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Soldiers in active military service need optimal physical fitness for successfully carrying
out their operations. Therefore, their health status is regularly checked by army doctors.
These inspections include physical parameters such as the body-mass index (BMI),
functional tests, and biochemical studies. If a medical exam reveals an individual's excess
weight, further examinations are made, and corrective actions for weight lowering are
initiated. The collection of urine is non-invasive and therefore attractive for frequent
metabolic screening. We compared the chemical profiles of urinary samples of 146 normal
weight, excess weight, and obese soldiers of the Mexican Army, using untargeted
metabolomics with liquid chromatography coupled to high-resolution mass spectrometry
(LC-MS). In combination with data mining, statistical and metabolic pathway analyses
suggest increased S-adenosyl-L-methionine (SAM) levels and changes of amino acid
metabolites as important variables for overfeeding. We will use these potential biomarkers
for the ongoing metabolic monitoring of soldiers in active service. In addition, after
validation of our results, we will develop biochemical screening tests that are also suitable
for civil applications.
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ABSTRACT18

Soldiers in active military service need optimal physical 昀椀tness for successfully carrying out their operations.
Therefore, their health status is regularly checked by army doctors. These inspections include physical
parameters such as the body-mass index (BMI), functional tests, and biochemical studies. If a medical
exam reveals an individual’s excess weight, further examinations are made, and corrective actions for weight
lowering are initiated. The collection of urine is non-invasive and therefore attractive for frequent metabolic
screening. We compared the chemical pro昀椀les of urinary samples of 146 normal weight, excess weight, and
obese soldiers of the Mexican Army, using untargeted metabolomics with liquid chromatography coupled
to high-resolution mass spectrometry (LC-MS). In combination with data mining, statistical and metabolic
pathway analyses suggest increased S-adenosyl-L-methionine (SAM) levels and changes of amino acid
metabolites as important variables for overfeeding. We will use these potential biomarkers for the ongoing
metabolic monitoring of soldiers in active service. In addition, after validation of our results, we will develop
biochemical screening tests that are also suitable for civil applications.
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1 INTRODUCTION32

Manyprofessionals require a certain level of physical 昀椀tness for theirwork, particularly 昀椀rst-line33

responders such as 昀椀re昀椀ghters, paramedics, andmilitary personnel. To ensure their operability,34

they require, in addition to training, good eating habits and periodic review of their health35

status.36

Overweight and obesity are present in most populations and are the origin of numerous37

metabolic diseases (Kaplan, 1989; Tchernof and Després, 2013; Cirulli et al., 2019). The World38

Health Organization (WHO) recognizes obesity as a global epidemic (James, 2008).39

In Mexico, the prevalence of overweight and obesity is dramatically high at about 75% (In-40

stituto Nacional de Salud Pública (MX), 2018). Thus, the Mexican official standard NOM-008-41

SSA3-2010 for the comprehensive management of obesity de昀椀nes obesity as a public health42

problem in Mexico due to its magnitude and impact. Criteria for health management should43

support the early detection, prevention, comprehensive treatment, and control of the growing44

number of patients (Secretaría de Gobernación (MX), 2010).45

Soldiers of the Mexican Army have regular exams of their health state by a military doc-46

tor. Since overweight and obese soldiers could present risks for their own health and missions,47

mainly in the special bodies such as paratroopers, they are sent to loseweight in particular train-48

ing camps such as the “Center for improving lifestyle and health” in Mexico City. Furthermore,49

the social security institute’s law for the Mexican Armed Forces considers soldiers with a Body50

Mass Index (BMI) greater than 30 as incapable of active service (Cámara de Diputados (MX),51
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2019). This medical assessment of the soldiers measures vital signs, weight, height, calculating52

the BMI, clinical history, and a meticulous clinical examination of the body’s apparatus and53

systems. Additional laboratory and cabinet studies are indicated if the doctor identi昀椀es alter-54

ations or abnormalities in these clinical analyses. All these studies could reveal possible dis-55

eases. However, for the case of overweight and obesity, the diagnosis is currently only based56

on the calculation of the BMI without considering important aspects such as the patient’s phys-57

iological and metabolic status.58

Metabolites in body 昀氀uids can be analyzed to assess the nutrition and endogenous changes59

associated with overweight and obesity, using techniques such as nuclear magnetic resonance60

