Testing the effectiveness of *rbcLa* DNA-barcoding for species discrimination in tropical montane cloud forest vascular plants (Oaxaca, Mexico) using BLAST, genetic distance, and tree-based methods

Sonia Trujillo-Argueta¹, Rafael F. del Castillo^{Corresp., 2}, Abril Velasco-Murguía¹

¹ CIIDIR Oaxaca, Instituto Politécnico Nacional, Xoxocotlán, Oaxaca, Mexico

² CIIDIR Oaxaca, Instituto Politécnico Nacional, Xoxocotlán, Oaxaca, México

Corresponding Author: Rafael F. del Castillo Email address: fsanchez@ipn.mx

DNA-barcoding is a species identification tool that uses a short section of the genome that provides a genetic signature of the species. The main advantage of this novel technique is that it requires a small sample of tissue from the tested organism. In most animal groups, this technique is very effective. In plants, however, the recommended standard markers, such asrbcLa, may not always work, and their effects remain to be tested in many plant groups, particularly from the Neotropical region. We examined the discriminating power ofrbcLain 55 tropical cloud forest vascular plant species from 38 families (Oaxaca, Mexico). We followed the CBOL criteria using BLASTn, genetic distance, and monophyly tree-based analyses (neighbor-joining, NJ, maximum likelihood, ML, and Bayesian inference, BI).*rbcLa*universal primers amplified 69% of the samples and yielded 91.30% bi-directional sequences. Sixty-three newrbcLasequences were established. BLAST discriminates 80.8% of the genus but only 15.4% of the species. Genetic distances amongQuercus, Oreopanax, and Daphnopsis species were nil. Contrastingly, Ericaceae (5.6%), Euphorbiaceae (4.6%), and Asteraceae (3.3%) species displayed the highest within-family genetic distances. According to the most recent angiosperm classification, NJ and ML trees successfully resolved (100%) monophyletic species. ML trees showed the highest mean branch support value (87.3%). Only NJ and ML trees could successfully discriminateQuercusspecies belonging to different subsections: *Quercus martinezii* (white oaks) from *Q. callophylla* and *Q. laurina*(red oaks). The ML topology could distinguish species from the Solanaceae clade that the best BLAST match could not. Also, the BI topology showed a polytomy in this clade, and the NJ tree displayed low-support branch values. We do not recommend genetic-distance approaches for species discrimination. More published *rbcLa* sequences are necessary for BLAST to be more effective. Instead, the ML tree-based analysis displays the highest species discrimination among the tree-based analyses. With the ML topology in PeerJ reviewing PDF | (2022:04:72503:0:1:NEW 7 Apr 2022)

selected genera,*rbcLa*helped distinguish infrageneric taxonomic categories, such as subsections, grouping affine species within the same genus, and discriminating species in most cases. Since the ML phylogenetic tree could discriminate 48 species out of our 55 studied species, we recommend this approach to resolve tropical montane cloud forest species using*rbcLa*, as an initial step and improving DNA amplification methods.

1	
2 3 4	"Testing the effectiveness of <i>rbcLa</i> DNA-barcoding for species discrimination in tropical montane cloud forest vascular plants (Oaxaca, Mexico) using BLAST, genetic distance, and tree-based methods"
5	
6	
7	Sonia Trujillo-Argueta ¹ , Rafael F. del Castillo ¹⁺ and Abril Velasco-Murguía ¹ .
8	¹ Instituto Politécnico Nacional, CIIDIR, Oaxaca de Juárez, Oaxaca, México.
9	
10	Corresponding Author:
11	Rafael F. del Castillo
12	Hornos 1003, Sta. Cruz Xoxocotlán, Oaxaca, 71230, México
13	Email address: fsanchez@ipn.mx
14	
15	

16 Abstract

- 17 DNA-barcoding is a species identification tool that uses a short section of the genome that
- 18 provides a genetic signature of the species. The main advantage of this novel technique is that it
- 19 requires a small sample of tissue from the tested organism. In most animal groups, this technique
- is very effective. In plants, however, the recommended standard markers, such as *rbcLa*, may not
 always work, and their effects remain to be tested in many plant groups, particularly from the
- 22 always work, and then effects remain to be tested in many plant groups, particularly nom the
 22 Neotropical region. We examined the discriminating power of *rbcLa* in 55 tropical cloud forest
- vascular plant species from 38 families (Oaxaca, Mexico). We followed the CBOL criteria using
- 24 BLASTn, genetic distance, and monophyly tree-based analyses (neighbor-joining, NJ, maximum
- 25 likelihood, ML, and Bayesian inference, BI). *rbcLa* universal primers amplified 69% of the
- samples and yielded 91.30% bi-directional sequences. Sixty-three new *rbcLa* sequences were
- established. BLAST discriminates 80.8% of the genus but only 15.4% of the species. Genetic
- 28 distances among *Quercus, Oreopanax*, and *Daphnopsis* species were nil. Contrastingly,
- 29 Ericaceae (5.6%), Euphorbiaceae (4.6%), and Asteraceae (3.3%) species displayed the highest
- 30 within-family genetic distances. According to the most recent angiosperm classification, NJ and
- 31 ML trees successfully resolved (100%) monophyletic species. ML trees showed the highest
- mean branch support value (87.3%). Only NJ and ML trees could successfully
- 33 discriminate *Quercus* species belonging to different subsections: *Quercus martinezii* (white oaks)
- from *Q. callophylla* and *Q. laurina* (red oaks). The ML topology could distinguish species from
- the Solanaceae clade that the best BLAST match could not. Also, the BI topology showed a
- 36 polytomy in this clade, and the NJ tree displayed low-support branch values. We do not
- 37 recommend genetic-distance approaches for species discrimination. More published *rbcLa*
- sequences are necessary for BLAST to be more effective. Instead, the ML tree-based analysis
- displays the highest species discrimination among the tree-based analyses. With the ML
- 40 topology in selected genera, *rbcLa* helped distinguish infrageneric taxonomic categories, such as
- subsections, grouping affine species within the same genus, and discriminating species in most
- 42 cases. Since the ML phylogenetic tree could discriminate 48 species out of our 55 studied
- 43 species, we recommend this approach to resolve tropical montane cloud forest species
- 44 using *rbcLa*, as an initial step and improving DNA amplification methods.
- 45

46 Introduction

- 47 A biodiversity inventory is crucial as a first step to protecting species and ecosystems. A
- 48 significant portion of global biodiversity remains unnamed. Recent estimations indicate that 8.7
- 49 million species of multicellular organisms occur on Earth, but about 20% of those species have
- 50 been described using morphological approaches since 1750 (Centre for Biodiversity Genomics,
- 51 CBG, 2021). Thus, it is urgent to speed up the species identification process (Hvistendahl, 2021).
- 52 DNA barcoding was recently proposed to identify species using short-standardized sequences
- and only requires a small sample of tissue (Hebert et al., 2003). Cytochrome oxidase 1(CO1)
- 54 successfully discriminates against many animal species but does not resolve plant species. The
- 55 Consortium for the Barcode of Life's (CBOL) plant working group evaluated several plastid
- 56 DNA regions based on universality, sequence quality, and species discrimination, recommending

