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Abstract

DNA-barcoding is a species identification tool that uses a short section of the genome that
provides a genetic signature of the species. The main advantage of this novel technique is
that it requires a small sample of tissue from the tested organism. In most animal groups,
this technique is very effective. In plants, however, the recommended standard markers,
such as rbcLa, may not always work, and their effects remain to be tested in many plant
groups, particularly from the Neotropical region. We examined the discriminating power
of rbcLa in 55 tropical cloud forest vascular plant species from 38 families (Oaxaca,
Mexico). We followed the CBOL criteria using BLASTNn, genetic distance, and monophyly
tree-based analyses (neighbor-joining, NJ, maximum likelihood, ML, and Bayesian
inference, BI). rbcLa universal primers amplified 69% of the samples and yielded 91.30%
bi-directional sequences. Sixty-three new rbcLa sequences were established. BLAST
discriminates 80.8% of the genus but only 15.4% of the species. Genetic distances

among Quercus, Oreopanax, and Daphnopsis species were nil. Contrastingly, Ericaceae
(5.6%), Euphorbiaceae (4.6%), and Asteraceae (3.3%) species displayed the highest within-
family genetic distances. According to the most recent angiosperm classification, NJ and
ML trees successfully resolved (100%) monophyletic species. ML trees showed the highest
mean branch support value (87.3%). Only NJ and ML trees could successfully
discriminate Quercus species belonging to different subsections: Quercus martinezii (white
oaks) from Q. callophylla and Q. laurina (red oaks). The ML topology could distinguish
species from the Solanaceae clade that the best BLAST match could not. Also, the BI
topology showed a polytomy in this clade, and the NJ tree displayed low-support branch
values. We do not recommend genetic-distance approaches for species discrimination.
More published rbcLa sequences are necessary for BLAST to be more effective. Instead,
the ML tree-based analysis displays the highest species discrimination among the tree-
based analyses. With the ML topology in selected genera, rbcLa helped distinguish
infrageneric taxonomic categories, such as subsections, grouping affine species within the
same genus, and discriminating species in most cases. Since the ML phylogenetic tree
could discriminate 48 species out of our 55 studied species, we recommend this approach to
resolve tropical montane cloud forest species using rbcLa, as an initial step and improving
DNA amplification methods.

Introduction

A biodiversity inventory is crucial as a first step to protecting species and ecosystems. A
significant portion of global biodiversity remains unnamed. Recent estimations indicate that
8.7 million species of multicellular organisms occur on Earth, but about 20% of those
species have been described using morphological approaches since 1750 (Centre for
Biodiversity Genomics, CBG, 2021). Thus, it is urgent to speed up the species
identification process (Hvistendahl, 2021). DNA barcoding was recently proposed to
identify species using short-standardized sequences and only requires a small sample of
tissue (Hebert et al., 2003). Cytochrome oxidase 1 (CO1) successfully discriminates against
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many animal species but does not resolve plant species. The Consortium for the Barcode of
Life's (CBOL) plant working group evaluated several plastid DNA regions based on
universality, sequence quality, and species discrimination, recommending using a core of a
2-locus combination of partial genes rbcLa + matK as the plant barcode (Group C
Hollingsworth et al., 2009). Such a universality has not been found in all plant groups, and
other studies suggest using additional loci (Kress & Erickson, 2007; Fasekas et al., 2008;
Pang et al., 2012; China plant B Li et al., 2011). Moreover, matK may work very well for
species of orchids (Lahaye et al., 2008) but not for certain fern groups (Trujillo-Argueta et
al., 2021). Furthermore, in some angiosperm genera, such as Salix (Percy et al., 2014)

and Quercus (Piredda et al., 2011), lplastid markers might not work at all.

On average, the resolution of the tested DNA barcoding markers for plants is not as high as
barcode markers used for many animal groups (CBOL Plant Working Group, 2009;
Fazekas et al., 2008). Of the possible plant markers, rbcLa appears to be one of the best
available. Although far from perfect, the resolution of rbcLa was shown to be better than
those tested in arid plants in the United Arab Emirates (Maloukh et al., 2017) and Saudi
Arabia (Bafeel et al., 2012). Also, rbcLa can be a valuable tool to identify species in
conditions in which other methods are impractical. For instance, this marker was
successfully used for studying the patterns of root diversity in old-field communities in
Ontario, Canada (Kesanakurti et al., 2011). This kind of research is encouraging, but more
studies are needed to explore the resolution potential of this marker for species in
ecosystems other than those of temperate regions. The [Neotropics[ are considered the richest
region in biodiversity (Gaston & Williams 1996; Thomas 1999). However, some
ecosystems in the neotropics have been little explored regarding DNA barcode studies. The
available studies are often limited to a few plant groups such as orchids (Lahaye et al.,
2008) or ferns (Nitta, 2020; Trujillo-Argueta et al., 2021).

