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ABSTRACT
Purpose. Sepsis-induced liver failure is a kind of liver injury with a high mortality,
and ferroptosis plays a key role in this disease. Our research aims to screen ferroptosis-
related genes in sepsis-induced liver failure as targeted therapy for patients with liver
failure.
Methods. Using the limma software, we analyzed the differentially expressed genes
(DEGs) in the GSE60088 dataset downloaded from the Gene Expression Omnibus
(GEO) database. Clusterprofiler was applied for enrichment analysis of DEGs enrich-
ment function. Then, the ferroptosis-related genes of the mice in the FerrDb database
were crossed with DEGs. Sepsis mice model were prepared by cecal ligation and
perforation (CLP). ALT and AST in the serum of mice were measured using detection
kit. The pathological changes of the liver tissues in mice were observed by hematoxylin-
eosin (H & E) staining. We detected the apoptosis of mice liver tissues using TUNEL.
The expression of Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36 were detected by
qRT-PCR.
Results. DEGs analysis showed 136 up-regulated and 45 down-regulated DEGs.
Meanwhile, we found that the up-regulated DEGs were enriched in pathways including
the cytokine biosynthesis process while the down-regulated DEGs were enriched
in pathways such as organic hydroxy compound metabolic process. In this study,
seven genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36) were obtained
through the intersection of FerrDb database and DEGs. However, immune infiltration
analysis revealed that ferroptosis-related genes may promote the development of liver
failure through B cells and natural killer (NK) cells. Finally, it was confirmed by the
construction of septic liver failure mice model that ferroptosis-related genes of Hmox1,
Slc3a2, Jun and Zfp36 were significantly correlated with liver failure and were highly
expressed.
Conclusion. The identification of ferroptosis-related genes Hmox1, Slc3a2, Jun and
Zfp36 in the present study contribute to our understanding of themolecularmechanism
of sepsis-induced liver failure, and provide candidate targets for the diagnosis and
treatment of the disease.
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INTRODUCTION
Around 30 million people are affected by sepsis worldwide every year (Huang, Cai & Su,
2019). Multiple factors contribute to the pathogenesis of sepsis, and the liver plays a central
role in sepsis (Kasper et al., 2020). Revealed by some researches, many acute phase proteins
and inflammatory cytokines are produced in sepsis-induced liver failure (Horvatits et al.,
2019). Pathogens or toxins in sepsis reach the liver through blood, and then the liver
macrophages can recognize and phagocytose pathogens (Kasper et al., 2020). However,
the released pro-inflammatory cytokines will in turn induce liver inflammation, thereby
activating apoptosis signaling pathway and leading to liver failure (Strnad et al., 2017).
Although progresses have been made in the medical level, sepsis is still not effectively
treated (Singer et al., 2016). Therefore, our research conducted an in-depth study on
sepsis-induced liver failure.

Ferroptosis is a novel mechanism of cell death regulation (Stockwell et al., 2017).
Ferroptosis was also revealed in liver injury, inflammation and other diseases (Wang
et al., 2017). Irisin can inhibit ferroptosis and restore mitochondrial function in sepsis
(Wei et al., 2020). Downregulating HO-1 expression and iron concentration can reduce
ferroptosis, thereby attenuating myocardial cell injury in sepsis (Wang et al., 2020a). In
addition, ferroptosis exert its action in regulating liver diseases, including liver failure,
hepatocellular carcinoma, liver fibrosis, and liver ischemic injury (Kim, Cho & Ki, 2020).
Therefore, we hope through bioinformatics technology to quickly find ferroptosis-related
genes in sepsis-induced liver failure,making thempossibly being used for the early diagnosis
of sepsis-induced liver failure and thus providing new ideas for the clinical treatment of
the disease.

In this study, we first analyzed the differentially expressed genes (DEGs) in the GSE60088
dataset using the limma software package. Then, we take intersection of the ferroptosis-
related genes of mice in the FerrDb database with DEGs to obtain ferroptosis-related
genes. Finally, we verified the expression of ferroptosis-related genes in liver tissues by
constructing sepsis-induced liver failure mice model. In summary, the ferroptosis-related
genes we studied in this research can provide new therapeutic targets for patients with
sepsis-induced liver failure.