- using a core of a 2-locus combination of partial genes rbcLa + matK as the plant barcode (Group
- 58 C Hollingsworth et al., 2009). Such a universality has not been found in all plant groups, and
- 59 other studies suggest using additional loci (Kress & Erickson, 2007; Fasekas et al., 2008; Pang et
- al., 2012; China plant B Li et al., 2011). Moreover, *matK* may work very well for species of
- orchids (Lahaye et al., 2008) but not for certain fern groups (Trujillo-Argueta et al., 2021).
- 62 Furthermore, in some angiosperm genera, such as *Salix* (Percy *et al.*, 2014)
- and *Quercus* (Piredda et al., 2011), plastid markers might not work at all.
- 64 On average, the resolution of the tested DNA barcoding markers for plants is not as high as
- barcode markers used for many animal groups (CBOL Plant Working Group, 2009; Fazekas et
- al., 2008). Of the possible plant markers, *rbcLa* appears to be one of the best available. Although
- 67 far from perfect, the resolution of *rbcLa* was shown to be better than those tested in arid plants in
- the United Arab Emirates (Maloukh et al., 2017) and Saudi Arabia (Bafeel et al., 2012).
- 69 Also, *rbcLa* can be a valuable tool to identify species in conditions in which other methods are
- 70 impractical. For instance, this marker was successfully used for studying the patterns of root
- 71 diversity in old-field communities in Ontario, Canada (Kesanakurti et al., 2011). This kind of
- research is encouraging, but more studies are needed to explore the resolution potential of this
- marker for species in ecosystems other than those of temperate regions. The Neotropics are
- considered the richest region in biodiversity (Gaston & Williams 1996; Thomas 1999). However,
- some ecosystems in the neotropics have been little explored regarding DNA barcode studies. The
- 76 available studies are often limited to a few plant groups such as orchids (Lahaye et al., 2008) or
- 77 ferns (Nitta, 2020; Trujillo-Argueta et al., 2021).
- 78 In Mexico, the tropical montane cloud forest (TMCFs) is a top priority ecosystem for
- 79 conservation due to its high diversity, endemism richness, and anthropogenic threats (Villaseñor,
- 2010; Toledo-Aceves et al., 2011). However, local DNA barcoding needs to be developed. This
- study aims to evaluate the performance of the plant core DNA barcode *rbcLa* using universal
- 82 primers for vascular plants and without using other markers in a tropical montane cloud forest of
- the Mixteca Baja, Oaxaca, Mexico. We followed the three above-mentioned CBOL criteria and
- 84 built a barcode library of native plant species for this region.
- 85

86 Methods

- 87
- 88 Species this study and study site
- 89 One hundred samples of plants belonging to different families were collected in a tropical
- 90 montane cloud forest at San Miguel Cuevas, Santiago Juxtlahuaca Municipality, Oaxaca, Mexico
- 91 (17°15'00.96" N, 98°02'57.34", centroid coordinates). The climate in this area is semi-humid,
- 92 temperate to semi-warm (1382 mm and 16.8 C, mean annual precipitation and temperature,
- 93 Fernandez-Eguiarte et al., 2020), with soils rich in organic matter (Instituto Nacional de
- Estadística y Geografía, 2005), and a mean altitude of 2187m. The municipal council of San
- 95 Miguel Cuevas granted permission to conduct our field studies on their lands. Two
- commissioners of the communal property of this municipality, Mr. Pedro Gil (2017- July 2018)
- and Mr. Damián Domínguez (July 2018 June 2019), were directly responsible for such

98 permissions. Mr. Heladio Luna Rodríguez, a San Miguel Cuevas Community local authority

- 99 member, supervised, guided, and helped us throughout the field trips. In no case was the entire
- 100 plant collected. Collecting the samples did not kill the plants, which were left alive in their
- 101 original places. Based on The International Union for Conservation of Nature (IUCN) Red List
- 102 (accessed December 19th, 2021) from all 55 species in this study, more than half (57.7%) were
- 103 not previously registered (Data Deficit DD); 43.6% belong to the Least Concern (LC) category.
- 104 Also, *Daphnopsis tuerckheimiana* holds the status of Near Threatened (NT); and *Oreopanax*
- sanderianus, that of Vulnerable species (VU).
- 106 Plant vouchers were determined by the following specialists: Daniel Tejero-Díez, UNAM FES
- 107 Iztacala, México, lycopod and ferns; Sergio Zamudio, Institute of Ecology, Veracruz, México,
- 108 Berberidaceae; Rafael F. del Castillo, IPN CIIDIR Oaxaca, Mexico, Pinaceae; Jesús Guadalupe
- 109 González Gallegos, University of Guadalajara, Mexico, Lamiaceae; Socorro González Elizondo,
- 110 IPN CIIDIR Durango, Mexico, Cyperaceae and Ericaceae; Susana Valencia Avalos, UNAM
- 111 Facultad de Ciencias, Mexico, Fagaceae; J.R. Kuethe, University of Auckland, New Zealand,
- 112 Passifloraceae; and Rufina García, Abril Velasco-Murguía and Rafael F. del Castillo, IPN
- 113 CIIDIR Oaxaca, Mexico, the rest of the specimens. The herbarium vouchers were deposited at
- the herbarium of CIIDIR Oaxaca, Instituto Politécnico Nacional (OAX), pending for registration
- numbers due to the pandemic crisis. The species and their IUCN Red List Status are shown on
- 116 Table 1.
- 117
- 118 DNA amplification and sequencing
- 119 Several fresh leaves from each sampled plant were collected and placed in a Ziplock® bag. The
- 120 samples were kept at -20°C in a freezer until processed. The number of samples collected per
- 121 taxon was one and occasionally two.
- Genomic DNA was extracted from 2mg leaf tissue with FastDNA SPIN kit and FastPrep® (MP
 Biomedicals, USA) equipment.
- 124 DNA concentration $(ng/\mu l)$ and purity (260/280A) from the genomic DNA extracted were
- measured with a Biophotometer (Eppendorf®). Plant core barcoding partial gene rbcLa was
- 126 used for amplification. We used standard primers from the Canadian Center for DNA Barcoding
- 127 (CCDB) (Kuzmina, 2011), rbcLa-F ATGTCACCACAAACAGAGACTAAAGC (Tate &
- 128 Simpson, 2003) and rbcLa-R GTAAAATCAAGTCCACCRCG (Kress & Erickson, 2007).
- 129 rbcLa was amplified using a 25μ L volume of reaction mixture: 15.8 μ L of nuclease-free water, 5
- 130 μ l MyTaq Buffer reaction (kit MyTaqDNA Polymerase Bioline), 1 μ L of forward primer, 1 μ L of
- 131 reverse primer, 0.2 μ L of MyTaq Polymerase and 2 μ L of isolated genomic DNA template. PCR
- 132 reaction was carried out using an Applied Biosystems Veriti® thermocycler. We followed
- 133Fasekas et al. (2012) protocols for rbcLa amplification. The PCR temperature cycling program
- 134 was: 94°C for 4 min; 35 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 1 min; final extension
- 135 of 72°C for 10 min. Amplified PCR products were detected using agarose gel electrophoresis
- 136 (1.2 % agarose gel TBE) under UV light by staining with GelRed Nucleic Acid (Biotium). PCR
- 137 products were purified using the EZ-10 Spin Column PCR Products Purification Kit (Biobasic).