In Mexico, the tropical montane cloud forest (TMCFs) is a top priority ecosystem for
conservation due to its high diversity, endemism richness, and anthropogenic threats
(Villasefior, 2010; Toledo-Aceves et al., 2011). However, local DNA barcoding needs to be
developed. This study aims to evaluate the performance of the plant core DNA

barcode rbcLa using universal primers for vascular plants and without using other markers
in a tropical montane cloud forest of the Mixteca Baja, Oaxaca, Mexico. We followed the
three above-mentioned CBOL criteria and built a barcode library of native plant species for
this region.

Methods

Species this study and study site

One hundred samples of plants belonging to different families were collected in a tropical
montane cloud forest at San Miguel Cuevas, Santiago Juxtlahuaca Municipality, Oaxaca,
Mexico (17°15°00.96” N, 98°02°57.34”, centroid coordinates). The climate in this area is
semi-humid, temperate to semi-warm (1382 mm and 16.8 C, mean annual precipitation and
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temperature, Fernandez-Eguiarte et al., 2020), with soils rich in organic matter (Instituto
Nacional de Estadistica y Geografia, 2005), and a mean altitude of [2187m[. The municipal
council of San Miguel Cuevas granted permission to conduct our field studies on their
lands. Two commissioners of the communal property of this municipality, Mr. Pedro Gil
(2017- July 2018) and Mr. Damian Dominguez (July 2018 - June 2019), were directly
responsible for such permissions. Mr. Heladio Luna Rodriguez, a San Miguel Cuevas
Community local authority member, supervised, guided, and helped us throughout the field
trips. In no case was the entire plant collected. Collecting the samples did not kill the
plants, which were left alive in their original places. Based on [The International Union for
Conservation of Nature (IUCN) Red List (accessed December 19th, 2021) from all 55
species in this study, more than half (57.7%) were not previously registered (Data Deficit
DD); 43.6% belong to the Least Concern (LC) category. Also, Daphnopsis
tuerckheimiana holds the status of Near Threatened (NT); and Oreopanax sanderianus, that
of Vulnerable species (VU).

Plant vouchers were determined by the following specialists: Daniel Tejero-Diez, UNAM
FES lztacala, México, lycopod and ferns; Sergio Zamudio, Institute of Ecology, Veracruz,
Meéxico, Berberidaceae; Rafael F. del Castillo, IPN CIIDIR Oaxaca, Mexico, Pinaceae;
JesUs Guadalupe Gonzalez Gallegos, University of Guadalajara, Mexico, Lamiaceae;
Socorro Gonzélez Elizondo, IPN CIIDIR Durango, Mexico, Cyperaceae and Ericaceae;
Susana Valencia Avalos, UNAM Facultad de Ciencias, Mexico, Fagaceae; J.R. Kuethe,
University of Auckland, New Zealand, Passifloraceae; and Rufina Garcia, Abril VVelasco-
Murguia and Rafael F. del Castillo, IPN CIIDIR Oaxaca, Mexico, the rest of the specimens.
The herbarium vouchers were deposited at the herbarium of CIIDIR Oaxaca, Instituto
Politécnico Nacional (OAX), pending for registration numbers due to the pandemic crisis.
The species and their IUCN Red List Status are shown on Table 1.

DNA amplification and sequencing

[Several fresh leaves Tfrom each sampled plant were collected and placed in a Ziplock® bag.
The samples were kept at -20°C in a freezer until processed. The number of samples
collected per taxon was one and occasionally two.

Genomic DNA was extracted from 2mg leaf tissue with FastDNA SPIN kit and FastPrep®
(MP Biomedicals, USA) equipment.