METHODS
Data acquisition
We downloaded the original CEL data of GSE60088 from the GEO database (http:
//www.ncbi.nlm.nih.gov/geo/), which contained the gene data of 27 mice sepsis models
(sepsis model was established by Staphylococcus aureus) and the controls. Five liver failure
samples and three control samples were selected for subsequent analysis. The CEL file was
first processed using the affy software package, and the RMA algorithm was applied for
standardization.

DEGs analysis
We performed differential gene expression analysis of the liver failure in the GSE60088
dataset using the limma (Version: 3.42.2) software package (Ritchie et al., 2015), and the
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Volcano plot and heatmap were correspondingly drawn. Adjusted P values (adj. P) < 0.05
and |logFC|>1 were set as the cutoff criterion to select DEGs for every dataset microarray,
respectively (Chen et al., 2021).

Functional enrichment analysis
Gene Ontology (GO) (Chen et al., 2017) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Wrzodek, Drager & Zell, 2011) pathway enrichment analysis was conducted using
ClusterProfiler for both the up-regulated and down-regulated genes in the GSE60088
dataset (Xu et al., 2021), and the enrichment results were screened with padj < 0.05 as the
threshold.

Identification of ferroptosis-related genes
We obtained a total of 107 ferroptosis-related genes of mice from the FerrDb (http:
//www.zhounan.org/ferrdb/legacy/index.html) database. The ferroptosis-related genes
related to liver failure were obtained by crossing the ferroptosis-related genes with the
DEGs.

Validation of ferroptosis-related genes
We downloaded the GSE199598 dataset (containing four control samples and four sepsis
liver tissue samples from mice) and the GSE95233 dataset (containing 22 control samples
and 102 samples from patients with sepsis) from the GEO. The R package ‘ggplot2’ was
used to draw the expression boxplots of ferroptosis-related genes for validation (Wu et al.,
2021).

Immune infiltration analysis
Infiltration analysis of 22 types of immune cells was performed on the liver failure group and
the control group using ‘‘CIBERSORT’’ (https://cibersort.stanford.edu/) in the R package
(P < 0.05) (Newman et al., 2015). Differential immune cells in the liver failure group and
the control group were screened by boxplot. Meanwhile, correlation analysis of 22 types of
immune cells was conducted using R software.

Preparation of sepsis-induced liver failure mice model
The mice model of CLP-induced sepsis-induced liver failure was established using the
C57BL/6 male mice aged from six to eight weeks (Hangzhou Medical College, China,
Hangzhou). The mice were housed in ventilated cages (22 ◦C, 40–60% humidity, 12-hour
light/dark cycle) with food and water. The animal experiment in this research has been
approved by the Institutional Animal Care and Use Committee (IACUC), Zhejiang
Provincial Committee for Laboratory Animal (ZJCLA) (Approval No. ZJCLA-IACUC-
20010070). First, the cecum of mice was ligated after anesthesia and punctured with a
needle. Then, we extruded the feces of mice from the puncture wound and sutured the
wound. After the operation, sterile saline solution was subcutaneously injected in mice
(0.9%). The successful modeling of sepsis-induced liver failure mice model was indicated
if the systemic inflammatory response reached the peak at 12 h after the operation, and
the mice had symptoms such as erect hair, diarrhea and pyuria. After 12 h of CLP-induced
sepsis-induced liver failure in the mice model, the whole body serum of the mice was
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collected by cardiac puncture for subsequent experiments. All mice were euthanized by
CO2 asphyxiation after the experiment. In addition, mice without ligation and puncture
were included in the sham operation group (Sham group), namely the control group.

Serum ALT and AST measurement
Serum ALT and AST were determined using the detection kit (Invitrogen, Waltham, MA,
USA), and the contents of ALT and AST in plasma were determined according to the
manufacturer’s instructions.

Hematoxylin-eosin (H & E) staining
The liver tissues of mice were fixed in 4% paraformaldehyde for 24 h, embedded in paraffin
and prepared into 5 µm slices. Then, the liver tissue slices were stained with hematoxylin
and eosin (Invitrogen, Waltham, MA, USA) reagent. Finally, the pathological changes of
mice liver tissues were observed under a microscope.

