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ABSTRACT

In June 2017, extreme fires along the southern Cape coast of South Africa burnt
native fynbos and thicket vegetation and caused extensive damage to plantations and
residential properties. Invasive alien plants (IAPs) occur commonly in the area and
were thought to have changed the behaviour of these fires through their modification
of fuel properties relative to that of native vegetation. This study experimentally
compared various measures of flammability across groups of native and alien
invasive shrub species in relation to their fuel traits. Live plant shoots of 30 species
(10 species each of native fynbos, native thicket, and IAPs) were sampled to measure
live fuel moisture, dry biomass, fuel bed porosity and the proportions of fine-, coarse-
and dead fuels. These shoots were burnt experimentally, and flammability measured
in terms of maximum temperature (combustibility), completeness of burn
(consumability), and time-to-ignition (ignitability). Multiple regression models were
used to assess the relationships between flammability responses and fuel traits, while
the Kruskal-Wallis H test was used to establish if differences existed in flammability
measures and fuel traits among the vegetation groups. Dry biomass significantly
enhanced, while live fuel moisture significantly reduced, maximum temperature,
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whereas the proportion of fine fuels significantly increased completeness of burn.
Unlike other similar studies, the proportion of dead fuels and fuel bed porosity were
not retained by any of the models to account for variation in flammability. Species of
fynbos and IAPs generally exhibited greater flammability in the form of higher
completeness of burn and more rapid ignition than species of thicket. Little
distinction in flammability and fuel traits could be made between species of fynbos
and IAPs, except that fynbos species had a greater proportion of fine fuels. Thicket
species had higher proportions of coarse fuels and greater dry biomass (~fuel
loading) than species of fynbos and IAPs. Live fuel moisture did not differ among the
vegetation groups, contrary to the literature often ascribing variation in flammability
to fuel moisture differences. The fuel traits investigated only explained 21-53% of the
variation in flammability and large variation was evident among species within
vegetation groups suggesting that species-specific and in situ community-level
investigations are warranted, particularly in regard fuel moisture and chemical
contents.
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INTRODUCTION

Flammability is the ability of vegetation (fuel) to burn (Fernandes ¢» Cruz, 2012; Gill &
Zylstra, 2005) and is a measure of fire behaviour relevant to studies of fire risk and fire
ecology (Keeley, 2009). Flammability can be assessed at the scale of the vegetation
community, the individual plant, or plant components in terms of ignitability (time-to-
ignition, or ignition frequency), combustibility (maximum temperature, or heat released,
and rate of burn), sustainability (burn duration), and consumability (completeness of
burn, or biomass consumed) (Anderson, 1970; Santacruz-Garcia et al., 2019). These
measures of flammability are affected by fuel traits, weather conditions and their
interactions (Bianchi & Defossé, 2015; Santana, Baeza & Vallejo, 2011; Saura-Mas et al.,
2010). Fuel traits, through their effects on flammability and fire behaviour, ultimately have
implications for fire risk management (Bond ¢ Midgley, 1995; Cowan ¢ Ackerly, 2010;
Fernandes ¢ Cruz, 2012).

Fuel traits that have relevance for flammability include fuel moisture content (or the
inverse, fuel dry matter content), carbon compounds (cellulose, hemicellulose, and lignin),
and volatile organic compounds (terpenes) (Behm et al., 2004; Midgley, 2013; White ¢
Zipperer, 2010), and traits that relate to the structural form of fuels such as fuel size, fuel
loading, bulk density, and fuel bed porosity (fuel sparseness; or the inverse, packing ratio)
(Burger & Bond, 2015; Saura-Mas et al., 2010; Viegas, 2006). Flammability has been
experimentally assessed in relation to fuel traits in several vegetation types of the world
(Cowan & Ackerly, 2010; Cui et al., 2020; Saura-Mas et al., 2010; Scarff & Westoby, 2006;
Schwilk, 2003). Such experiments have commonly considered the flammability of leaf litter
(e.g., Burton et al., 2021) or plant shoots (summarised in Supplemental S1), the latter being
the focus of our study concerning evergreen shrublands that sustain canopy fires. Although
burning of small plant components does not adequately represent whole plant- or
community-level flammability (Fernandes ¢» Cruz, 2012; Schwilk, 2015), experimental
approaches are useful first steps to understand concepts of flammability (Pausas &
Moreira, 2012). Alam et al. (2020) demonstrated that measurements of leaf flammability
are decoupled from shoot flammability, and that the latter is better correlated with in-field
expert observations of whole plant flammability. Generalisation of results from
flammability studies is furthermore complicated by their use of different measurement
methods and diverse expressions of flammability (Alam et al., 2020; Burton et al., 2021;
Schwilk, 2015; Wyse et al., 2016). Many studies have expressed flammability as a composite
measure (i.e., a flammability index) (Alessio et al., 2008; Burger ¢» Bond, 2015; Calitz, Potts
¢ Cowling, 2015; Santana & Marrs, 2014) or have concentrated on singular measures of
flammability or a select few fuel traits (Supplemental S1). These discrepancies along with
experimentation at different scales, or only indirect investigations of the relationships
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between fuel traits and flammability (Supplemental S1), render interpretation and
extrapolation of these relationships challenging.