DNA concentration (ng/pl) and purity (260/280A) from the genomic DNA extracted were
measured with a Biophotometer (Eppendorf®). Plant core barcoding partial gene rbcLa
was used for amplification. We used standard primers from the Canadian Center for DNA
Barcoding (CCDB) (Kuzmina, 2011), rbcLa-F
ATGTCACCACAAACAGAGACTAAAGC (Tate & Simpson, 2003) and rbcLa-R
GTAAAATCAAGTCCACCRCG (Kress & Erickson, 2007). rbcLa was amplified using a
QS uL\ volume of reaction mixture: 15.8 puL of nuclease-free water, 5 pul MyTaq Buffer
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reaction was carried out using an Applied Biosystems Veriti® thermocycler. We followed
Fasekas et al. (2012) protocols for rbcLa amplification. The PCR temperature cycling
program was: 94°C for 4 min; 35 cycles of 94°C for 30 s, [55°C for 30 s, 72°C for 1 min;

final extension of [72°C for 10 min. Amplified PCR products were detected using agarose
gel electrophoresis (1.2 % agarose gel TBE) under UV light by staining with GelRed
Nucleic Acid (Biotium). PCR products were purified using the EZ-10 Spin Column PCR
Products Purification Kit (Biobasic). All PCR products were sequenced by Capillary
Electrophoresis Sequencing (CES) in an ABI 3130xI Genetic Analyser at the Laboratorio
Bioquimica Molecular UBIPRO FES Iztacala UNAM and with an AB3730 at the
Laboratorio de Servicios Gendmicos LANGEBIO- CINVESTAV.

DNA Alignment

rbcLa sequence chromatograms were manually edited and assembled into contigs using
CodonCode Aligner v.9.0.1 http://www.codoncode.com/aligner. Consensus sequences
were generated and aligned using MUSCLE (Edgar, 2004). These alignments were
examined by eye and corrected when necessary.

BOLD and Genebank

Our study was registered under the name “Diversity of a humid temperate forest in Oaxaca,
Mexico” project code DVHTF at The Barcode of Life Data System (BOLD,
http://www.boldsystems.org). BOLD is a bioinformatics workbench devoted to acquiring,
storing, analyzing, and publishing DNA barcode records (Ratnasingham & Hebert, 2007).
Three files were included in the metadata submitted to BOLD: 1) Specimen data file
including detailed voucher information, scientific names of the taxa sampled, collection
dates, geographical coordinates, elevation, collectors, identifiers, and habitat. 2) An image
file was submitted with high-quality specimen images from each plant. 3) A trace file was
submitted along with primers and the direction of sequences. Sequences uploaded to
BOLD were edited and aligned in FASTA format and referenced by Sample IDs.
Sequences were also submitted to the GenBank.

Species differentiation
To evaluate species discrimination using rbcLa sequences, we used three approaches:

a) The Basic Local Alignment Search Tool for nucleotide (BLASTN) method (Altschul et
al. 1990), which searches against the sequence database available online by the National
Center for Biotechnology Information (NCBI) https://www.ncbi.nim.nih.gov.
Identification at the genus level was considered successful when all hits with the maximum
percent identity scores >99% involved a single genus. Species identification was

[
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considered successful only when the highest maximal percent identity included a single
species and scored >99% (Abdullah, 2017; Bafeel et al., 2012).

b) Genetic divergence. Interspecific and intraspecific distances were analyzed in MEGAX
(Kumar et al., 2018). Genetic distance was inferred from 1000 replicates, and the
evolutionary distances were computed using the [Kimura 2-parameter method Mith
gaps/missing data treatment adjusted using pairwise deletion. The genetic distances (%) of
families, genera, and species were analyzed in the Barcode of Life Data Systems (BOLD,
www.boldsystems.org) (Ratnasingham & Hebert 2007).

¢) Monophyly tree-based analyses using Neighbor-Joining (NJ), Maximum Likelihood
(ML), and Bayesian Inference (BI) analysis.

NJ was analyzed in MEGAX (Kumar et al., 2018) inferred from 1000 replicates, and the
evolutionary distances were computed using the Kimura 2-parameter method with
gaps/missing data treatment adjusted using pairwise deletion. ML analyses were run on the
IQ-TREE web server (http://igtree.cibiv.univie.ac.at). Internal node support and bootstrap
analyses were calculated using 1000 iterations. Tree inference using Bayesian analysis was
run on MrBayes 3.2.2 on XSEDE via the CIPRES supercomputer cluster (www.phylo.org )
for 10 million generations. The resultant ML and Bl trees were visualized in the interactive
Tree of Life (iTOL) (Letunic & Bork 2019). We evaluated which of the tree-based
methods (NJ, ML, and MB) recovered more monophyletic species with a
bootstrap/posterior probabilities support of >70% (de Groot et al., 2011).