(NMR) and mass spectrometry (MS) (Xie et al., 2012; Zhang et al., 2013). Usually, invasive61

studies such as blood analyses explore the patients’ metabolic changes and monitor corrective62

actions. On the other hand, non-invasive tests are generally limited to phenotypic measure-63

ments such as body mass index.64

Analyzing urine would be more convenient for patients and provide information on the65

metabolism and pathways involved in particular conditions (Braga, 2017). Urine is a bio昀氀uid66

that contains di昀昀erent molecules generated by the organism’s metabolism that must be elimi-67

nated and represents an excellent source of human sample material because it is available non-68

invasively. Typically, various molecules are altered simultaneously in diseased people (Bruz-69

zone et al., 2021).70

Arti昀椀cial intelligence andmachine learning algorithms can supportmedical diagnosis (Hatwell71

et al., 2020). Classi昀椀cation is the most widely implemented machine learning task in the med-72

ical sector, employing, for example, the Adaptive Boost algorithm (Freund, 2001). Adaptive73

Boost pre-processing also helps to select the most important features automatically from high74

dimensional data and decision trees (Rangini and Jiji, 2013).75

This study used untargeted metabolomics based on mass spectrometry to analyze urine76

from military personnel with normal and excess weight (overweight and obesity). Using Ada77

Boost data mining, we created a classi昀椀cation model and identi昀椀ed possible biomarkers for78

monitoring the metabolic state of soldiers and the early diagnosis of deviations.79

2 MATERIALS AND METHODS80

2.1 Participants and sample preparation81

Participants were recruited from the Military Medical Sciences Center, Mexico City, Mexico.82

Inclusion criteria were: both sexes, active military service, and signed consent to participate83

voluntarily. Participants answered a questionnaire to identify risk factors for obesity; the next84

day, nutritional status was assessed by bioelectrical impedance.85

The Body-Mass-Index (BMI) was calculated using equation 1, according to the WHO de昀椀-86

nition (World Health Organization (WHO), 2021):87
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��� = ����ℎ���ℎ�2 (1)

with the person’s weight measured in kilograms (kg) and the person’s height in meters (m).88

Following theWHO system, soldiers with a BMI equal to or higher than 25were classi昀椀ed as89

‘overweight,’ and those with a BMI equal to or above 30 as ‘obese’ (World Health Organization90

(WHO), 2021).91

The 昀椀rst urine of the day was collected at 6 am, and the samples were frozen at -60 °C92

until their processing. Urine samples were thawed and centrifuged at 850 g for 5 min for93

metabolomics analysis. Ten µL of each sample were diluted in 90 µL of chromatography-mass94

spectrometry (LC-MS) grade water (1:9 v/v) and transferred to vials for UPLC-MS analysis.95

2.2 Untargeted metabolomics by HPLC-MS96

LC-MS grade acetonitrile, water, and acetic acid were purchased from JT Baker (Brick Town, NJ,97

USA). Samples were analyzed with a Dionex UltiMate 3000 HPLC (Thermo Scienti昀椀c) coupled98

to an Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Scienti昀椀c) with an electrospray ion-99

ization source. We used an AccuCore C18 column (4.6 x 150 mm, 2.6 µm) to separate metabo-100

lites using a binary gradient elution of solvents A and B, similar to the method described by101

López-Hernández et al. (2019). In short, the mobile phase was A: 0.5% acetic acid in water; B:102

0.5% acetic acid in acetonitrile. The mobile phase was delivered at a 昀氀ow rate of 0.5 mL/min,103

initially with 1% B, followed by a linear gradient to 15% B over 3 min. Solvent B was increased104

to 50% within 3 minutes. Over the next 4 min, the gradient was ramped up to 90% B with a105

plateau for 2 minutes. The amount of B was then decreased to 50% in 2 min. 2 minutes later,106

the solvent B was lowered to 15%, and 昀椀nally, solvent B returned to initial conditions (1%) until107

the end of the chromatographic run (18 min). The column temperature was controlled at 40 °C.108