Nonetheless, trends that commonly emerged from the literature include that fuel
loading increases flammability through increasing combustibility (Baeza et al., 2002;
Keeley, 2009; Saura-Mas et al., 2010; Simpson et al., 2016). Fuel moisture generally
depresses ignitability and the rate of fire spread (Alam et al., 2020; Alessio et al., 2008;
Bianchi & Defossé, 2015; Davies ¢ Legg, 2011; Dimitrakopoulos, 2001; Murray, Hardstaff ¢
Phillips, 2013; Saura-Mas et al., 20105 Simpson et al., 2016) as more energy is required to
heat moister fuels to combustion (Davies ¢» Nafus, 2013; Kane & Nuria, 2019).

The proportions of fine and dead fuels (in live plant shoots) consistently enhance
flammability by increasing ignitability and consumability but not sustainability (Burger ¢
Bond, 2015; Calitz, Potts & Cowling, 2015; Davies ¢ Legg, 2011; Santana & Marrs, 2014;
Schwilk, 2003; Supplemental S1), while coarse fuels reduce ignitability (Alam et al., 2020).
Fuel bed porosity shows inconsistent effects on flammability in different vegetation types
(Burger & Bond, 2015; Davies ¢ Legg, 2011; van Wilgen, Higgins & Bellstedt, 1990; Ward
et al., 1996).

Fuel properties of native vegetation may be modified by the presence of invasive alien
plants (IAPs) with knock-on effects on flammability and fire behaviour (Brooks et al., 2004;
Cubino et al., 2018; van Wilgen & Richardson, 1985; Wyse, Perry ¢ Curran, 2018). Fuels of
some IAPs contain volatile substances supporting fires of higher intensities (Alessio et al.,
2008; Behm et al., 2004; Wyse, Perry ¢ Curran, 2018). Rapid plant growth associated with
IAPs may also result in accumulation of excessive fuel loads (Brooks et al., 2004; Davies ¢
Nafus, 2013; Richardson ¢ van Wilgen, 2004). IAPs may furthermore modify the moisture
content of fuels (Murray, Hardstaff & Phillips, 2013), or the arrangement of fuel particles
compared to that of the native vegetation (Brooks et al., 2004; Murray, Hardstaff ¢» Phillips,
2013), for example, the vertical or horizontal continuity of fuels or the fuel bed porosity,
thereby increasing or decreasing the flammability of vegetation (Cubino et al., 2018; Cui
et al., 2020; Davies & Nafus, 2013; Richardson & van Wilgen, 2004). The modification of
fuel traits by IAPs may ultimately lead to additional ecological impacts if the native
vegetation responds to altered fire regimes (Brooks et al., 2004).

In June 2017, extreme fires along the southern Cape coast of South Africa burnt native
fynbos and thicket shrublands and caused extensive damage to timber plantations and
residential properties. After these fires, speculation was rife regarding the influence of
different vegetation types, and IAPs in particular, on the severity of these fires (e.g., De
Ronde, 2017). Woody IAPs commonly occur in the area and a study using satellite-derived
measures to assess variation in the severity of these fires at a landscape scale showed that
biomass consumption (and thus burn severity) was higher in vegetation in which invasive
alien trees and shrubs dominated than in the native fynbos and thicket vegetation (Kraaij
et al., 2018); also, that the burn severity in thicket, which is considered a fire-resistant
vegetation (Geldenhuys, 1994), was higher than in fynbos, which is considered fire-prone
and more flammable (Calitz, Potts & Cowling, 2015). Both fynbos and thicket burnt more
completely than the alien plant dominated vegetation with implications for subsequent
fuel availability and fire hazard (Kraaij et al., 2018). Although Kraaij et al. (2018)
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demonstrated discrepancies in burn severity among the vegetation types in the region,
mechanistic understanding of differences between common invasive and indigenous
woody plants’ fuel traits and various components of flammability is lacking.