Results

DNA Amplification and sequencing success

We could successfully amplify 69% of the botanical samples collected. We studied 38
families, of which 27 had one species and 11 families 2 to 5 species (Table 1). Of the 55
studied species, 29.1% were herbs, and 70.9% were trees and shrubs. From this subset, we
could obtain high-quality bidirectional sequences (>250bp) in 91.3% of the species, using
the standard primers of the CCDB for the rbcLa barcode.

BLAST

Using BLASTN, we obtained 100% resolution in all the 38 families studied and 80.8% in
48 genera. Only 47.3% of our 55 studied species were previously registered in

the rbcLa sequences of the GenBank database (Figure 1). We also contributed to 13 new
species in the GenBank Taxonomy Database. These species were not previously registered
for any other gene sequence. With the available accessions at the GenBank, we found

that rbcLa can unambiguously discriminate only 15.4% of the studied species at the species
level (Figure 1). Just four species, Monnina xalapensis, Cnidoscolus aconitifolius, Iresine
diffusa, and Lophosoria quadripinnata, were found to best BLAST match to a single
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species with more than 99% identity. Most of our rbcL sequences matched from 2-12
species with >99% maximal percent identity; and seven species, Alnus acuminata, Solanum
hispidum, Quercus laurina, Quercus callophylla, Pinus montezumae, Osmanthus
americanus, and Physalis phyladelphica, matched the rbcL sequences in the GenBank with
>30 different species. The best BLAST match identifications per species for

the rbclLa plastid barcode are shown in Table 2.

A specimen data file, image file, and trace file(s) were submitted to BOLD along with
edited and aligned sequences for each of our 63 botanical samples (55 species and eight
different duplicates) and can be accessed through the BOLD DNA database
(http://www.boldsystems.org) under the ‘DVHTEF’ project. Sixty-three sequences were
obtained in this study for rbcLa, BOLD Process 1D, and GenBank Accession numbers
(Table 1).

Genetic divergence

The distribution of intra- and interspecific K2P distances across all taxon pairs of our 55
species of plants of The Mixteca Baja, Oaxaca, tropical montane cloud forest, obtained
from partial gen rbcLa are shown in Figure 2. Mean pairwise genetic distance within
species was 0, within genus 0.65 + 0.07, and 1.76 + 0.03 within families. Congeneric
species of Quercus, Daphnopsis, and Oreopanax did not show genetic divergence.
Contrastingly, Solanum, Deppea, and Pinus displayed intergeneric differences (Table 3)
The mean genetic divergence observed in the studied families with two or more genera is
shown in Table 4. The highest mean divergence values were observed in the Ericaceae,
Euphorbiaceae, and Asteraceae families.

Monophyly tree-based analyses

Phylogenetic tree-based analysis using Neighbor-Joining (Supplementary Fig.S1),
Maximum Likelihood (Figure 3), and Bayesian Inference tree (Supplementary Fig.S2) were
reconstructed to evaluate our 55 species discrimination using the rbcLa barcode region. In
all cases, ferns and lycopodium were used as outgroups. These tree-based methods
evaluated which tree rendered the greatest species resolution and whether the barcode
sequences generated monophyletic species (Table 5). NJ and ML phylogenetic trees
resolved 100% of monophyletic species using rbcLa. Nevertheless, the clade support value
> 70% with a bootstrap of 1000 replicates yielded the most robust phylogeny in the ML
tree (87.3%) than the one obtained in the NJ tree (70.9%). Therefore, we present the ML
phylogenetic tree (Figure 3). Although the BI tree showed the highest clade support value
(92.7%), this tree did not resolve all 55 species as monophyletic species. Two polytomies
were observed in the clade of the Quercus species and the Solanaceae clade
(Supplementary Fig. S2).

Discussion
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270 Multiple factors can cause the absence of DNA amplification in some samples. Since we
271 could amplify rbcLa in several species, the possibilities of methodological failures or
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279  study using samples from different plants (Trujillo-Argueta et al., 2021). Another

280  possibility is that the pair of rbcLa universal premiers used may not work for certain

281  species. Our rbcLa amplification success (69%) could be increased using the alternative set
282 of universal primers proposed by CCDB for gene barcode rbcL.
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284  Our sequencing success (91.30%) was high and similar to those reported in other works. In
285  astudy of root diversity patterns using plastid gene rbcL, Kesanakurti et al. (2011)

286  registered 96% amplification success with 85% sequencing success. In another study that
287 identified Sicily's most threatened plant taxa, the amplification and sequencing successes
288  were 96% and 95%, respectively (Giovino et al., 2016). In a study of the temperate flora of
289  Canada, the use of rbcLa gave a 91.4% sequencing success (Burgess et al., 2011).