TUNEL detection
The apoptosis of mice liver tissues was detected using TUNEL (Invitrogen, Waltham,
MA, USA). According to the operating instruction manual of TUNEL detection kit (Merck
Millipore, Darmstadt, Germany), the liver tissue sections of mice were stained with TUNEL
reagent to determine the apoptosis of liver tissues. Finally, the apoptosis was observed under
an optical microscope.

qRT-PCR assay
The total RNA of the samples was obtained using the Trizol kit (Invitrogen, Waltham,
MA, USA), and cDNA was synthesized using the reverse transcription kit (Invitrogen,
Waltham, MA, USA) and detected by real-time quantitative PCR. With GAPDH as the
internal reference, the relative gene expression levels of Hmox1, Epas1, Sirt1, Slc3a2,
Jun, Plin2 and Zfp36 were calculated by 2−11CT method. The primer pairs applied for
qRT-PCR in Table 1.

Statistical processing
GraphPad prism 9.0 software (Graphpad, San Diego, CA, USA) was applied for t test
or one-way ANOVA (analysis of variance), and P < 0.05 was considered statistically
significant.

RESULTS
DEGs analysis
Five sepsis models and three controls ofmice in the GSE60088 dataset were processed by the
affy software package to obtain the boxplot (Fig. 1A). A total of 181 DEGs (Supplementary
Material 1) in the sepsis models and the controls were revealed by analysis of the Volcano
plot and Heatmap of DEGs, including 136 up-regulated and 45 down-regulated DEGs
(Figs. 1B, 1C).
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Table 1 The primer pairs applied for qRT-PCR.

Forward primer 5′–3′ Reverse primer 5′–3′

Hmox1 ACCGCCTTCCTGCTCAACATTG CTCTGACGAAGTGACGCCATCTG
Epas1 ACAACCTCCTCCCACTCCTTTCC TCCGAGAGTCCCGCTCAATCAG
Sirt1 CCAGACCTCCCAGACCCTCAAG GTGACACAGAGACGGCTGGAAC
Slc3a2 GCAGGACGGTGTGGATGGTTTC ATTCTGCCACTCAGCCAAGTACAAG
Jun CTTCTACGACGATGCCCTCAACG GCCAGGTTCAAGGTCATGCTCTG
Plin2 GCAACAGAGCGTGGTGATGAGAG CTGACATAAGCGGAGGACACAAGG
Zfp36 TCTGAGTGACAAGTGCCTACCTACC GTCCCCACAGCAATGAGCAGTC
GAPDH AGGAGAGTGTTTCCTCGTCC TGCCTGAGTGGAGTCATAC

Figure 1 DEGs analysis. (A) Boxplot diagram of the DEGs in the GSE60088 dataset. (B) Volcano plot of
the DEGs in the GSE60088 dataset. (C) Heatmap of the DEGs in the GSE60088 dataset.

Full-size DOI: 10.7717/peerj.13757/fig-1

Functional enrichment analysis
Furthermore, we explored the functions and enrichment pathways of DEGs in this research,
and conducted GO and KEGG enrichment analysis on the up- and down-regulated DEGs
in the GSE60088 dataset. Great differences in the functions of DEGs were indicated by
the results of analysis. The up-regulated DEGs were mainly enriched in pathways such
as cytokine production process, acute inflammatory response, TNF signaling pathway,
NF-kappa B signaling pathway and IL-17 signaling pathway (Figs. 2A, 2B, Supplementary
Material 2 and SupplementaryMaterial 3). The down-regulatedDEGsweremainly enriched
in pathways such as organic hydroxy compound metabolic process, monocarboxylic acid
production process, steroid hormone production, drug metabolism-other enzymes and
bile secretion (Figs. 2C, 2D, Supplementary Material 4 and Supplementary Material 5).

Screening of ferroptosis-related genes
Seven differentially expressed ferroptosis-related genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun,
Plin2 and Zfp36) were obtained through the intersection of ferroptosis-related genes in
the FerrDb database with DEGs in the GSE60088 dataset, and all of these genes were
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Figure 2 GO and KEGG enrichment analysis of DEGs. (A) GO enrichment analysis of the up-regulated
DEGs. (B) KEGG enrichment analysis of the up-regulated DEGs. (C) GO enrichment analysis of the
down-regulated DEGs. (D) KEGG enrichment analysis of the down-regulated DEGs.

Full-size DOI: 10.7717/peerj.13757/fig-2
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Figure 3 Screening of ferroptosis-related genes. (A) Expression of ferroptosis-related genes. (B) Corre-
lation analysis of ferroptosis-related genes. (C) Enrichment analysis of the seven genes.