- 138 All PCR products were sequenced by Capillary Electrophoresis Sequencing (CES) in an ABI
- 1393130xl Genetic Analyser at the Laboratorio Bioquímica Molecular UBIPRO FES Iztacala
- 140 UNAM and with an AB3730 at the Laboratorio de Servicios Genómicos LANGEBIO-
- 141 CINVESTAV.
- 142
- 143 DNA Alignment
- *rbcLa* sequence chromatograms were manually edited and assembled into contigs using
- 145 CodonCode Aligner v.9.0.1 http://www.codoncode.com/aligner. Consensus sequences were
- 146 generated and aligned using MUSCLE (Edgar, 2004). These alignments were examined by eye
- 147 and corrected when necessary.
- 148
- 149 BOLD and Genebank
- 150 Our study was registered under the name "Diversity of a humid temperate forest in Oaxaca,
- 151 Mexico" project code DVHTF at The Barcode of Life Data System (BOLD,
- 152 http://www.boldsystems.org). BOLD is a bioinformatics workbench devoted to acquiring,
- storing, analyzing, and publishing DNA barcode records (Ratnasingham & Hebert, 2007). Three
- 154 files were included in the metadata submitted to BOLD: 1) Specimen data file including detailed
- voucher information, scientific names of the taxa sampled, collection dates, geographical
- 156 coordinates, elevation, collectors, identifiers, and habitat. 2) An image file was submitted with
- 157 high-quality specimen images from each plant. 3) A trace file was submitted along with primers
- and the direction of sequences. Sequences uploaded to BOLD were edited and aligned in
- 159 FASTA format and referenced by Sample IDs. Sequences were also submitted to the GenBank.
- 160
- 161 Species differentiation
- 162 To evaluate species discrimination using rbcLa sequences, we used three approaches:
- a) The Basic Local Alignment Search Tool for nucleotide (BLASTn) method (Altschul et al.
- 164 1990), which searches against the sequence database available online by the National Center for
- 165 Biotechnology Information (NCBI) https://www.ncbi.nlm.nih.gov. Identification at the genus
- 166 level was considered successful when all hits with the maximum percent identity scores >99%
- 167 involved a single genus. Species identification was considered successful only when the highest
- 168 maximal percent identity included a single species and scored >99% (Abdullah, 2017; Bafeel et
- 169 al., 2012).
- b) Genetic divergence. Interspecific and intraspecific distances were analyzed in MEGAX
- 171 (Kumar et al., 2018). Genetic distance was inferred from 1000 replicates, and the evolutionary
- distances were computed using the Kimura 2-parameter method with gaps/missing data
- treatment adjusted using pairwise deletion. The genetic distances (%) of families, genera, and

species were analyzed in the Barcode of Life Data Systems (BOLD, www.boldsystems.org) 174

- (Ratnasingham & Hebert 2007). 175
- c) Monophyly tree-based analyses using Neighbor-Joining (NJ), Maximum Likelihood (ML), 176
- and Bayesian Inference (BI) analysis. 177

NJ was analyzed in MEGAX (Kumar et al., 2018) inferred from 1000 replicates, and the 178

evolutionary distances were computed using the Kimura 2-parameter method with gaps/missing 179

- data treatment adjusted using pairwise deletion. ML analyses were run on the IQ-TREE web 180 server (http://igtree.cibiv.univie.ac.at). Internal node support and bootstrap analyses were 181
- calculated using 1000 iterations. Tree inference using Bayesian analysis was run on MrBayes 182
- 3.2.2 on XSEDE via the CIPRES supercomputer cluster (www.phylo.org) for 10 million 183
- generations. The resultant ML and BI trees were visualized in the interactive Tree of Life 184
- (iTOL) (Letunic & Bork 2019). We evaluated which of the tree-based methods (NJ, ML, and 185
- MB) recovered more monophyletic species with a bootstrap/posterior probabilities support of 186
- >70% (de Groot et al., 2011). 187
- 188

Results 189

190

DNA Amplification and sequencing success 191

192

We could successfully amplify 69% of the botanical samples collected. We studied 38 families, 193 194 of which 27 had one species and 11 families 2 to 5 species (Table 1). Of the 55 studied species, 29.1% were herbs, and 70.9% were trees and shrubs. From this subset, we could obtain high-195 quality bidirectional sequences (>250bp) in 91.3% of the species, using the standard primers of 196

- the CCDB for the *rbcLa* barcode. 197
- 198

BLAST 199

200

Using BLASTn, we obtained 100% resolution in all the 38 families studied and 80.8% in 48 201

genera. Only 47.3% of our 55 studied species were previously registered in the *rbcLa* sequences 202

of the GenBank database (Figure 1). We also contributed to 13 new species in the GenBank 203

Taxonomy Database. These species were not previously registered for any other gene sequence. 204

- With the available accessions at the GenBank, we found that *rbcLa* can unambiguously 205
- discriminate only 15.4% of the studied species at the species level (Figure 1). Just four 206
- 207 species, Monnina xalapensis, Cnidoscolus aconitifolius, Iresine diffusa, and Lophosoria
- quadripinnata, were found to best BLAST match to a single species with more than 99% 208
- identity. Most of our *rbcL* sequences matched from 2-12 species with >99% maximal percent 209 identity; and seven species, Alnus acuminata, Solanum hispidum, Quercus laurina, Quercus
- 210
- callophylla, Pinus montezumae, Osmanthus americanus, and Physalis phyladelphica, matched 211 the *rbcL* sequences in the GenBank with >30 different species. The best BLAST match
- 212 213 identifications per species for the *rbcLa* plastid barcode are shown in Table 2.
- 214

- 215 A specimen data file, image file, and trace file(s) were submitted to BOLD along with edited and
- aligned sequences for each of our 63 botanical samples (55 species and eight different
- 217 duplicates) and can be accessed through the BOLD DNA database (http://www.boldsystems.org)
- 218 under the 'DVHTF' project. Sixty-three sequences were obtained in this study for *rbcLa*, BOLD
- 219 Process ID, and GenBank Accession numbers (Table 1).
- 220
- 221 *Genetic divergence*
- 222
- 223 The distribution of intra- and interspecific K2P distances across all taxon pairs of our 55 species
- of plants of The Mixteca Baja, Oaxaca, tropical montane cloud forest, obtained from partial
- gen *rbcLa* are shown in Figure 2. Mean pairwise genetic distance within species was 0, within
- genus 0.65 ± 0.07 , and 1.76 ± 0.03 within families. Congeneric species
- 227 of *Quercus*, *Daphnopsis*, and *Oreopanax* did not show genetic divergence.
- 228 Contrastingly, *Solanum*, *Deppea*, and *Pinus* displayed intergeneric differences (Table 3)
- 229 The mean genetic divergence observed in the studied families with two or more genera is shown
- 230 in Table 4. The highest mean divergence values were observed in the Ericaceae, Euphorbiaceae,
- and Asteraceae families.
- 232
- 233
- 234 *Monophyly tree-based analyses*
- 235
- 236 Phylogenetic tree-based analysis using Neighbor-Joining (Supplementary Fig.S1), Maximum
- 237 Likelihood (Figure 3), and Bayesian Inference tree (Supplementary Fig.S2) were reconstructed
- 238 to evaluate our 55 species discrimination using the rbcLa barcode region. In all cases, ferns and
- lycopodium were used as outgroups. These tree-based methods evaluated which tree renderedthe greatest species resolution and whether the barcode sequences generated monophyletic
- the greatest species resolution and whether the barcode sequences generated monophyletic
 species (Table 5). NJ and ML phylogenetic trees resolved 100% of monophyletic species
- using rbcLa. Nevertheless, the clade support value > 70% with a bootstrap of 1000 replicates
- 243 yielded the most robust phylogeny in the ML tree (87.3%) than the one obtained in the NJ tree
- 244 (70.9%). Therefore, we present the ML phylogenetic tree (Figure 3). Although the BI tree
- showed the highest clade support value (92.7%), this tree did not resolve all 55 species as
- 246 monophyletic species. Two polytomies were observed in the clade of the Quercus species and
- the Solanaceae clade (Supplementary Fig. S2).
- 248
- 249

250 Discussion

- 251 Our study reveals the advantages and limitations of the *rbcLa* barcode region for species
- 252 identification of vascular plant species of a neotropical montane cloud forest. First, the
- amplification success was not universal, but bi-directional sequencing was highly successful
- when feasible. BLAST identification at the genus level is accurate in most cases but usually not
- 255 for species identification. Finally, in selected genera, this marker helped distinguish infrageneric
- 256 taxonomic categories, such as subsections, and helps to group affine species within the same
- 257 genus. Below, we discuss in detail these issues.
- 258
- 259 Multiple factors can cause the absence of DNA amplification in some samples. Since we could
- amplify *rbcLa* in several species, the possibilities of methodological failures or problems with