290  Our BLAST results were higher for genus discrimination (80.77%) than the values obtained
291  for species differentiation (15.38%). Results from other regions and species are variable.
292 For example, in wild, arid plants, discrimination at genus and species levels were lower
293  than ours: 50% and 8%, respectively (Bafeel et al., 2012), but higher in a comprehensive
294  study of the local flora of Canada (91% and 44%, Braukmann et al., 2017). In a study of
295  threatened species of Sicily, the discrimination at the genus level was lower (52%) but

296  higher at the species level (48%) than our results (Giovino et al., 2016). The peculiarities of
297  the biology of the studied species may also account for the observed discrimination

298  variability. Part of our low percent species discrimination results using BLASTn can be
299  explained by low marker resolution, as was noticed in those species that matched

300 their rbcLa sequence with more than 30 different species in the GenBank database (Alnus
301  acuminate, Solanum hispidum, Quercus laurina, Quercus callophylla, Pinus montezumae,
302  Osmanthus americanus and Physalis phyladelphica). Another explanation is misidentified
303  voucher specimens in public DNA databases, an issue that several authors have

304 acknowledged (e.g., Abdullah, 2017; Burguess et al., 2011). Since it is customarily to

305  describe species based on morphological characteristics, it is possible that hybridization and
306  polyploidy, which are common in plants, may contribute to decreasing barcoding species

307  discrimination (Hollinsworht, 2011; Fasekas }et al., 2008). Since more than half of the [Commented [MH25]: Fasekas or Fazekas?

308  species in this study (52.72%) lacked comparative data in the GenBank database, it is



309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

necessary to increase the DNA barcode database, particularly for tropical wild plant
species. Indeed, we contributed to new 63 rbcLa sequences to BOLD, its metadata, and the
GenBank database. Although 42 of our species already had a rbcLa sequence on the
GenBank database, new records on these species might help discover new haplotypes or
geographical variants (Hajibabaei et al., 2007). Even if rbcLa does not have high species
discrimination, it does for genus discrimination, which for some ecological studies might
be enough (e.g., Kesanakurti et al., 2011).

Our distribution of intra- and interspecific genetic divergence (Figure 2) agrees with the
premise that a DNA barcode must exhibit high interspecific but low intraspecific
divergence (Lahaye et al., 2008). The percent interspecific divergence of this study (0.65) is
similar to those reported in other hotspot diversity areas such as the Mediterranean Basin
(0.89) (Giovino et al., 2016) and Southern Africa (0.82) (Lahaye et al., 2008). The lack of
genetic divergence observed in the three genera of trees: Quercus (Q. martinezii, Q.
laurina, and Q. callophylla); Oreopanax (O. sanderianus and O. xalapensis),

and Daphnopsis (D. selerorum and D. tuerckheimiana) concurs with Smith & Donoghue
(2008). These authors found that the rates of molecular evolution are low in woody plants
with long generation times compared to herbs. In the case of oaks (Quercus), several
attempts have been made to identify species in Italy, using different plastid barcodes
without success since hybridization and polyploidy are expected to be high in this group
(Piredda et al., 2011). Null genetic divergence obtained in Oreopanax and Daphnopsis
(Table 3) is of concern since Oreopanax sanderianus and Daphnopsis tuerckheimiana are
on the red list of IUCN. The highest values of genetic distance found in the Ericaceae
(5.57%), Euphorbiaceae (4.59%), and Asteraceae (3.3%) families that hold many herbs and
shrubs species agree with the assumption that the rbcLa barcode has a better species
differentiation for non-tree species. Moreover, a study conducted in a subalpine forest in
Southwest China found a better DNA barcode resolution for herbs than for tree species
(Tan et al., 2018). However, more studies are needed to confirm this trend in other species
and localities.