Here we extended the investigation we conducted in Msweli et al. (2020) to assess
flammability in relation to fuel traits across species from three vegetation groups, namely
IAPs, native fynbos and thicket, that are common to the coastal parts of the Cape
Floristic Region of South Africa. Msweli et al. (2020) analysed flammability in relation
to 21 sampling days spanning a wide range of fire danger conditions, whereas here we
used the average of these values to explore relationships amongst flammability measures
and plant traits. Flammability measures considered were combustibility (maximum
temperature), consumability (completeness of burn), and ignitability (time-to-ignition),
whilst the fuel traits considered were live fuel moisture, dry biomass, fuel bed porosity and
the proportions of fine-, coarse- and dead fuels. Large plant shoots were used to facilitate
a more realistic assessment of canopy flammability. Ultimately, our aim in this study is
to improve the mechanistic understanding of the relationship between fuel traits and
flammability responses in temperate shrubland species.

MATERIALS AND METHODS
Study region

The study region occurs along the southern Cape coast of South Africa, close to the city of
George (33.964°S, 22.534°E), within the Cape Floristic Region. The climate is moderated
by the maritime influence with average minimum and maximum temperatures ranging
from 7-19 °C in June and 15-26 °C in January, and annual average rainfall of
approximately 800 mm distributed throughout the year (Bond, 1981). The area experiences
weather conditions suitable for fires at any time of the year and fires are often associated
with hot, dry katabatic (‘berg’) winds (Kraaij, Cowling ¢» van Wilgen, 2013; van Wilgen,
1984).

The vegetation of the study region is classified as Southern Cape Dune Fynbos which
consists of medium-dense sclerophyllous fynbos (~fine-leaved) shrublands up to 2 m
in height, interspersed with dense clumps of subtropical mesophyllous thicket shrubs or
trees up to 4 m in height (Mucina & Rutherford, 2006; Pierce & Cowling, 1984). Both
fynbos and thicket shrublands are evergreen. Fynbos shrublands are fire-prone and
flammable while smaller areas of thicket vegetation seldom burn (Kraaij & van Wilgen,
2014). The persistence of fynbos-thicket mosaics requires fire at appropriate intervals
(15-25 years) since thicket may become dominant in the prolonged absence of fire (Kraaij
& van Wilgen, 2014; Strydom et al., 2020, 2021). The region harbours extensive infestations
of woody IAPs, commonly of the genera Acacia, Eucalyptus, and Pinus (Baard ¢
Kraaij, 2014; van Wilgen et al., 2016), which are deemed to alter the occurrence and
behaviour of fires (Kraaij, Cowling ¢» van Wilgen, 2011; Kraaij et al., 2018).

Data collection
Flammability was assessed in relation to the fuel traits of 30 shrub species (Table 1) - ten
from each of the three vegetation groups: IAPs, fynbos, and thicket. All alien and native
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Table 1 Study species from three vegetation groups (invasive alien plants, fynbos, and thicket) for which flammability was assessed in relation

to fuel traits.

Invasive alien plants Fynbos Thicket

Fabaceae Asteraceae Anacardiaceae

Acacia cyclops G.Don Metalasia muricata (L.) D.Don Searsia lucida (L.) F.A Barkley
Acacia mearnsii De Wild. Passerina rigida Wikstr. Asteraceae

Acacia melanoxylon R.Br.

Acacia saligna (Labill.) Wendl

Myrtaceae

Callistemon viminalis (Sol. ex Gaertn.) G.Don
Eucalyptus camaldulensis Dehnh.
Leptospermum laevigatum (Gaertn.) F.Muell.
Pinaceae

Pinus pinaster Aiton

Pinus radiata D.Don

Solanacaeae

Cestrum laevigatum Schltdl.