Peer. J

the reactants or the lab equipment used are unlikely. One possible cause of the amplification 261 failure is DNA degradation in some samples, as those were collected in the field and brought to 262 the lab. During this time, the tissues may become degraded in some species. This appears to be a 263 plausible explanation for cases in which DNA from tissue samples was successfully amplified in 264 one individual but not in another of the same species. This is the case of *Solanum nigricans* (this 265 study) and Dryopteris wallichiana, which could not be amplified in this study but were 266 successfully amplified in a previous study using samples from different plants (Trujillo-Argueta 267 et al., 2021). Another possibility is that the pair of *rbcLa* universal premiers used may not work 268 for certain species. Our *rbcLa* amplification success (69%) could be increased using the 269 alternative set of universal primers proposed by CCDB for gene barcode *rbcL*. 270 271 Our sequencing success (91.30%) was high and similar to those reported in other works. In a 272 study of root diversity patterns using plastid gene rbcL, Kesanakurti et al. (2011) registered 96% 273 amplification success with 85% sequencing success. In another study that identified Sicily's most 274 threatened plant taxa, the amplification and sequencing successes were 96% and 95%, 275 respectively (Giovino et al., 2016). In a study of the temperate flora of Canada, the use 276 277 of *rbcLa* gave a 91.4% sequencing success (Burgess et al., 2011). Our BLAST results were higher for genus discrimination (80.77%) than the values obtained for

- 278
- species differentiation (15.38%). Results from other regions and species are variable. For 279
- 280 example, in wild, arid plants, discrimination at genus and species levels were lower than ours:
- 281 50% and 8%, respectively (Bafeel et al., 2012), but higher in a comprehensive study of the local
- flora of Canada (91% and 44%, Braukmann et al., 2017). In a study of threatened species of 282
- Sicily, the discrimination at the genus level was lower (52%) but higher at the species level 283
- (48%) than our results (Giovino et al., 2016). The peculiarities of the biology of the studied 284 species may also account for the observed discrimination variability. Part of our low percent 285
- species discrimination results using BLASTn can be explained by low marker resolution, as was 286
- noticed in those species that matched their *rbcLa* sequence with more than 30 different species in 287
- the GenBank database (Alnus acuminate, Solanum hispidum, Quercus laurina, Quercus 288
- callophylla, Pinus montezumae, Osmanthus americanus and Physalis phyladelphica). Another 289
- explanation is misidentified voucher specimens in public DNA databases, an issue that several 290
- authors have acknowledged (e.g., Abdullah, 2017; Burguess et al., 2011). Since it is customarily 291
- to describe species based on morphological characteristics, it is possible that hybridization and 292
- 293 polyploidy, which are common in plants, may contribute to decreasing barcoding species 294 discrimination (Hollinsworht, 2011; Fasekas et al., 2008). Since more than half of the species in
- this study (52.72%) lacked comparative data in the GenBank database, it is necessary to increase 295
- the DNA barcode database, particularly for tropical wild plant species. Indeed, we contributed to 296
- new 63 rbcLa sequences to BOLD, its metadata, and the GenBank database. Although 42 of our 297
- species already had a *rbcLa* sequence on the GenBank database, new records on these species 298
- 299 might help discover new haplotypes or geographical variants (Hajibabaei et al., 2007). Even
- if *rbcLa* does not have high species discrimination, it does for genus discrimination, which for 300
- some ecological studies might be enough (e.g., Kesanakurti et al., 2011). 301
- 302
- Our distribution of intra- and interspecific genetic divergence (Figure 2) agrees with the premise 303
- that a DNA barcode must exhibit high interspecific but low intraspecific divergence (Lahaye et 304
- 305 al., 2008). The percent interspecific divergence of this study (0.65) is similar to those reported in
- other hotspot diversity areas such as the Mediterranean Basin (0.89) (Giovino et al., 2016) and 306

307 Southern Africa (0.82) (Lahaye et al., 2008). The lack of genetic divergence observed in the

- 308 three genera of trees: *Quercus* (*Q. martinezii*, *Q. laurina, and Q. callophylla*); *Oreopanax* (*O.*
- 309 sanderianus and O. xalapensis), and Daphnopsis (D. selerorum and D. tuerckheimiana) concurs
- with Smith & Donoghue (2008). These authors found that the rates of molecular evolution are
- 311 low in woody plants with long generation times compared to herbs. In the case of oaks
- 312 (*Quercus*), several attempts have been made to identify species in Italy, using different plastid 313 barcodes without success since hybridization and polyploidy are expected to be high in this
- barcodes without success since hybridization and polyploidy are expected to be high in this
 group (Piredda et al., 2011). Null genetic divergence obtained in *Oreopanax* and *Daphnopsis*
- 314 group (Thedda et al., 2011). Null generic divergence obtained in *Oreopanax* and *Daphnopsis* 315 (Table 3) is of concern since *Oreopanax sanderianus* and *Daphnopsis tuerckheimiana* are on the
- red list of IUCN. The highest values of genetic distance found in the Ericaceae (5.57%),
- 317 Euphorbiaceae (4.59%), and Asteraceae (3.3%) families that hold many herbs and shrubs species
- agree with the assumption that *the rbcLa* barcode has a better species differentiation for non-tree
- 319 species. Moreover, a study conducted in a subalpine forest in Southwest China found a better
- 320 DNA barcode resolution for herbs than for tree species (Tan et al., 2018). However, more studies
- are needed to confirm this trend in other species and localities.
- 322
- 323 The phylogenetic arrangements found in our study using barcode *rbcLa* concur with the recent
- 324 Angiosperm Phylogeny Group classification (APG IV) of flowering plants (The Catalog of Life
- Partnership, 2017). The percent monophyletic species resolution obtained in this study using NJ
- 326 (100%), ML (100%), and BI (85.45%) phylogenetic trees, was higher compared to 17% of
- species resolution found in arid wild plants using ML trees (Bafeel et al., 2012), barcoding the
- biodiversity of Kuwait (58%) using NJ trees (Abdullah, 2017) and the 71.8% registered in two
- biodiversity hotspots of Mesoamerica and Southern Africa, using ML and BI trees (Lahaye et al.,
- 2008). Our ML phylogenetic tree showed the most robust phylogeny (87.27%), *Ocotea*
- 331 helicterifolia, Quercus callophylla, Quercus laurina, Iresine difussa, Berberis lanceolata,
- 332 Moussonia deppeana, and Osmanthus americanus, could not be resolved as monophyletic
- species with a clade bootstrap support value $\geq 70\%$.
- 334 Most of these species are trees in agreement with the assumption that rates of molecular
- evolution are low in woody plants compared to herbs (Smith & Donoghue, 2008). For those
- species that could not be differentiated with the ML tree, we suggest the addition of a secondbarcode.
- 338
- 339 Species discrimination can be improved by using tree-based phylogenetic methods rather than
- 340 BLAST analysis and genetic distance approaches. For instance, using NJ and ML phylogenetic
- 341 trees, it was possible to differentiate *Quercus martinezii* from *Q. laurina* and *Q.*
- 342 *callophylla* (Supplementary Fig.S1, Figure 3) despite unsuccessful best BLAST matches and the
- 343 null genetic divergence observed in *Quercus*. Based on an updated infrageneric classification of
- the oaks (Denk et al., 2017), Q. martinezii belongs to the white oaks (subsection Quercus),
- 345 while *Q. callophylla* and *Q. laurina* belong to the red oaks (subsection *Lobatae*). In
- 346 the Solanaceae family, three out of the five studied species (*Physalis philadelphica, Solanum*
- *hispidum*, and *Solandra maxima*) share high similitude with at least 30 species using the best
- 348 BLAST match results. Furthermore, using our best BI tree, we observed a polytomy in
- the *Solanaceae* clade (Supplementary Fig.S2), and a low discrimination value in the NJ tree.
- 350 However, these species could be resolved with our ML phylogenetic tree. Taxonomic species are
- usually described based on morphological characteristics that can easily be altered by local
- adaptation, phenotypic plasticity, or neutral morphological polymorphism, which may cause a

single variable species to be classified as many species (e.g., Gemeinholzer & Bachmann, 2005).