The phylogenetic arrangements found in our study using barcode rbcLa concur with the
recent Angiosperm Phylogeny Group classification (APG 1V) of flowering plants (The
Catalog of Life Partnership, 2017). The percent monophyletic species resolution obtained
in this study using NJ (100%), ML (100%), and BI (85.45%) phylogenetic trees, was higher
compared to 17% of species resolution found in arid wild plants using ML trees (Bafeel et
al., 2012), barcoding the biodiversity of Kuwait (58%) using NJ trees (Abdullah, 2017) and
the 71.8% registered in two biodiversity hotspots of Mesoamerica and Southern Africa,
using ML and BI trees (Lahaye et al., 2008). Our ML phylogenetic tree showed the most
robust phylogeny (87.27%), Ocotea helicterifolia, Quercus callophylla, Quercus laurina,
Iresine difussa, Berberis lanceolata, Moussonia deppeana, and Osmanthus americanus,
could not be resolved as monophyletic species with a clade bootstrap support value > 70%.
Most of these species are trees in agreement with the assumption that rates of molecular
evolution are low in woody plants compared to herbs (Smith & Donoghue, 2008). For those
species that could not be differentiated with the ML tree, we suggest the addition of a
second barcode.
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Species discrimination can be improved by using tree-based phylogenetic methods rather
than BLAST analysis and genetic distance approaches. For instance, using NJ and ML
phylogenetic trees, it was possible to differentiate Quercus martinezii from Q.

laurina and Q. callophylla (Supplementary Fig.S1, Figure 3) despite unsuccessful best
BLAST matches and the null genetic divergence observed in Quercus. Based on an updated
infrageneric classification of the oaks (Denk et al., 2017), Q. martinezii belongs to the
white oaks (subsection Quercus), while Q. callophylla and Q. laurina belong to the red
oaks (subsection Lobatae). In the Solanaceae family, three out of the five studied species
(Physalis philadelphica, Solanum hispidum, and Solandra maxima) share high similitude
with at least 30 species using the best BLAST match results. Furthermore, using our best Bl
tree, we observed a polytomy in the Solanaceae clade (Supplementary Fig.S2), and a low
discrimination value in the NJ tree. However, these species could be resolved with our ML
phylogenetic tree. Taxonomic species are usually described based on morphological
characteristics that can easily be altered by local adaptation, phenotypic plasticity, or
neutral morphological polymorphism, which may cause a single variable species to be
classified as many species (e.g., Gemeinholzer & Bachmann, 2005). On the other hand,
very recent divergence and little differentiation might contribute to the inability of
barcoding to separate species in some cases (Birch et al., 2017).

Conclusions

DNA barcoding using rbcLa can be a promising identification tool primarily at the family
and genus level for vascular plant species of the neotropical montane cloud forest. We
identify three major problems with the use of this technique. First, the lack of a universal
amplification capability is probably associated with DNA degradation in some cases, but
without ruling out other factors requiring further study. Second, the inability to detect
certain morphological species is probably not related to rbcLa itself but to biological (e.g.,
polyploidy and hybridization) and technical (misidentifications or taxonomic
misclassifications) problems. Third, the few available registers in the BOLD and GenBank
databases (more than half of our species, 52.72%, did not have previous rbcLa sequence
records). Indeed, we contributed new 13 species to the GenBank Taxonomy Database and
63 new sequences for rbcLa in BOLD and GenBank. We found preliminary evidence
suggesting that the ability of the marker to discriminate species is not randomly distributed
among taxa. Herb and shrub species in the Asteraceae, Ericaceae and Euphorbiaceae
families showed the highest genetic distance using rbcLa, which can be helpful to
distinguish congeneric species. Contrastingly, we detected nil genetic divergence among
congeneric species in long-lived tree genera, Quercus, Oreopanax,

and Daphnopsis. Nonetheless, the accuracy for discriminating species can be substantially
improved using tree-based analysis. While BLAST and genetic distance approaches could
not differentiate Quercus species, NJ and ML could successfully separate white oaks
(Quercus martinezii) from red oaks (Q. callophylla and Q. laurina). Also, most species in
the Solanaceae family that showed unsuccessful BLAST results and low genetic distance
could be discriminated against with ML phylogenetic tree. The ML phylogenetic tree
showed the most robust phylogeny (87.27%) of all our 55 studied species of the tropical



400
401
402

403

404

405
406

407

408

409

410
411

412
413

414
415
416

417
418
419

420
421
422

423
424
425
426

427
428

429
430
431

432
433

montane cloud forest of San Miguel Cuevas in Oaxaca state, Mexico. The establishment of
this local barcode database will be valuable for a broad range of potential ecological,
conservational, and phylogenetic applications.
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