described
in Berry et al. (2007) providing the most consistent Tp values with FhLAMP detecting from
20 eggs within 190–350 mg spiked faeces.

These results equate to a sensitivity of approximately 83 eggs per gram (EPG) of stool
indicative of high fluke burdens, which is within range of the diagnostic performance for
currently used copromicroscopy methods being LFEC and mini-FLOTAC, with
sensitivities of 96 EPG or greater (Zárate-Rendón et al., 2019). Although the crude
extraction method can detect from 83 EPG compared to FlukeFinder which reports
detection from 5 EPG (Reigate et al., 2021), the FhLAMP reduces total hands-on time and
enables multiple samples to be processed simultaneously, however for zoonotic cases
where sensitivity offered with FlukeFinder is prioritised over throughput, the FhLAMP
may miss low-level infections. In contrast for livestock management in herds or flocks
where fluke burdens of ≥40 are considered the threshold for economic losses in cattle, the
FhLAMP may be suitable to detect high infections and minimise ill-thrift (Vercruysse &
Claerebout, 2001). As such, the extraction of DNA from F. hepatica eggs in the field
warrants further investigation to improve the sensitivity of any field-based nucleic
amplification technique.

An additional source of amplifiable DNA from faeces could be cell-free DNA through
tegumental sloughing and degraded or non-viable metacercariae and/or eggs as adult
flukes reside in host biliary ducts producing eggs that are shed through faeces (Cameron
et al., 2017; Wilson et al., 2011). The cumulative presence of cell-free DNA, eggs and
metacercariae in infected animals is likely sufficient for the positive detection of F. hepatica
DNA despite low or no egg counts from F. hepatica DNA being shed, supported by
Martínez-Valladares & Rojo-Vázquez (2016) reporting positive LAMP detection of
F. hepatica DNA 1 week post-challenge from faecal samples, before fluke maturation and
egg production have occurred.

While our study was unable to assess whether F. hepatica free DNA could be detected
from fluke positive faecal samples, our results from the faecal gDNA spiking suggest that
the FhLAMP presented here can detect free F. hepatica DNA from a final concentration of
at least 2.49 × 10−1 ng/µL F. hepatica gDNA in 500 µL unpurified faecal contents further
diluted 1/50, with amplification recorded in under 12 min.

A second sampling method using environmental water samples was used for the
detection of free DNA shed by the parasite in the environment, referred to as
environmental DNA (eDNA). The source of this DNA could be from eggs contained in
faeces washed into water sources including shallow puddles known to harbour F. hepatica
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transmitting snails, delvers, or troughs, therefore possibly harbouring the aquatic
developmental stages of F. hepatica being miracidia, sporocysts, rediae, cercariae, or
metacercariae (Young et al., 2010). Though this does not differentiate between life stages, it
is still a useful indicator of recent fluke presence in the environment as eDNA is short-lived
and rapidly deteriorates, with degradation reported at the time of collection, or within days
of species removal from the environment (Renshaw et al., 2015; Wood et al., 2020).
Further, conventional eDNA sampling is generally processed using large volumes
exceeding 500 mL through a vacuum-manifold pump in addition to the requirement of
time-consuming DNA clean-up methods which necessitate a central laboratory for sample
processing using either costly spin-column kits, or carcinogenic reagents for
phase-separation such phenol:chloroform:isoamyl alcohol for DNA extraction (Djurhuus
et al., 2017).

Here we present a simple method of concentrating DNA from environmental water
samples suitable for use in FhLAMP, amplifying as little as 1 × 10−3 ng/µL F. hepatica
gDNA back calculated from 250 mL spiked moat water, partially filtered. Though the
sensitivity in this study is ten-fold less than the results obtained by qPCR in Rathinasamy
et al. (2021), reported as 1 × 10−4 ng/µL, filtering greatly reduced processing time to less
than 15 min for five water samples irrespective of starting volume (50 or 250 mL), down
from at least 1 h for spin-column or eDNA clean-up methods (Czeglédi et al., 2021;
Rathinasamy et al., 2021). Despite high levels of non-target DNA and DNA polymerase
inhibitors present in freshwater samples, amplification of filtered water samples using
FhLAMP maintained high specificity, correctly amplifying all samples containing
F. hepatica gDNA despite the presence of large invertebrate species known to inhabit
freshwater, including freshwater shrimp, mosquito larvae, midges, and nymphs
(Gooderham & Tsyrlin, 2002; McNally et al., 2013). Additionally, mean F. hepatica
eDNA quantity detected over seven sampling periods in Rathinasamy et al. (2021) was
2.4 × 10−3 ng/µL (2IQR: 9.9 × 10−4 ng/µL). This suggests that the extraction-free method
reported here is sufficient for F. hepatica eDNA sampling, despite partial volumes of
~100 mL of 250 mL spiked samples filtered, with FhLAMP detecting 1 × 10−3 ng/µL using
this crude concentration method.

CONCLUSIONS
We have developed a highly specific and sensitive LAMP assay for detection of F. hepatica
in conjunction with two sampling methods suitable for in-field testing. Faecal sampling
enables the identification of host infection status, whereas the water sampling method
enables the detection of parasite life stages present in the environment. Both methods used
together and in conjunction with FhLAMP are useful for integration into IPM programs
aimed to mitigate disease burden and parasite presence on a property, which will in turn
reduce the use of anthelmintics. Results obtained using this molecular workflow can be
deployed for surveillance of F. hepatica prevalence on a farm in infected animals and/or
around the property. Further in-field studies of both sampling methods are required for
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validation; however, such methods provide an alternative to traditional commercial kit
extractions, greatly reducing both processing time and cost. This is most beneficial to
farming properties and locations where central laboratory access is not feasible and
primarily where Fascioliasis is endemic. Additionally, the methodologies presented here
could be modified for use in other economically important helminth ruminant parasites,
with data generated feeding into IPM approaches to mitigate the economic losses incurred
by helminth infection in livestock.
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