- 354 On the other hand, very recent divergence and little differentiation might contribute to the
- inability of barcoding to separate species in some cases (Birch et al., 2017).
- 356 357

358 Conclusions

359

DNA barcoding using *rbcLa* can be a promising identification tool primarily at the family and
genus level for vascular plant species of the neotropical montane cloud forest. We identify three
major problems with the use of this technique. First, the lack of a universal amplification
capability is probably associated with DNA degradation in some cases, but without ruling out
other factors requiring further study. Second, the inability to detect certain morphological species
is probably not related to *rbcLa* itself but to biological (e.g., polyploidy and hybridization) and

- technical (misidentifications or taxonomic misclassifications) problems. Third, the few available
- 367 registers in the BOLD and GenBank databases (more than half of our species, 52.72%, did not
- have previous *rbcLa* sequence records). Indeed, we contributed new 13 species to the GenBank
- 369 Taxonomy Database and 63 new sequences for *rbcLa* in BOLD and GenBank. We found
- 370 preliminary evidence suggesting that the ability of the marker to discriminate species is not
- 371 randomly distributed among taxa. Herb and shrub species in the Asteraceae, Ericaceae and
- 372 Euphorbiaceae families showed the highest genetic distance using *rbcLa*, which can be helpful to
- 373 distinguish congeneric species. Contrastingly, we detected nil genetic divergence among
- 374 congeneric species in long-lived tree genera, *Quercus, Oreopanax*, and *Daphnopsis*.
- Nonetheless, the accuracy for discriminating species can be substantially improved using tree-
- 376 based analysis. While BLAST and genetic distance approaches could not
- differentiate *Quercus* species, NJ and ML could successfully separate white oaks (*Quercus*
- 378 martinezii) from red oaks (Q. callophylla and Q. laurina). Also, most species in the Solanaceae
- 379 family that showed unsuccessful BLAST results and low genetic distance could be discriminated
- against with ML phylogenetic tree. The ML phylogenetic tree showed the most robust phylogeny
- 381 (87.27%) of all our 55 studied species of the tropical montane cloud forest of San Miguel Cuevas
- in Oaxaca state, Mexico. The establishment of this local barcode database will be valuable for a
- broad range of potential ecological, conservational, and phylogenetic applications.
- 384

385 Acknowledgments

- Raúl Rivera García and Heladio Luna, assisted in field work. We are thankful to San Miguel
- 387 Cuevas Community at Oaxaca State, México, for permitting access to their forest.
- 388
- 389

390 **References**

- Abdullah M T. 2017. Conserving the biodiversity of Kuwait through DNA barcoding the flora.
- 392 D. Phil. Thesis, University of Edinburgh & Royal Botanic Garden Edinburgh.

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
 alignment search tool. Journal of molecular biology, 215(3), 403-410.
- Bafeel, S. O., Arif, I. A., Bakir, M. A., Al Homaidan, A. A., Al Farhan, A. H., & Khan, H. A.
 (2012). DNA barcoding of arid wild plants using rbcL gene sequences. Genet. Mol. Res, 11(3),
 1934-41.
- Birch, J. L., Walsh, N. G., Cantrill, D. J., Holmes, G. D., & Murphy, D. J. (2017). Testing
- efficacy of distance and tree-based methods for DNA barcoding of grasses (Poaceae tribe Poeae)
 in Australia. PLoS One, 12(10), e0186259.
- Braukmann, T. W., Kuzmina, M. L., Sills, J., Zakharov, E. V., & Hebert, P. D. (2017). Testing
 the efficacy of DNA barcodes for identifying the vascular plants of Canada. PLoS one, 12(1),
 e0169515.
- 404 Burgess, K. S., Fazekas, A. J., Kesanakurti, P. R., Graham, S. W., Husband, B. C., Newmaster,
- 405 S. G., ... & Barrett, S. C. (2011). Discriminating plant species in a local temperate flora using the 406 rbcL+ matK DNA barcode. Methods in Ecology and Evolution, 2(4), 333-340.
- CBOL Plant Working Group (2009) A DNA barcode for land plants. Proceedings of the National
 Academy of Sciences of the United States of America, 106, 12794–12797.
- 409 Centre for Biodiversity Genomics, University of Guelph (2021). The Global Taxonomy Initiative
- 2020: A Step-by-Step Guide for DNA Barcoding. Technical Series No. 94. Secretariat of the
 Convention on Biological Diversity, Montreal, 66 pages.
- 412 China Plant, B. O. L. G., Li, D. Z., Gao, L. M., Li, H. T., Wang, H., Ge, X. J., ... & Duan, G. W.
- 413 (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS)
- should be incorporated into the core barcode for seed plants. Proceedings of the National
- 415 Academy of Sciences of the United States of America, 108(49), 19641-6.
- 416 De Groot, G. A., During, H. J., Maas, J. W., Schneider, H., Vogel, J. C., & Erkens, R. H. (2011).
- 417 Use of rbcL and trnL-F as a two-locus DNA barcode for identification of NW-European ferns:
- 418 an ecological perspective. PLoS one, 6(1), e16371.
- 419 Denk, T., Grimm, G. W., Manos, P. S., Deng, M., & Hipp, A. L. (2017). An updated infrageneric
- 420 classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary
- patterns. Oaks physiological ecology. Exploring the functional diversity of genus Quercus L., 1338.
- 423 Doumenge, C.; Gilmour, D.; Ruíz-Pérez, M., and Blockhus, J. 1995. Tropical montane cloud
- 424 forests: conservation status and management issues. In: Hamilton, L. S.; Juvick, J. O., and
- 425 Scatena, F. N., Ed. Tropical Montane Cloud Forests. New York: Springer-Verlag; pp. 24-37.
- 426 Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
- 427 throughput. Nucleic acids research, 32(5), 1792-1797.

- 428 Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband,
- B. C., ... & Barrett, S. C. (2008). Multiple multilocus DNA barcodes from the plastid genome
 discriminate plant species equally well. PloS one, 3(7), e2802.
- 431 Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G., & Hollingsworth, P. M. (2012). DNA
- 432 barcoding methods for land plants. In DNA barcodes (pp. 223-252). Humana Press, Totowa, NJ.
- 433 Fernandez-Eguiarte A., Zavala-Hidalgo, J., Romero-Centeno, R., 2020. Atlas Climático
- 434 Digital de México (versión 2.0). Centro de Ciencias de La Atmósfera. Universidad
- 435 Nacional Autónoma de México. Servicio Meteorológico Nacional, Comisión Nacional
- 436 Del Agua. http://atlasclimatico.unam.mx/atlas/kml/ (accessed 13 March 2020).
- 437
- 438 Gaston, K. J. and Williams, P. H. 1996. Spatial patterns in taxonomic diversity. In: Gaston, K. J.
- Biodiversity: A biology of numbers and difference. Oxford, UK: Blackwell Science, Limited202-229.
- 441 Gemeinholzer, B., & Bachmann, K. (2005). Examining morphological and molecular diagnostic
- 442 character states of Cichorium intybus L.(Asteraceae) and C. spinosum L. Plant Systematics and
- 443 Evolution, 253(1), 105-123.
- 444 Giovino, A., Marino, P., Domina, G., Scialabba, A., Schicchi, R., Diliberto, G., ... & Scibetta, S.
- 445 (2016). Evaluation of the DNA barcoding approach to develop a reference data-set for the
- threatened flora of Sicily. Plant Biosystems-An International Journal Dealing with all Aspects of
- 447 Plant Biology, 150(4), 631-640.
- Group, C., Hollingsworth, P.W. et al. A DNA barcode for land plants. Proc. Natl. Acad. Sci.
 USA, 106 31, 12794-12797 (2009).
- 450 Hajibabaei, M., Singer, G. A., Hebert, P. D., & Hickey, D. A. (2007). DNA barcoding: how it
- 451 complements taxonomy, molecular phylogenetics and population genetics. TRENDS in
- 452 Genetics, 23(4), 167-172.
- 453 Hebert, P. D., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications
- through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological
 Sciences, 270(1512), 313-321.
- Hollingsworth, P. M. (2011). Refining the DNA barcode for land plants. Proceedings of theNational Academy of Sciences, 108(49), 19451-19452.
- Hvistendahl, M. (2021). A Tale of Two Worlds. Scientific American Special Edition, The age of
 humans 30 (4), 37-41.
- 460 Instituto Nacional de Estadística y Geografía (INEGI), 2005. Prontuario de Informaci'on
- 461 Geogr'afica Municipal de los Estados Unidos Mexicanos: Santiago Juxtlahuaca,
- 462 Oaxaca. http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_
- 463 geograficos/20/20469.pdf (accessed 20 March 2020).
- 464