The injection volume was 20 µL.109

Data were acquired in positive electrospray ionization (ESI+) mode with the capillary volt-110

age set to 3.5 kV, the Ion Transfer Tube Temperature to 350 °C, and Vaporizer Temp to 400 °C.111

The desolvation gas was nitrogen with a 昀氀ow rate of 50 UA (arbitrary units). The detector type112

wasOrbitrap at a resolution of 120,000. Datawere acquired from 50-2,000m/z in Full Scanmode113

with an AGC target of 2.0E5. Before the analysis, the mass spectrometer was calibrated with114

LTQ ESI Positive Ion Calibration Solution (Pierce, Thermo Scienti昀椀c).115

2.3 Conversion of raw 昀椀les to mzML116

Weused the docker version of the ProteoWizard msconvert tool (https://proteowizard.sourceforge.117

io/) (Kessner et al., 2008). To reduce disk space and memory use during 昀椀le processing, we118

downsampled the data to 32-bit, peak picking, and zlib compression:119

> docker run -it --privileged=true -v /home/rob/dataspace/SUPEREGO/raw_data/:/data120

4/28PeerJ reviewing PDF | (2022:04:72604:1:1:NEW 2 Jun 2022)

Manuscript to be reviewed

https://proteowizard.sourceforge.io/
https://proteowizard.sourceforge.io/
https://proteowizard.sourceforge.io/


Figure 1. KMIME-Work昀氀ow for processing the urinary metabolomics data. The 昀椀nal result is
an aligned matrix of features.

chambm/pwiz-skyline-i-agree-to-the-vendor-licenses bash121

122

root@0926785f04fc:/data# wine msconvert *.raw --32 --zlib --filter123

"peakPicking true 1-" --filter "zeroSamples removeExtra"124

2.4 Processing of mzML 昀椀les with KNIME125

For mass spectrometry raw data processing and generation of an aligned feature matrix, we126

employed the OpenMS nodes (Sturm et al., 2008, Pfeu昀昀er et al. (2017), Röst et al. (2016)) of127

the KNIME Analytics Platform (https://www.knime.com) (Berthold et al., 2009, Alka et al.128

(2020)). Figure 1 represents the KNIME work昀氀ow for the raw data processing and matrix gen-129

eration. The exact parameters of each step are documented in the workflow.knime work昀氀ow130

昀椀le, provided as supplementary 昀椀les at Zenodo (see Data Availability statement below). For131

preparing the resulting table of aligned features for the MetaboAnalyst Web Server (Xia et al.,132

2009), we edited the .CSV 昀椀le with vim (https://www.vim.org/), using the CSV vim plugin133

(<chrisbra/csv.vim>).134

2.5 Statistical analyses with MetaboAnalyst135

For metabolic classi昀椀cation models, we used the web-based version of MetaboAnalyst (https:136

//www.metaboanalyst.ca/) (Xia et al., 2009, Chong et al. (2019), Wishart (2020)). We applied137

the one-factor statistical analysis for peak intensities in a plain text 昀椀le, with unpaired samples138

in columns.139

The MetaboAnalyst report for the uploaded data is provided as a supplemental 昀椀le.140

First, we 昀椀ltered the raw data by the interquartile range (IQR), normalized it by the median,141

and applied a square root transformation. Further, we used auto-scaling, i.e., the values were142

mean-centered and divided by the standard deviation of each variable.143

2.6 Metabolic pathway enrichment and metabolite identi昀椀cation144

For identifying metabolic pathway enrichment and likely involved metabolites, we used the145

Functional Analysis (MS peaks) tool of MetaboAnalyst (Li et al., 2013). We speci昀椀ed a mass146
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search against the Human Metabolome Database (HMDB, https://hmdb.ca) (Wishart et al.,147