Ericaceae

Erica canaliculata Andrews
Erica discolor Andrews
Fabaceae

Aspalathus spinosa L.

Proteaceae

Leucadendron eucalyptifolium H. Buek ex Meisn.

Rhamnaceae

Phylica axillaris Lam.

Rubiaceae

Cliffortia ericifolia E.Mey. ex Harv
Cliffortia ilicifolia L.

Rutaceae

Agathosma ovata (Thunb.) Pillans

Tarchonanthus littoralis P.P.J.Herman
Osteospermum moniliferum L.
Ebenaceae

Diospyros dichrophylla (Gand.) De Winter
Celastraceae

Cassine peragua L.

Gymnosporia buxifolia (L.) Szyszyl.
Pterocelastrus tricuspidatus Walp.
Salicaceae

Scolopia zeyheri (Nees) Szyszyl.
Santalaceae

Osyris compressa A.DC.

Sapotaceae

Sideroxylon inerme L.

Note:

Plant families are indicated, and nomenclature follows The Plant List (2013).

study species commonly occur in the coastal fynbos and thicket of the study region (Baard
¢ Kraaij, 2014; Rebelo et al., 2006; Strydom et al., 2020) and were chosen for ease of
material collection and to be representative of flammability of the vegetation of the region.

Flammability of plant shoots (hereafter samples) of the different species was

experimentally measured using the method and equipment described by Jaureguiberry,

Bertone ¢ Diaz (2011). The apparatus comprises a metal barrel (85 cm x 60 cm) that is

horizontally orientated with the top removable half that is used for wind protection (Baeza

et al., 2002). The metal barrel is connected to a grill thermometer, removable gas cylinder
and a blowtorch (Cubino et al., 2018; Jaureguiberry, Bertone ¢ Diaz, 2011). Samples
comprised sun-exposed terminal branches that were approximately 70 cm in length that

were representative of the fuel structure of the species. As detailed in Msweli et al. (2020),

the flammability experiments were conducted on 21 different occasions during

February-November 2018 across a range of weather conditions. Samples were kept in

closed plastic containers after collection prior to burning, and burning was completed

within 4 h of sample collection to minimise moisture loss. Samples were burnt outdoors

using an approach similar to that of Calitz, Potts ¢» Cowling (2015). Each sample was

placed on the barrel cavity grill to pre-heat at 230 °C for 2 min to imitate the heating and

drying effect of an approaching fire. If the samples had not spontaneously ignited within

two minutes, it was ignited at the top of the shoot by exposing it to the blow torch for a

period of five seconds (Calitz, Potts ¢ Cowling, 2015). Flammability measures recorded

were (i) combustibility, taken as the maximum temperature reached by the burning
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sample, measured using an infrared thermometer (Major Tech 695; maximum recordable
temperature: 800 °C) after Jaureguiberry, Bertone ¢ Diaz (2011) and Cui et al. (2020);
(ii) completeness of burn (consumability), calculated as the proportion of the pre-burn wet
mass of the samples that was consumed by the fire; and (iii) time-to-ignition (ignitability),
measured as the time elapsed between placement of the samples on the grill and
spontaneous ignition (appearance of the first flame). Samples that did not spontaneously
ignite within 120 s of pre-heating were ignited with a blow torch and assigned an arbitrary
time-to-ignition of 200 s (to be clearly differentiated from 120 s, but still depictable on
graph scales).

The wet mass of samples was recorded prior to conducting the flammability
experiments. On each of the 21 occasions that the flammability experiments were
performed, a duplicate set of plant samples were collected and oven-dried at 80 °C for 48 h
and reweighed to obtain dry fuel mass (Ruffault et al., 2018). Live fuel moisture content
was calculated as the percentage of wet mass that comprised water. The dry biomass of
samples was regarded to be a proxy for the fuel loading that samples presented. Seeing that
those samples subjected to flammability experiments could not be dried beforehand, the
dry biomass of burnt samples was estimated from their wet biomass prior to being burnt,
and the live fuel moisture content measured for the duplicate set of plant samples (where
dry biomass = pre-burn wet biomass — (pre-burn wet biomass x proportion of fuel
moisture)). For the flammability response variables, and for the fuel traits, namely live
moisture and dry biomass, we thus had 21 replicate values per species.