- 465 Kesanakurti, P. R., Fazekas, A. J., Burgess, K. S., Percy, D. M., Newmaster, S. G., Graham, S.
- W., ... & Husband, B. C. (2011). Spatial patterns of plant diversity below-ground as revealed by
 DNA barcoding. Molecular Ecology, 20(6), 1289-1302.
- Kress, W. J., & Erickson, D. L. A two-locus global DNA barcode for land plants: the coding
 rbcL gene complements the non-coding trnH-psbA spacer region. PLoS one 2 6, e508 (2007).
- 470 Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular
- evolutionary genetics analysis across computing platforms. Molecular biology and evolution,35(6), 1547.
- 473 Kuzmina M.L. 2011. Canadian Center for DNA Barcoding (CCDB) Protocols. Primers sets for
- 474 plants and fungi. Available: http://www.dnabarcoding.ca
- 475 Lahaye, R., Van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., ... & Savolainen,
- 476 V. (2008). DNA barcoding the floras of biodiversity hotspots. Proceedings of the National
- 477 Academy of Sciences, 105(8), 2923-2928.
- Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new
 developments. Nucleic acids research, 47(W1), W256-W259.
- 480 Maloukh, L., Kumarappan, A., Jarrar, M., Salehi, J., El-Wakil, H., & Rajya Lakshmi, T. V.
- (2017). Discriminatory power of rbcL barcode locus for authentication of some of United Arab
 Emirates (UAE) native plants. 3 Biotech, 7(2), 1-7.
- 483 Nitta, J. H. (2008). Exploring the utility of three plastid loci for biocoding the filmy ferns
 484 (Hymenophyllaceae) of Moorea. Taxon, 57(3), 725-736.
- 485 Pang, X., Liu, C., Shi, L., Liu, R., Liang, D., Li, H., ... & Chen, S. (2012). Utility of the trnH-
- psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis.
 PloS one, 7(11), e48833.
- 488 Percy, D. M.; Argus, G. W.; Cronk, Q. C.; Fazekas, A. J.; Kesanakurti, P. R.; Burgess, K. S.;
- 489 Husband, B. C.; Newmaster, S. G.; Barrett, S. C. H., and Graham, S. W. 2014. Understanding
- 490 the spectacular failure of DNA barcoding in willows (Salix): Does this result from a trans-
- 491 specific selective sweep? Molecular Ecology 23:4737-4756.
- Piredda, R., Simeone, M. C., Attimonelli, M., Bellarosa, R., & Schirone, B. (2011). Prospects of
 barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity.
 Molecular ecology resources, 11(1), 72-83.
- 495 Ratnasingham, S., & Hebert, P. D. (2007). BOLD: The Barcode of Life Data System
- 496 (http://www.barcodinglife.org). Molecular ecology notes, 7(3), 355-364.
- 497 Smith, S. A., & Donoghue, M. J. (2008). Rates of molecular evolution are linked to life history
- 498 in flowering plants. science, 322(5898), 86-89.

- Tan, S. L., Luo, Y. H., Hollingsworth, P. M., Burgess, K. S., Xu, K., Li, D. Z., & Gao, L. M.
- (2018). DNA barcoding herbaceous and woody plant species at a subalpine forest dynamics plotin Southwest China. Ecology and Evolution, 8(14), 7195-7205.
- Tate, J. A., & Simpson, B. B. (2003). Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany, 28(4), 723-737.
- The Catalogue of Life Partnership (2017). APG IV: Angiosperm Phylogeny Group classification
- 505 for the orders and families of flowering plants. Checklist dataset https://doi.org/10.15468/fzuaam
- accessed via GBIF.org on 2022-02-21.
- Thomas, W. W. 1999. Conservation and monographic research on the flora of Tropical America.
 Biodiversity & Conservation 8:1007-1015.
- 509 Toledo-Aceves, T.; Meave, J. A.; González-Espinosa, M., and Ramírez-Marcial, N. 2011.
- 510 Tropical montane cloud forests: Current threats and opportunities for their conservation and
- sustainable management in Mexico. Journal of Environmental Management 92:974-981.
- 512 Trujillo-Argueta, S., Del Castillo, R. F., Tejero-Diez, D., Matias-Cervantes, C. A., & Velasco-
- 513 Murguía, A. (2021). DNA barcoding ferns in an unexplored tropical montane cloud forest area of
- southeast Oaxaca, Mexico. Scientific reports, 11(1), 1-12.
- 515 Villaseñor, J. (2010). El bosque húmedo de montaña en México y sus plantas vasculares:
- 516 catálogo florístico-taxonómico. Comisión Nacional para el Conocimiento y Uso de la
- 517 Biodiversidad- Universidad Nacional Autónoma de México. 40 pp. México, D.F.

Table 1(on next page)

Studied species of the tropical montane cloud forest of San Miguel Cuevas Juxtlahuaca, Oaxaca, Mexico.

Each column indicates sample ID, family, morphological species IUCN status, bp length, BOLD Process ID, and GenBank accession number. Table 1. Studied species of the tropical montane cloud forest of San Miguel Cuevas Juxtlahuaca, Oaxaca, Mexico. Each column indicates sample
 ID, family, morphological species IUCN status, bp length, BOLD Process ID, and GenBank accession number