2018, Wishart et al. (2022)), with 10 ppmmass tolerance in positive mode. We 昀椀ltered raw data148

by the interquartile range (IQR), normalized by the median, and applied a square root transfor-149

mation. Further, we used auto-scaling, i.e., the values were mean-centered and divided by the150

standard deviation of each variable (the same data preparation as for statistics above). For the151

Mummichog algorithm, we set a p-value cuto昀昀 of 0.25 (default top: 10% peaks). We used the152

pathway library of Homo sapiens MFN pathway/metabolite sets (a meta library) with at least153

昀椀ve entries.154

155

The chemical structure and function ofmetabolites and the identi昀椀cations from theMummi-156

chog analysiswere searched in theKEGGdatabase (https://www.genome.jp/kegg/compound/)157

(Kanehisa et al., 2014), BiGG (http://bigg.ucsd.edu/universal/metabolites/) (King et al.,158

2016), the Edinburgh humanmetabolic network reconstruction (Ma et al., 2007) and the above-159

mentioned HMDB.160

3 RESULTS161

3.1 Body-Mass-Index (BMI) and body fat content of participants162

Table 1 summarizes statistical data of the 153 participants. Of the 67 women and 86 men, 66163

presented normal weight, 62 had overweight, and 25 were obese. Comparing female and male164

soldiers, the latter exhibited a higher prevalence of overweight and obesity. As expected, the165

groups with higher BMI also presented a higher body fat content, suggesting metabolic di昀昀er-166

ences between these groups.167

3.2 Urinary metabolomics raw data processing and 昀椀ltering168

Figure 2 shows the number of features in the di昀昀erent sample groups and blank samples. We re-169

moved data sets of presumably empty samples and technical outliers by comparing the number170

of features with blank injections and eliminating all analyses with less than 4,000 features.171

After clean-up, 52 samples of healthy, 47 overweight, and 21 obese individuals were left.172

We used these 120 data sets for further analysis. The healthy group showed 5,717 to 9,657, the173

overweight group 5,559 to 10,447, and the obese group 5,575 to 9,436 features.174

3.3 Identi昀椀cation of metabolic identities with MetaboAnalyst175

First, we applied a cluster analysis with the sparse PLS-DA (sPLS-DA) algorithm (Lê Cao et al.,176

2011), which indicates distinct metabolic identities of healthy, overweight, and obese individ-177

uals. However, the clustering is far from perfect, and especially the group of overweight indi-178

viduals does not separate well from the other groups (Figure 3A). We discussed the difficulty179

of clustering metabolic data in an earlier paper (Winkler, 2015).180
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Table 1. General characteristics and anthropometric measurements of the soldiers by normal
weight, overweight and obesity (Data are presented as mean ± SD). BMI - Body Mass Index.

Normal
weight

Overweight Obesity Global

n 66 62 25 153
Age [years] 27.74±3.53 29.81±4.53 37.83±6.79 30.20±5.73
Age range 22-45 22-45 29-49 22-49
Gender      
Female (% n) 43 (28.1) 18 (11.8) 6 (3.9)  67 (43.8)
Male (% n) 23 (15.0) 44 (28.8) 19 (12.4) 86 (56.2)
Weight [kg] 61.05±7.32 75.46±6.18 84.02±12.29 70.79±11.77
Height [m] 1.62±0.05 1.66±0.06 1.60±0.05 1.63±0.06
BMI [kg/m2] 23.02±1.45 27.08±1.33 33.33±2.41 26.39±3.88
Body fat [%] 25.09±6.97 27.51±6.28 34.63±4.75 27.7.±7.10

Figure 2. Clean-up of raw data. Sample data sets with less than 4,000 features were removed.
A) Boxplot of features A) before clean-up. B) after removal of samples with less than 4,000
features. 120 data sets of healthy, overweight and obese individuals were used for further
analyses.
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Figure 3. Metabolic identity of healthy, overweight and obese groups. A) The clusters of
sPLS-DA show overlapping of the three sample classes. The healthy and obese group can be
more clearly discriminated, whereas the overweight group is located in between them. B)
OPLS-DA scores separate the samples of healthy individuals from overweight and obese
soldiers.