Full-size DOI: 10.7717/peerj.13757/fig-3

up-regulated in liver failure (Fig. 3A). At the same time, a significant positive correlation
between the seven genes was indicated by Pearson correlation analysis, and the correlation
between Slc3a2 and Plin2 was the strongest (Cor = 0.97, Fig. 3B). Then, we performed
enrichment analysis on the seven genes using the metascape software (Fig. 3C, Table 2).
Results showed that Hmox1, Sirt1 and Slc3a2 were enriched in the ko04216 ferroptosis
pathway; Hmox1, Epas1, Sirt1 and Jun were enriched in the regulation of transcription
from RNA polymerase II promoter in response to stress; Hmox1, Epas1, Sirt1, Slc3a2, Jun
and Zfp36 were enriched in the regulation of epithelial cell proliferation; Hmox1, Sirt1 and
Zfp36 were enriched in the negative regulation of cytokine production.

Validation of ferroptosis-related genes
We validated the expression of the seven ferroptosis-related genes in GSE199598
(containing four control samples and four sepsis liver tissue samples from mice) and
GSE95233 (containing 22 control samples and 102 samples from patients with sepsis)
datasets. According to the validation results of the GSE199598 dataset, the expression levels
of the seven ferroptosis-related genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36)
were all up-regulated, which was consistent with the results of the GSE60088 dataset (Fig.
4A). In addition, based on the validation results of the GSE95233 dataset, the expression
levels of the seven ferroptosis-related genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and
Zfp36) were also significantly up-regulated, and Sirt1 and Zfp36 were not significant (Fig.
4B), which was still consistent with the results from the GSE60088 dataset.
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Table 2 Enrichment pathways of the seven genes.

GO Terms Gene

GO:0043618 regulation of transcription from RNA
polymerase II promoter in response to stress

Hmox1, Epas1, Sirt1, Jun

GO:0050678 regulation of epithelial cell proliferation Hmox1, Epas1, Sirt1, Slc3a2, Jun, Zfp36
GO:0043619 regulation of transcription from RNA
polymerase II promoter in response to oxidative stress

Hmox1, Epas1, Jun, Zfp36

ko04216 Ferroptosis Hmox1, Sirt1, Slc3a2
GO:0001818 negative regulation of cytokine production Hmox1, Sirt1, Zfp36
GO:0010883 regulation of lipid storage Sirt1, Plin2
GO:0010890 positive regulation of sequestering of
triglyceride

Slc3a2, Plin2

Figure 4 Expression of seven ferroptosis-related genes. (A) Expression of seven ferroptosis-related
genes in the GSE199598 dataset. (B) Expression of seven ferroptosis-related genes in the GSE95233
dataset.

Full-size DOI: 10.7717/peerj.13757/fig-4

Immune infiltration analysis
We also analyzed the immune infiltration of the samples, and the immune infiltration
bar chart and the boxplot of the differential immune cells between the liver failure group
and the control group were drawn accordingly (Figs. 5A, 5B). Significant differences in B
cells, natural killer (NK) cells and M2 macrophages were revealed by further analysis, and
the number of B cells and NK cells in the liver failure group increased significantly, while
the number of M2 macrophages decreased. Besides, we performed correlation analysis on
the three kinds of differential immune cells and seven differentially expressed ferroptosis-
related genes (Fig. 5C). These results revealed that B cells and NK cells were positively
correlated with the seven ferroptosis-related genes, and the correlation between NK cells
and Hmox1 was the strongest (cor = 0.88). However, M2 macrophages was negatively
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Figure 5 Analysis of the immune infiltration. (A) Immune infiltration strip map. (B) Differential immune cell boxplot map between the liver fail-
ure group and the control group. (C) Correlation analysis between immune cells and ferroptosis-related genes.

Full-size DOI: 10.7717/peerj.13757/fig-5

correlated with the ferroptosis-related genes, and the negative correlation between M2
macrophages and Hmox1 was the strongest (cor = −0.81).