Other fuel traits of interest were the proportion of fine fuels, coarse fuels, dead fuels, and
fuel bed porosity. To measure these fuel structural traits, a one-off collection of six samples
per species was conducted, similar to those collected for the flammability experiments and
following the approach by Burger ¢ Bond (2015). Three samples were used to measure the
mass of live material in different fuel size classes. Each of these samples was separated
based on stem diameter into fine fuels (<3 mm) and coarse fuels (>6 mm) (in the interest of
brevity, we disregarded 3-6 mm fuels as results pertaining to this category mirrored those
of the fine fuels). Leaves were included in the stem diameter class to which they were
attached and the plant mass in each size class was weighed. The samples were also
separated into live and dead fuel material (twigs, branches, and leaves) and subsequently
weighed (respectively). The remaining three samples of each species were used to
determine fuel bed porosity, calculated as the canopy volume (based on the formula for the
volume of a cone, as this geometrical shape best approximated the shape of our shoot
samples) divided by the fuel volume (after Burger ¢> Bond, 2015). The latter was the volume
occupied by the samples and measured through means of volume displacement ina 5 L
measuring bucket.

Data analysis

The response variables (maximum temperature, completeness of burn, and time-to-
ignition) and fuel traits, namely live fuel moisture and dry biomass, were derived from
the flammability experiments using averages of the 21 replicates for each of the 30 sampled
species. The response variables did not violate assumptions of normality according to
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Table 2 Multiple regression model results for flammability (maximum temperature, completeness of burn, and time-to-ignition, respectively)
in relation to fuel traits as fixed factors, i.e., proportion of fine fuels, coarse fuels, dry biomass, and live fuel moisture.

Fine fuels Coarse fuels Dry biomass Fuel moisture Model statistics
Fixed factors t' Scaled est.”  t° Scaled est.” t* Scaled est.”  t* Scaled est.” F* R? adj.*
Maximum temperature -17  -032 3.8 0.68 -24%  -0.36 11.87  0.53
Completeness of burn 2.2% 0.45 1.9 0.37 -1.5 -0.27 4.54 0.27
Time-to-ignition -1.9  -033 1.7 4.87 0.21

Notes:
Results shown are for the preferred models
Significance codes: *p < 0.05, ***p < 0.001.

after stepwise selection (details in Supplemental S2).

* t statistic, F statistic, and R* adjusted (adj.) obtained from the multiple regression model output.
" Scaled estimates were derived from incorporating the scale function in the multiple regression model.

Shapiro-Wilk test (maximum temperature: W = 0.97, p = 0.66; completeness of burn:
W =0.96, p = 0.38; and time-to-ignition: W = 0.96, p = 0.27). For the other fuel traits,
namely the proportion of fine fuels, coarse fuels, and dead fuels, and fuel bed porosity
(ratio), we used averages of the three replicates measured per species. A combined dataset
was created for further analyses containing, for all the variables, the averages per species,
with the 30 species thus comprising unique data points.

All statistical analyses were performed in the open-source R software version 3.6.1 (R
Development Core Team, 2019). Multiple regression models fitted with the Im() function
(Chambers, 1992) were used to assess the relationships between flammability responses
(respectively) and the following fuel traits as fixed (explanatory) factors: (i) proportion of
fine fuels, (ii) proportion of coarse fuels, (iii) proportion of dead fuels, (iv) dry biomass,
(v) fuel bed porosity (ratio), and (vi) live fuel moisture (percentage). Stepwise model
selection based on the lowest Akaike information criterion (AIC) (Sakamoto, Ishiguro
¢ Kitagawa, 1986) was used to choose the best combination of fixed factors that could
potentially predict flammability responses (respectively), but results of the preferred
models were compared with those of the full models given potential bias associated with
stepwise selection procedures (Smith, 2018). The scale function (Becker, Chambers
¢ Wilks, 2018; Hastie & Pregibon, 1992) was incorporated to the multiple regression
models to standardize variables of different scales and obtain the relative influence of each
fixed factor. To test if the flammability responses and fuel traits differed among vegetation
groups (IAPs, fynbos, and thicket), we employed Kruskal-Wallis H test (as most of the fuel
trait variables did not conform to normality) and thereafter Dunn’s test for multiple
comparisons if significant differences occurred (Dunn, 1964).