To test if we could distinguish between healthy participants and others, we joined the over-181

weight and obese groups and applied an orthogonal projection to latent structures data analysis182

(OPLS-DA) (Trygg and Wold, 2002). As a result, two clusters were separated reasonably well,183

1) samples of healthy individuals and 2) samples of overweight and obese soldiers (Figure 3B).184

The classi昀椀cation is imperfect; however, the graphics represent the medical situation of185

clearly healthy, obviously sick, and patients in transition. Consequently, we can discriminate186

between two metabolic identities of normal-weight and overweight/obese soldiers.187

3.4 Statistical analysis of fold-changes188

Using the same parameters for uploading the data (see Methods section), but only de昀椀ning189

two groups, i.e., healthy and obese-overweight, we created the Volcano plot shown in Figure 4.190

We did this analysis in the one-factor statistical analysis module of MetaboAnalyst. We de昀椀ned191

non-parametric Wilcoxon rank-sum tests, a fold-change of 1.3 and a p-value threshold of 0.1192

(raw), with equal group variance.193

Two hundred twenty-昀椀ve signi昀椀cant di昀昀erential variables were detected and subjected to an194

Adaptive Boost data mining analysis.195
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Figure 4. The Volcano plot shows metabolic features with a P-value <0.1 and a fold-change of
1.3.

3.5 Adaptive Boost analysis196

The preselected 225 variables were loaded into R/Rattle (Williams, 2009, Williams (2011)) for197

further evaluation and split into three partitions for training, validation, and testing (70/15/15).198

Variables with missing values were deleted. The following parameters were used:199

ada(Group ~ ., data = crs$dataset[crs$train, c(crs$input, crs$target)],200

control = rpart::rpart.control(maxdepth = 6, cp = 0.01, minsplit = 20,201

xval = 10), iter = 500)202

Table 2 summarizes the results of themodel building process. The overall error of themodel203

is 5.5%, with an average class error of 5.75%.204

Consequently, the classi昀椀cation between healthy and obese-overweight persons based on205

urinary metabolomics pro昀椀les is highly reliable, considering natural variations.206

The important variables that contribute most to correct classi昀椀cation are shown in Figure 5.207

3.6 Biomarker analysis208

Table 3 lists important variables from the Ada Boost analysis with at least a 1.3-fold signi昀椀cant209

change. Those ions are possible biomarkers for weight-related metabolic studies.210
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Figure 5. Variable importance for the predictive Adaptive Boost classi昀椀cation model.
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Table 2. Predictive classi昀椀cation model with the Adaptive Boost Algorithm.

Predicted
Actual healthy obese-overweight error [%]

Training healthy 44 0 0.0
obese-overweight 0 58 0.0

Validation healthy 6 3 33.3
obese-overweight 2 10 16.7

Testing healthy 9 2 18.2
obese-overweight 1 11 8.3

Overall healthy 59 5 7.8
obese-overweight 3 79 3.7

Table 3. Important variables from the Ada Boost analysis with at least 1.3-fold signi昀椀cant
change.

Ada Boost mz FC log2(FC) raw.pval -log10(p)

1 305.096085357725 0.67706 -0.56264 0.000000054252 7.2656
2 176.05534607238 0.76713 -0.38246 0.00081848 3.087
3 114.053383082002 1.3627 0.44649 0.000069642 4.1571
4 258.127823892932 1.4759 0.56159 0.0010258 2.989
5 176.10230666151 1.3729 0.45718 0.022281 1.6521
6 82.9609575200155 0.68689 -0.54184 0.039329 1.4053
7 246.167018958163 1.566 0.64711 0.041643 1.3805
8 153.091303342611 1.4299 0.51588 0.012894 1.8896
9 104.99663756284 0.75266 -0.40993 0.014395 1.8418
10 227.101700473198 1.968 0.97672 0.013038 1.8848
11 208.063674165656 1.4688 0.55469 0.098829 1.0051
12 187.002131945098 0.75863 -0.39852 0.032069 1.4939
13 115.075775049445 0.6563 -0.60758 0.0017274 2.7626
14 192.105233415702 0.60822 -0.71733 0.00025415 3.5949
15 204.121253887635 1.924 0.94407 0.099638 1.0016
16 222.080121719522 1.788 0.83835 0.010779 1.9674
17 80.9549688491325 0.70797 -0.49824 0.04125 1.3846
18 218.134680226487 2.1311 1.0916 0.039707 1.4011
19 211.06880722364 1.3152 0.39528 0.010779 1.9674
20 175.023674939912 0.75944 -0.39698 0.094865 1.0229
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Ada Boost mz FC log2(FC) raw.pval -log10(p)