Expression of ferroptosis-related genes verified by animal experiments
Our research verified the expression of ferroptosis-related genes by constructing a sepsis-
induced liver failure mice model. Firstly, serum biochemical markers ALT and AST
reflecting the liver function were analyzed. Compared with the sham group, the levels of
serum ALT and AST in the CLP group were significantly increased (Fig. 6A, P < 0.05).
Meanwhile, the pathological changes of the liver tissues in mice were observed by H & E
staining. Focal and extensive necrosis was found in the liver tissues of mice in the CLP
group (Fig. 6B). Besides, through TUNEL staining, the apoptosis rate in the liver tissues of
mice in the CLP group was found to be higher than that in the Sham group (Fig. 6C). The
mice model was successfully established in this study.

The qRT-PCR results showed that compared with the sham group, the mRNA
expressions of Hmox1, Slc3a2, Jun and Zfp36 in the CLP group were significantly up-
regulated, which was consistent with the conclusion drawn from bioinformatics, while the
expressions of Sirt1, Epas1 and Plin2 were down-regulated (Fig. 6D). In summary, our
research confirmed through animal experiments that ferroptosis-related genes Hmox1,
Slc3a2, Jun and Zfp36 were significantly correlated with and highly expressed in liver
failure.

DISCUSSION
Sepsis is a kind of host system reaction caused by pathogenic microorganisms in blood
circulation, causing severe systemic inflammation (Hawiger, Veach & Zienkiewicz, 2015).
Macrophages are activated under the stimulation of cytokines in sepsis such as macrophage
colony-stimulating factors, TNF-α, pathogenic microorganisms and chemical mediators,
and then the activated macrophages phagocytize and kill a variety of pathogens and present
antigens (Xing et al., 2012). Now, the incidence of sepsis is still increasing (Kumar, 2018).
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Figure 6 Expression of ferroptosis-related genes verified through animal experiments. (A) Determi-
nation of serum ALT and AST in mice, compared with the Sham group, ***P < 0.001. (B) H & E detection
of the pathological changes of mice liver tissues. (C) The apoptosis in the liver tissues of mice detected by
TUNEL. (D) The expression of ferroptosis-related genes in the liver tissues detected by qRT-PCR, com-
pared with the Sham group, *P < 0.05, **P < 0.01, ***P < 0.001.

Full-size DOI: 10.7717/peerj.13757/fig-6

Therefore, our research hope to obtain new therapeutic targets for sepsis-induced liver
failure.

Ferroptosis plays a key role in sepsis organ damage (Li et al., 2020). Therefore, we
screened the ferroptosis-related genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36)
in this study through bioinformatics analysis, and found that these genes were highly
expressed in sepsis-induced liver failure model. At the same time, we verified in the
GSE199598 dataset (mouse) and the GSE95233 dataset (human) that the expression
levels of Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36 were all up-regulated, which
were in line with the results of the GSE60088 dataset. In addition, it was found through
immune infiltration analysis in this study that ferroptosis-related genes may promote the
development of sepsis-induced liver failure through B cells and NK cells.
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B cells are considered to have protective functions in sepsis, including antibody-
dependent and non-dependent mechanisms (Kelly-Scumpia et al., 2011). However, B
cells of sepsis undergo massive apoptosis, and release PAMP and DAMP (Hotchkiss et
al., 2002; Jensen et al., 2021). Some researches found that serum IgM and IgG antibody
concentrations are elevated under sepsis induction (Nicolai et al., 2020b). Reactive
antibodies of B cells dominate in sepsis among the main humoral immune responses
in the human body (Nicolai et al., 2020a).

NK cells are a kind of important natural immune cells (Otto et al., 2011). Severe
infections and even deaths can be caused by the increase of T and NK cell apoptosis
in sepsis (Athie-Morales, O’Connor & Gardiner, 2008). In addition, IL-18R of NK cells is
reduced in sepsis mice (Hiraki et al., 2012). However, in another study, mice with NK cells
deficiency demonstrate lower survival rate and higher levels of pro-inflammatory cytokines
(Guo et al., 2017).