RESULTS

Effects of fuel traits

The stepwise selection procedure retained different combinations of fixed factors for the
respective flammability responses, but the proportion of dead fuels and fuel bed porosity
were not retained by any of the preferred models (Table 2; detailed outputs in
Supplemental S2). Live fuel moisture was retained in the preferred models for all the
respective flammability measures, and lower live fuel moisture significantly increased
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maximum temperature (Table 2, Fig. 1). No significant relationships were found between
live fuel moisture and completeness of burn; live fuel moisture and time-to-ignition;
and fine fuels and time-to-ignition. Greater dry biomass increased combustibility by
significantly increasing maximum temperature. Amongst the assessed fixed factors, dry
biomass had the largest influence (i.e., the largest scaled estimates; Table 2) on maximum
temperature. Fine fuels significantly increased completeness of burn in the preferred
model, although it was not significant in the full model, where dry biomass, instead,
enhanced completeness of burn (Supplemental S3). Bar this discrepancy, the results from
the preferred models concurred with those of the full models (Supplemental S3).

Vegetation group comparisons

Maximum temperature and live fuel moisture did not differ significantly among the
vegetation groups, whereas completeness of burn, time-to-ignition, proportion of fine
fuels, proportion of coarse fuels, fuel bed porosity, and dry biomass differed significantly
(Fig. 2; details in Supplemental S4). Completeness of burn did not differ between species of
IAPs and fynbos but was significantly higher in these vegetation groups than in thicket
species. Time-to-ignition did not differ between species of IAPs and fynbos but was
significantly shorter in these vegetation groups than in thicket species. Fynbos species had
a significantly higher proportion of fine fuels than IAP species and thicket species, whereas
thicket species had a significantly higher proportion of coarse fuels than species of IAPs
and fynbos. Fuel bed porosity was significantly higher in fynbos species than in thicket
species, while IAP species did not differ from species of fynbos or thicket. Dry biomass was
significantly lower in fynbos species than in thicket species, while IAP species did not differ
from the other vegetation groups.

DISCUSSION

Relation between fuel traits and flammability

We assessed how the fuel traits of 30 woody shrub species affected their flammability. This
assessment was more comprehensive than most other studies of this nature (compare
Supplemental S1) in terms of the diversity of flammability measures and fuel traits
assessed, and the wide range of species from different vegetation types considered.

Our results confirmed a positive relationship between dry biomass (fuel loading) and
combustibility (maximum temperature). The enhancing effect of the amount of biomass
(fuel loading) that vegetation presents on combustibility, fire intensity or burn severity was
observed in several other studies (Keeley, 2009; Saura-Mas et al., 2010; Simpson et al., 2016)
at the scale of the individual plant (or plant components) and at vegetation community
scale. Accordingly, a positive relationship between fuel load and burn intensity was also
observed in Australian forests and woodlands, Californian shrublands, and South African
ecosystems (Kraaij et al., 2018; Schwilk, 2003; Simpson et al., 2016).