Sample ID	Family	Morphological species	IUCN	bp lenght	Process ID	GenBank
			status			Accession No.
SMC7	Rubiaceae	Dennea arandiflora Schltdl.	IC	553	TFOAX001-19	ON002500
SMC10	Styracaceae	Styray alabrescens Benth		535	TEOAX002-19	ON002540
SMC10	Thymolaoacoao	Daphaonsis salarorum Gila		535	TEOAX002 19	0N002498
	Colonesses	Coloretti		553	TFOAX003-19	01002438
SIVICZ8	Solanaceae	Solutium nigricans M. Martens & Galeotti	LC	553	TFOAX004-19	UN002539
SMC29	Polygalaceae	Monnina xalapensis Kunth	LC	553	TFOAX005-19	ON002512
SMC37	Ericaceae	Comarostaphylis longifolia (Benth.) Klotzsch	DD	540	TFOAX006-19	ON002495
SMC41	Rubiaceae	Deppea grandiflora Schltdl.	LC	553	TFOAX007-19	ON002501
SMC61	Euphorbiaceae	Tragia aff. nepetifolia Cav.	DD	541	TFOAX008-19	ON002541
SMC70	Rubiaceae	Hoffmannia longipetiolata Pol.	DD	553	TFOAX009-19	ON002505
SMC75	Olaceae	Osmanthus americanus (L.) Benth. & Hook. f. ex A. Gray	DD	553	TFOAX010-19	ON002521
SMC76	Commelinaceae	Commelina coelestis Willd.	DD	553	TFOAX011-19	ON002497
SMC94	Thymelaeaceae	Daphnopsis tuerckheimiana Donn. Sm.	NT	540	TFOAX012-19	ON002499
SMC97	Rubiaceae	Deppea guerrerensis Dwyer & Lorence	DD	536	TFOAX013-19	ON002502
SMC99	Solanaceae	Physalis philadelphica Lam.	LC	535	TFOAX014-19	ON002525
SMC104	Apocinaceae	Vallesia aurantiaca (M. Martens & Galeotti) J.F. Morales	DD	553	TFOAX015-19	ON002545
AVM2	Betulaceae	Alnus acuminata Kunth	LC	560	DVHTF001-19	ON002486
AVM12	Berberidaceae	Berberis lanceolata Benth.	DD	557	DVHTF002-19	ON002489
AVM13	Araliaceae	Oreopanax sanderianus Hemsl.	VU	557	DVHTF003-19	ON002519
AVM14	Scrophulariaceae	Buddleja cordata Kunth	LC	557	DVHTF004-19	ON002490
AVM15	Convolvulaceae	Ipomoea elongata Choisy	DD	557	DVHTF005-19	ON002506
AVM16	Solanaceae	Solanum hispidum Pers	DD	553	DVHTF006-19	ON002537
AVM17	Solanaceae	Solandra maxima (Sessé & Moc.) P.S. Green	DD	558	DVHTF007-19	ON002536
AVM27	Commelinaceae	Commelina coelestis Willd.	DD	557	DVHTF008-19	ON002496
AVM30	Lycopodeaceae	Lycopodium clavatum L.	LC	560	DVHTF009-19	MZ771330

Manuscript to be reviewed

AVM32	Primulaceae	Myrsine juergensenii (Mez) Ricketson & Pipoly	LC	557	DVHTF010-19	ON002516
AVM33	Ericaceae	Vaccinium leucanthum Schltdl.	DD	558	DVHTF011-19	ON002544
AVM34	Fagaceae	Quercus martinezii C.H. Mull.	LC	560	DVHTF012-19	ON002531
AVM35	Fagaceae	Quercus laurina Bonpl.	LC	558	DVHTF013-19	ON002530
AVM36	Melastomataceae	Miconia glaberrima (Schltdl.) Naudin	LC	545	DVHTF014-19	ON002511
AVM40	Pteridaceae	Adiantum andicola Liebm.	DD	557	DVHTF015-19	ON002485
AVM43	Rosaceae	Rubus sapidus Schltdl.	DD	557	DVHTF016-19	ON002534
AVM45	Araliaceae	Oreopanax xalapensis (Kunth) Decne. & Planch.	LC	556	DVHTF017-19	ON002520
AVM46	Piperaceae	Piper umbellatum L.	DD	557	DVHTF018-19	ON002528
AVM47	Lauraceae	Ocotea helicterifolia (Meisn.) Hemsl.	DD	557	DVHTF019-19	ON002517
AVM48	Fabaceae	Calliandra houstoniana (Mill.) Standl.	LC	558	DVHTF020-19	ON002491
AVM50	Lauraceae	Ocotea helicterifolia (Meisn.) Hemsl.	DD	553	DVHTF021-20	ON002518
AVM52	Primulaceae	Parathesis donnell-smithii Mez	LC	553	DVHTF022-20	ON002522
AVM53	Fagaceae	Quercus calophylla Schltdl. & Cham.	LC	553	DVHTF023-20	ON002529
AVM54	Euphorbiaceae	Cnidoscolus aconitifolius (Mill.) I.M. Johnst.	LC	553	DVHTF024-20	ON002494
AVM59	Amaranthaceae	Iresine diffusa Humb. & Bonpl. ex Willd.	DD	553	DVHTF025-20	ON002507
AVM62	Solanaceae	Solanum nigricans M. Martens & Galeotti	LC	553	DVHTF026-20	ON002538
AVM64	Rubiaceae	Arachnothryx buddleioides (Benth.) Planch.	LC	553	DVHTF027-20	ON002488
AVM65	Passifloraceae	Passiflora quadraticordata Lozada-Pérez	DD	553	DVHTF028-20	ON002524
AVM67	Urticaceae	Urera killipiana Standl. & Steyerm.	LC	553	DVHTF029-20	ON002543
AVM69	Rubiaceae	Hoffmannia longipetiolata Pol.	DD	553	DVHTF030-20	ON002504
AVM71	Gesneriaceae	Moussonia deppeana (Schltdl. & Cham.) Hanst.	DD	553	DVHTF031-20	ON002515
AVM73	Pinaceae	Pinus montezumae Lamb.	LC	553	DVHTF032-20	ON002526
AVM78	Dicksoniaceae	Lophosoria quadripinnata (J.F. Gmel.) C. Chr.	DD	553	DVHTF033-20	ON002509
AVM79	Passifloraceae	Passiflora quadraticordata Lozada-Pérez	DD	553	DVHTF034-20	ON002523
AVM80	Cyperaceae	Rhynchospora aristata Boeck.	DD	553	DVHTF035-20	ON002532
AVM82	Marattiaceae	Marattia weinmanniifolia Liebm.	DD	553	DVHTF036-20	ON002510
AVM83	Cupressaceae	Juniperus flaccida Schltdl.	LC	553	DVHTF037-20	ON002508
AVM84	Pinaceae	Pinus pseudostrobus Lindl.	LC	553	DVHTF038-20	ON002527

N002513
N002503
N002542
N002487
N002514
N002492
N002546
N002533
N002493
N002535

3 Least Concern (LC), Data Deficit (DD), Near Threatened (NT) and Vulnerable (VU).

Table 2(on next page)

Best BLASTn match found on queries against *rbcL* nucleotides sequences in the database of GenBank for those species with previously published sequences in the GenBank.

Sample ID Morphological species Identity (%) Best BLAST match accession number are shown.

1

- 2 Table 2. Best BLASTn match found on queries against *rbcL* nucleotides sequences in the
- 3 database of GenBank for those species with previously published sequences in the GenBank.

Sample ID	Morphological species	Identity (%)	Best BLAST match	Accession No.
AVM2	Alnus acuminata	100	∆ Alnus nepalensis	NC_039991.1
SMC7	Deppea grandiflora	99.46	Cosmibuena grandiflora	AM117220.1
AVM12	Berberis lanceolata	99.82	Berberis thunbergii	KX162895.1
AVM16	Solanum hispidum	100	Solanum torvm	MN218087.1
SMC29	Monnina xalapensis	100	Monnina xalapensis	AM234184.1
AVM30	Lycopodium clavatum	100	Lycopodium clavatum	KF977478.1
AVM35	Quercus laurina	100	Δ Quercus phillyraeoides	NC_048488.1
AVM40	Adiantum andicola	99.82	○ Adiantum feei	MH019567.1
AVM46	Piper umbellatum	100	○ Piper umbellatum	KF496838.1
AVM52	Parathesis donnell-smithii	100	○ Stylogyne longifolia	MF786262.1
AVM53	Quercus callophylla	100	∆ Quercus phillyraeoides	NC_048488.1
AVM54	Cnidoscolus aconitifolius	100	Cnidoscolus aconitifolius	MZ045411.1
AVM59	Iresine diffusa	100	Iresine diffusa	JQ590112.1
AVM64	Arachnothryx buddleioides	100	 Arachnothryx monteverdensis 	JQ594656.1
AVM70	Hoffmannia longipetiolata	99.64	0 Omiltemia filisepala	AM117251.1
AVM73	Pinus montezumae	100	∆ Pinus arizonica	KC156714.1
SMC75	Osmanthus americanus	99.81	Δ Osmanthus americanus	NC_048503.1
AVM78	Lophosoria quadripinnata	99.64	Lophosoria quadripinnata	MW138175.1
AVM80	Rhynchospora aristata	99.82	 Rhynchospora sp 	JQ594519.1
AVM82	Marattia weinmanniifolia	100	○ Marattia douglasii	MT657852.1
AVM83	Juniperus flaccida	100	○ Juniperus flaccida	HM024304.1
AVM84	Pinus pseudostrobus	100	Pinus flexilis	MG215114.1
AVM87	Montanoa tomentosa	100	 Montanoa tomentosa 	MT189234.1
AVM89	Guarea glabra	100	Ruagea pubescens	MN454793.1
AVM90	Trichilia havanensis	99.82	Meliaceae* sp.	EU042974.1
SMC99	Physalis philadelphica	100	Δ Physalis minima	NC_048515.1

In **bold** morphological species corresponding with only the studied species in GenBank database.

o two species more same percent identity

 Δ > 30 species with the same high identity percent

* *T. havanensis* showed a best match with the GenBank published sequence of another unidentified species of the Meliaceae

4

Table 3(on next page)

Intergeneric genetic distances of the tropical montane cloud forest species in the Mixteca Baja, Oaxaca, Mexico, found in multi-species genera.