Besides, neutrophils and natural killer T cells are also involved in the sepsis-related
liver failure (Strnad et al., 2017;Wang, Yin & Yao, 2014). These cells exacerbate liver injury
in sepsis by secreting pro-inflammatory cytokines (Heymann & Tacke, 2016). Immune
infiltration analysis showed that Hmox1 was closely associated with NK cells in Alzheimer’s
disease (Wu et al., 2021). Upregulation of Slc3a2 enhances the tumor specificity of NK
cells (Nachef et al., 2021). Deletion of Slc3a2 in B cells disrupts processes such as B cell
proliferation, plasma cell formation, and antibody secretion (Cantor et al., 2011). The
Zfp36 gene is expressed during B-cell development and promotes the recruitment of
Zfp36 gene target mRNAs (Akiyama & Yamamoto, 2021). Meanwhile, bioinformatics
analysis indicated that the expression levels of Jun and Zfp36 were correlated with NK-cell
infiltration (Dong et al., 2022). In general, the conclusions drawn from these reports are
consistent with the results in our research, that is, Hmox1, Epas1, Sirt1, Slc3a2, Jun,
Plin2 and Zfp36 collectively promote the development of sepsis-induced liver failure by
interacting with B cells and NK cells.

We also used a mouse model of sepsis-induced liver failure, and confirmed through
qRT-PCR detection that ferroptosis-related genes Hmox1, Slc3a2, Jun and Zfp36 were
significantly correlated with sepsis-induced liver failure. Hmox1 is a kind of stress protein-
encoded gene. In addition, some researches show that Hmox1 protects against heme injury
(Ning et al., 2020), and can regulate Hmox1 protein expression in response to oxidative
damage, including the oxidative damage in sepsis (Piantadosi et al., 2011;Vazquez-Armenta
et al., 2013). Hmox1 was confirmed in this study playing an important role in sepsis.

Slc3a2 plays important roles in tumor growth and oxidative stress control (Digomann,
Linge & Dubrovska, 2019). Upregulating Slc3a2 can activate the pro-inflammatory
cytokines in lymphocyte effector and regulate cell metabolism, growth and proliferation
(Nachef et al., 2021). T cell expansion can be prevented by the loss of Slc3a2 of effector
molecules in NK cells (Cibrian et al., 2020). These reports are consistent with the results of
immune infiltration analysis in this research.

Jun is a variety of gene encoding c-Jun protein and a key downstream target of JNK
pathway (Vogt, 2002). However, c-jun has been considered as a key mediator in tumor
progression (Ge et al., 2020; Miao & Ding, 2003; Wang et al., 2020b), playing antiapoptotic

Chen et al. (2022), PeerJ, DOI 10.7717/peerj.13757 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.13757


role in many tumors (Eferl et al., 2003; Vleugel et al., 2006). However, Jun has not been
studied in sepsis, sowe demonstrated Junmay be a new therapeutic target for sepsis-induced
liver failure in this research.

Zfp36, as a kind of RNA-binding protein gene, is also one of the cytoplasmic
mRNA regulators (Tiedje et al., 2016). Zfp36 expression is down-regulated in a variety
of tumors (Montorsi et al., 2016). Interestingly, Zfp36 exerts influence in the treatment of
hepatocellular carcinoma by regulating PRC1 (Chen et al., 2020), while it also plays an anti-
tumor role through the knockdown of Zfp36 expression to affect inflammation,metabolism
and cell proliferation (Krohler et al., 2019). Zfp36 protein binds to AU-rich elements in the
3′UTR of the corresponding mRNAs to inhibit the expression of inflammatory cytokines
and promote the resolution of inflammation (Joe et al., 2020). Meanwhile, up-regulating
the expression of Zfp36 gene can suppress the inflammatory response and induce the
autophagy to clear bacteria in sepsis model mice, thereby improving sepsis outcomes (Joe
et al., 2020). Our research also proved that Zfp36 is closely related to sepsis-induced liver
failure. In summary, shown by the above reports, Hmox1, Slc3a2, Jun and Zfp36 play
important roles in sepsis, which are consistent with our findings.

To sum up, themain advantage of our research lies in the screening of ferroptosis-related
genes (including Hmox1, Slc3a2, Jun and Zfp36) in sepsis-induced liver failure. First,
ferroptosis-related genes were screened through bioinformatics analysis in sepsis-induced
liver failure. Second, we performed immune infiltration analysis on these ferroptosis-related
genes and found that they may promote the development of liver failure through B cells
and NK cells. In addition, we constructed a mouse model, and confirmed through H
& E staining, TUNEL staining and qRT-PCR that Hmox1, Slc3a2, Jun and Zfp36 were
significantly related to sepsis-induced liver failure. As a result, Hmox1, Slc3a2, Jun and
Zfp36 may become new therapeutic targets for sepsis-induced liver failure in the future.
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