The proportion of fine fuels in our study enhanced completeness of burn and was
retained by the preferred model for time-to-ignition, exhibiting a weak positive
relationship with ignitability. However, the proportion of fine fuels did not influence
maximum temperature. Other flammability experiments conducted at the scale of plant
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shoots or plots in various vegetation types unanimously showed that fine fuels enhanced
flammability (Burger ¢» Bond, 2015; Calitz, Potts & Cowling, 2015; Santana ¢ Marrs, 2014;
Schwilk, 2003). Burger ¢ Bond (2015) found that the proportion of fine fuels and of dead
fuels were the most important factors governing completeness of burn in fynbos and forest
species, while dead fuel retention also enhanced completeness of burn in other systems
(Davies & Legg, 2011; Santana ¢ Marrs, 2014). In contrast to the findings of Burger ¢
Bond (2015), we found that the proportion of dead fuels did not affect any of the
flammability measures. This may be due to the sampling of sun-exposed (younger) branch
tips that had very little dead material (the maximum proportion of dead fuels in our study
was 0.10 vs. a mean for flammable species of 0.15 and a maximum of 0.41 reported by
Burger ¢ Bond, (2015)). In a study of the flammability of Mediterranean basin shrubs,
Pellizzaro et al. (2007) accordingly noted an absence of dead fuels on terminal branches.
The other factor that had no effect on flammability in our study was fuel bed porosity.
Likewise, fuel porosity had inconsistent effects among studies and on the different
components of flammability (Supplemental SI).
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The impeding effects of fuel moisture on flammability and fire behaviour are widely
recognized in different ecosystems such as shrublands and forests (Alam et al., 2020;
Alessio et al., 2008; Bianchi & Defossé, 2015; Davies ¢ Legg, 2011; Dimitrakopoulos, 2001;
Pausas et al., 2004; Santacruz-Garcia et al., 2019; Saura-Mas et al., 2010), although grasses,
despite high moisture contents, may ignite readily (Cubino et al., 2018) on account of small
leaf surface area that allows quick moisture evaporation to enable fuel ignition (Simpson
et al., 2016). In our study, live fuel moisture significantly reduced combustibility but did
not significantly affect completeness of burn and ignitability. Although live fuel moisture
was retained by the preferred models for all the flammability measures, the magnitude of
its effects on flammability was relatively low (small scaled estimates, Table 2). Some other
studies show strong relationships between fuel moisture and flammability measures (i.e.,
rate of spread and ignitability) (Alessio et al., 2008; Davies ¢ Legg, 2011; Dimitrakopoulos,
2001; Saura-Mas et al., 2010; Simpson et al., 2016), but also non-significant effects of fuel
moisture on flammability (Burger ¢ Bond, 2015; Cubino et al., 2018), or inconsistent
relations between fuel moisture and ignitability (Fletcher et al., 2007). Our study did not
show any overriding effects of live fuel moisture on flammability.

Generally, discrepancies in the scale of experimentation and the methods and measures
used severely complicated comparisons of the effects of fuel traits on flammability.

For instance, flammability of leaves may not resemble flammability of plant shoots (Alam
et al., 2020); flammability of leaves or shoots may not resemble whole plant flammability
(Wyse et al., 2016), which in turn may not resemble monospecific stand-level flammability
(Schwilk, 2003; Santana ¢ Marrs, 2014); and ultimately, extrapolation from species-level
flammability to community-level (species-mixes) flammability is complex (Cubino et al.,
2018; Wyse, Perry & Curran, 2018). The study of flammability also requires discernment
between canopy fires largely in live fuels, and surface fires in cured grass swards or leave
litter beds and thus largely dead fuels (Murray, Hardstaff ¢ Phillips, 2013; Simpson et al.,
2016), or combinations and thus transmission of fire between different fuel layers (Burton
et al., 2021; Santana ¢ Marrs, 2014). The methods used to achieve ignition in flammability
studies (whether fuels are dried beforehand, e.g., compare Burton et al., 2021; Cubino et al.,
2018; Murray, Hardstaff & Phillips, 2013; Wyse et al., 2016) furthermore has relevance for
meaningful interpretation of results. Drying of fuels prior to flammability assessment
would, for instance, be ill-suited to the investigation of flammability of evergreen
shrublands that sustain canopy fires (such as the study system). Hence, care needs to be
taken with extrapolation of flammability-trait relationships observed in limited
experiments to community-scale fire behaviour (Cubino et al., 2018), and with comparison
of flammability studies generally (such as our attempt in Supplemental S1).

Vegetation group comparisons

In line with the results of our earlier study that explored flammability in relation to fire
weather (Msweli et al., 2020), the averaged vegetation comparisons showed that species of
fynbos and IAPs exhibited greater flammability on account of higher completeness of burn
and more rapid ignition than thicket species. There was no apparent distinction between
fynbos species and IAP species in terms of their flammability, although there was a weak
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trend of IAPs burning at higher intensities than fynbos and thicket species. This aligns with
an investigation conducted at vegetation community scale which showed that burn
severity (deduced from the differenced Normalised Burn Ratio) in the extreme 2017 fires
in the region was higher in vegetation dominated by invasive alien plants than in native
thicket and fynbos (Kraaij et al., 2018). In the current study, species of fynbos and IAPs did
not differ in terms of most fuel traits investigated, except for the proportion of fine fuels.
In accordance with other studies that compared species from various South African
vegetation types (Burger ¢ Bond, 2015; Calitz, Potts & Cowling, 2015; van Wilgen, Higgins
¢ Bellstedt, 1990), fynbos species in our study had large proportions of fine fuels, high
porosity and low fuel loadings, which likely accounted for high flammability, and in
particular, ignitability. In addition, Burger ¢» Bond (2015), showed that flammability of
fynbos species was enhanced by a large proportion of dead fuels. Although not statistically
significant in our study, the proportion of dead fuel was somewhat higher in fynbos species
than in IAPs and thicket species.