The Bold Process ID is shown below the scientific names.

1
т

2

- 3
- Table 3. Intergeneric genetic distances of the tropical montane cloud forest species in the 4
- Mixteca Baja, Oaxaca, Mexico, found in multi-species genera. The Bold Process ID is shown 5
- below the scientific names. 6
- 7

Genus	Species co	Genetic divergence	
Daphnopsis	Daphnopsis tuerckheimiana TFOAX012-19	Daphnopsis selerorum TFOAX003-19	0.0000
Deppea	Deppea guerrerensis TFOAX013-19	Deppea grandiflora TFOAX001-19	1.5076
Deppea	Deppea guerrerensis TFOAX013-19	Deppea grandiflora TFOAX007-19	1.5076
Oreopanax	Oreopanax xalapensis DVHTF017-19	Oreopanax sanderianus DVHTF003-19	0.0000
Pinus	Pinus pseudostrobus DVHTF038-20	Pinus montezumae DVHTF032-20	2.0189
Quercus	<i>Quercus laurina</i> DVHTF013-19	Quercus martinezii DVHTF012-19	0.0000
Quercus	<i>Quercus callophylla</i> DVHTF023-20	Quercus martinezii DVHTF012-19	0.0000
Quercus	Quercus callophylla DVHTF023-20	<i>Quercus laurina</i> DVHTF013-19	0.0000
Solanum	Solanum hispidum DVHTF006-19	Solanum nigricans TFOAX004-19	0.7269
Solanum	Solanum nigricans DVHTF026-20	Solanum hispidum DVHTF006-19	0.7269

8

Table 4(on next page)

Mean intergeneric and interspecific genetic distances in the multigenera and multispecies families of this study.

Manuscript to be reviewed

Table 4. Mean intergeneric and interspecific genetic distances in the studied multigenera andmultispecies families of this study.

Family	No. Genera	No. Species	Mean Divergence (%)
Asteraceae	2	2	3.3344
Ericaceae	2	2	5.5723
Euphorbiaceae	2	2	4.5869
Meliaceae	2	2	0.7286
Primulaceae	2	2	1.2784
Rubiaceae	3	4	1.6207
Solanaceae	4	5	1.6558

Table 5(on next page)

Monophyly tree-based results observed using *rbcLa*.

Proportion of resolved monophyletic species and support value obtained (bootstrap /posterior probabilities) with different phylogenetic techniques using plant core barcoding gene *rbcLa* in 55 studied species of the tropical montane cloud forest, Mixteca Baja, Mexico.

1
Τ.

- T
- 2
- 3
- 4
- 5 Table 5. Monophyly tree-based results observed using *rbcLa*. Proportion of resolved
- 6 monophyletic species and support value obtained (bootstrap /posterior probabilities) with
- 7 different phylogenetic techniques using plant core barcoding gene *rbcLa* in 55 studied species
- 8 of the tropical montane cloud forest, Mixteca Baja, Mexico.

	Neighbor Joining tree	Maximum Likelihood tree	Bayesian Inference tree
Percent of monophyletic species resolved	100.00	100.00	85.45
Percent species resolved with support value > 70%	70.91	87.27	92.73

- 9
- 10 11 12 13 14

15

Figure 1

Graphic results of BLASTn analysis and genus and species resolution

Fraction of the new *rbcL* sequences published in the GenBank (left), and resolution at genus and species levels for those species with previously available sequences released in the GenBank (accessed in March 2022) using BLASTn (right).

Figure 1. Graphic results of BLASTn analysis.

Figure 2

rbcLa intra- and interspecific genetic distances between 55 plant species from 38 families of tropical montane cloud forest in the Mixteca Baja, Oaxaca, Mexico.

Figure 2. Intraspecific and interspecific genetic distances obtained in 55 species of plants of the Mixteca Baja, Oaxaca, México

Figure 3

Maximum Likelihood phylogenetic tree obtained with barcode *rbcLa*.

Monophyletic species resolution of 55*rbcLa* plant sequences obtained from maximum likelihood phylogenetic tree analysis of tropical montane cloud forest species, Mixteca Baja, Oaxaca, Mexico. Bootstrap values based on 1000 replications are listed as percentages at branching points.

Marattia weinmannifolia DVHTF036-20 Lycopodium clavatum DVHTF009-19 Lophosoria quadripinnata DVHTF033-20 Adiantum andicola DVHTF015-19 Juniperus flaccida DVHTF037-20 Pinus pseudostrobus DVHTF038-20 Pinus montezumae DVHTF032-20 Piper umbellatum DVHTF018-19 Commelina coelestis TFOAX011-19 Zeugites hintonii DVHTF045-20 Rhynchospora aristata DVHTF035-20 Ocotea helicterifolia DVHTF019-19 Calliandra houstoniana DVHTF020-19 Passiflora quadraticordata DVHTF028-20 Cnidoscolus aconitifolius DVHTF024-20 Tragia nepetifolia TFOAX008-19 Rubus sapidus DVHTF016-19 Urera killipiana DVHTF029-20 Monnina xalapensis TFOAX005-19 Alnus acuminata DVHTF001-19 Quercus martinezii DVHTF012-19 Quercus calophylla DVHTF023-20 Ouercus laurina DVHTF013-19 Iresine diffusa DVHTF025-20 Berberis lanceolata DVHTF002-19 Miconia glaberrima DVHTF014-19 Daphnopsis tuerckheimiana TFOAX012-19 Daphnopsis selerorum TFOAX003-19 Trichilia havanensis DVHTF041-20 Guarea glabra DVHTF040-20 Oreopanax xalapensis DVHTF017-19 Oreopanax sanderianus DVHTF003-19 Roldana angulifolia DVHTF046-20 Montanoa tomentosa DVHTF039-20 Vaccinum leucanthum DVHTF011-19 Comarostaphylis longifolia TFOAX006-19 Styrax glabrescens TFOAX002-19 Parathesis donnell-smithii DVHTF022-20 Myrsine juergensenii DVHTF010-19 Ipomoea elongata DVHTF005-19 Cestrum commune DVHTF044-20 Solandra maxima DVHTF007-19 Physalis philadephica TFOAX014-19 Solanum hispidum DVHTF006-19 Solanum nigricans TFOAX004-19 Moussonia deppeana DVHTF031-20 Osmanthus americanus TFOAX010-19 Citharexylum hexangulare DVHTF047-20 Salvia clarkowanii DVHTF048 Buddleja cordata DVHTF004-19 Vallesia aurantiaca TFOAX015-19 Arachnothryx buddleoides DVHTF027-20 Hoffmannia longipetiolata TFOAX009-19 Deppea guerrerensis TFOAX013-19 Deppea grandiflora TFOAX001-19

Figure 3. Maximum Likelihood phylogenetic tree obtained with barcode rbcLa.