21 304.149677463601 1.3526 0.43569 0.0025023 2.6017
22 276.180382062822 0.58665 -0.76942 0.011404 1.9429
23 260.144346264144 1.7745 0.82742 0.034686 1.4598
24 199.096606327732 0.69475 -0.52543 0.00054643 3.2625
25 139.998348382386 0.68953 -0.53631 0.050208 1.2992
26 195.087746674809 1.7269 0.78819 0.017119 1.7665
27 176.066233961146 0.72685 -0.46027 0.00081848 3.087
28 286.128705723401 1.388 0.47301 0.0055271 2.2575
29 174.911397524627 1.4127 0.49845 0.0085721 2.0669
30 211.144964577744 1.322 0.40276 0.016049 1.7946

3.7 Mummichog analysis: Metabolic pathway enrichment211

To explore a昀昀ected metabolic pathways and facilitate the identi昀椀cation of metabolites, we per-212

formed a Mummichog analysis in MetaboAnalyst (see Methods section).213

Table 4. Enriched pathways from the Mummichog analysis.

Pathway Path-
way
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Path-
way
No.

Cpd.
Hits

Urea cycle/
amino group
metabolism

85 50 10 3.7797 0.0045702 0.0136 0.039704 0 0 P1 C00062;
C04441;
C04692;
C00437;
C00073;
C00019;
C00242;
C01449;
C01250;
C00547;
C00049

Alanine and
Aspartate
Metabolism

30 20 5 1.334 0.016982 0.065906 0.041654 0 0 P2 C00062;
C00940;
C01042;
C00402;
C00049
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Pathway Path-
way
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Path-
way
No.

Cpd.
Hits

Drug
metabolism
- cytochrome
P450

53 48 7 2.3567 0.079575 0.17018 0.046002 0 0 P3 C16582;
C16604;
C16550;
C07501;
C16609;
C16584;
C16586

Aspartate and
asparagine
metabolism

114 77 9 5.0692 0.14967 0.25437 0.050052 0 0 P4 C00437;
C01239;
CE1938;
C00402;
C05932;
C00062;
C02571;
C04540;
C03078;
C03415;
CE1943;
C00049

Lysine
metabolism

52 28 4 2.3123 0.17608 0.38004 0.057276 0 0 P5 C00019;
C06157;
C03793;
C01259

Ubiquinone
Biosynthesis

10 7 2 0.44467 0.10051 0.43686 0.061142 0 0 P6 C01179;
C00019

Vitamin B3
(nicotinate and
nicotinamide)
metabolism

28 19 3 1.2451 0.18615 0.44767 0.061929 0 0 P7 C00062;
C00019;
C00049

Vitamin B1
(thiamin)
metabolism

20 9 2 0.88933 0.15545 0.5223 0.067899 0 0 P8 C06157;
C16255
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Pathway Path-
way
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Path-
way
No.

Cpd.
Hits

Tyrosine
metabolism

160 103 9 7.1147 0.43083 0.57147 0.072443 0 0 P9 C05350;
C00019;
C05852;
C03758;
C02505;
C00547;
CE5547;
C00642;
C00082;
C05576;
C07453;
C00355;
C01179;
C00268;
C05584;
C05587;
C05588;
C04043;
CE2174;
CE2176;
CE2173

Arginine
and Proline
Metabolism

45 38 4 2.001 0.35481 0.58556 0.073852 0 0 P10 C00062;
C00073;
C00019;
C00049;
C05933

Biopterin
metabolism

22 14 2 0.97827 0.3058 0.68367 0.085412 2 0.02 P11 C04244;
C00268;
C00082

Pyrimidine
metabolism

70 45 4 3.1127 0.48368 0.70125 0.08789 0 0 P12 C00214;
C00881;
C00475;
C00049

Tryptophan
metabolism

94 74 6 4.1799 0.54076 0.70613 0.088605 0 0 P13 C05647;
C00019;
C05651;
C02220;
C00078;
C00268;
C00328;
C04409;
C03227;
C00525
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Pathway Path-
way
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Path-
way
No.