IAP species displayed relatively high combustibility and consumability which could not
be clearly linked to the fuel traits examined. For instance, IAP species showed rapid
ignition comparable to that of fynbos species, despite their relatively high fuel loadings
approximating those of thicket species. Generally, IAP species presented a combination of
fire-prone (i.e., high fuel loading) and fire-resistant (i.e., low proportion of fine fuel and
low porosity) fuel traits which suggested that other fuel traits not accounted for, such as
volatile organic compounds (Dimitrakopoulos, 2001; Saura-Mas et al., 2010), likely
increased the flammability of IAPs. The 10 sample species of IAPs furthermore reflected a
random set of species with diverse origins rather than a community that evolved
collectively under a particular fire regime, which likely introduced variability in fuel traits
and flammability response. Accordingly, extreme outliers were evident in some
flammability measures, such as time to ignition (Fig. 2C), where Pinus radiata and Acacia
saligna displayed exceedingly rapid and slow ignition, respectively. These results prompt
for a more detailed investigation of flammability of IAPs in relation to their fuel traits at a
species-specific level and consideration of fuel chemical contents that may enhance
flammability (Burton et al., 2021; Santacruz-Garcia et al., 2019).

Thicket species had high proportions of coarse and dense fuels, which accounted for this
vegetation’s low flammability, as was also previously observed (Burger ¢ Bond, 2015;
Calitz, Potts ¢ Cowling, 2015; Pierce ¢» Cowling, 1984). Although continuous (~dense)
fuels generally facilitate fire spread (Keeley, 2009), high fuel density and coarse fuels can
limit oxygen supply to the fire and therefore reduce the rate of fire spread (Scarff &
Westoby, 2006). In our study, thicket species had high fuel loadings but low completeness
of burn, corresponding with the earlier study of the 2017 fires in the region which indicated
high fuel biomass, but small areas burnt, of thicket compared to fynbos vegetation (Kraaij
et al., 2018).

Live fuel moisture was indistinguishable among vegetation groups. The lack of
difference between the live fuel moisture contents of fynbos and thicket species, in
particular, was contrary to expectation, given that van Wilgen, Higgins ¢ Bellstedt (1990)
found foliar moisture content to be 50-100% higher in forest trees (which share many
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species with thicket; Strydom et al., 2021) than in fynbos. Msweli et al. (2020) found that,
compared to live fuel moisture, fire weather had more significant effects on flammability,
but that live fuel moisture did not correlate with fire weather conditions. Based on these
findings, Msweli et al. (2020) argued that the importance of live fuel moisture for
flammability of evergreen shrublands likely rests on inter-specific and inter-vegetation
type differences in fuel moisture contents. However, here we found no significant
differences between the fuel moisture contents of common species from the assessed
vegetation types. Likewise, flammability differences between seeding and non-seeding
species in the Mediterranean Basin could not be attributed to differences in fuel moisture,
and chemical content was invoked as a potential contributing factor (Saura-Mas et al,
2010). Live fuel moisture still warrants further investigation at species-level, but does not
appear to primarily account for differences in flammability among the vegetation groups
considered in our study.

CONCLUSIONS

This study of flammability in relation to fuel traits of a diversity of native and alien invasive
shrub species showed that increases in fuel loading and reductions in live fuel moisture
enhanced combustibility, whereas increases in fine fuels enhanced consumability. Fuel bed
porosity and the proportion of dead fuels had little effect on flammability. Little distinction
in flammability was evident between species of IAPs and fynbos, but both these vegetation
groups were significantly more ignitable than thicket species. Fuel traits most notably
associated with particular vegetation types included large proportions of fine fuels in
fynbos species, and high fuel loading and coarse fuels in thicket species. Surprisingly, live
fuel moisture did not differ among the vegetation groups and did not have major effects on
flammability. Detailed species-level investigation of flammability in relation to fuel traits,
including fuel chemical composition, is suggested to inform the fire risk posed by
particular IAP species relative to native vegetation. Such assessments will have relevance

for future management of fire regimes.
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