Cpd.
Hits

Starch and
Sucrose
Metabolism

33 15 2 1.4674 0.33598 0.70875 0.088995 0 0 P14 CE2837;
C01083;
C00208

Vitamin
B9 (folate)
metabolism

33 16 2 1.4674 0.36578 0.73186 0.092598 0 0 P15 C01045;
C00504

Butanoate
metabolism

34 20 2 1.5119 0.47883 0.80744 0.10716 1 0.01 P16 C05548;
C02727

Porphyrin
metabolism

43 20 2 1.9121 0.47883 0.80744 0.10716 0 0 P17 C05520;
C00931

Xenobiotics
metabolism

110 59 4 4.8913 0.7018 0.8572 0.1204 0 0 P18 C00870;
C14853;
C06205;
C14871

Histidine
metabolism

33 25 2 1.4674 0.60163 0.87285 0.12555 8 0.08 P19 C00439;
C00019

Methionine
and cysteine
metabolism

94 47 3 4.1799 0.73432 0.89655 0.13469 0 0 P20 C08276;
C00019;
C00073

Sialic acid
metabolism

107 28 2 4.7579 0.66429 0.90095 0.13661 0 0 P21 C00140;
C00645;
C00243

Purine
metabolism

80 53 3 3.5573 0.80598 0.93105 0.15258 0 0 P22 C00499;
C00242;
C00049

Galactose
metabolism

41 34 2 1.8231 0.7658 0.93997 0.15864 0 0 P23 C00140;
C05400;
C05402;
C05399;
C00243;
C00089

Glycine, ser-
ine, alanine
and threonine
metabolism

88 60 3 3.9131 0.86848 0.95761 0.17378 1 0.01 P24 C00062;
C00019;
C00073

Androgen
and estrogen
biosynthesis
and metabolism

95 71 3 4.2243 0.93142 0.98074 0.20732 0 0 P25 C02538;
C05293;
C00019;
C03917;
C04373;
C04295;
C00523
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Pathway Path-
way
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Path-
way
No.

Cpd.
Hits

Glycero-
phospholipid
metabolism

156 49 2 6.9368 0.9118 0.98298 0.21248 1 0.01 P26 C00019;
C00670

Leukotriene
metabolism

92 54 2 4.0909 0.93745 0.98885 0.22988 0 0 P27 C03577;
CE5140;
CE4995

C21-steroid
hormone
biosynthesis
and metabolism

112 81 2 4.9803 0.99121 0.99889 0.31857 0 0 P28 C03917;
C02538;
C04373;
C00523

Hyaluronan
Metabolism

8 4 1 0.35573 0.28138 1 1 0 0 P29 C00140

Glycolysis and
Gluconeogene-
sis

49 32 1 2.1789 0.93051 1 1 0 0 P30 C01136

Hexose phos-
phorylation

20 16 1 0.88933 0.73463 1 1 2 0.02 P31 C01083;
C00089

Keratan sulfate
degradation

68 6 1 3.0237 0.391 1 1 0 0 P32 C00140

Carnitine shut-
tle

72 23 1 3.2016 0.8521 1 1 0 0 P33 pcrn

Alkaloid
biosynthesis
II

10 6 1 0.44467 0.391 1 1 0 0 P34 egme

Parathio degra-
dation

6 5 1 0.2668 0.33844 1 1 0 0 P35 C00870

Electron trans-
port chain

7 3 1 0.31127 0.21943 1 1 0 0 P36 C00390

Vitamin
H (biotin)
metabolism

5 5 1 0.22233 0.33844 1 1 0 0 P37 C00120

De novo fatty
acid biosynthe-
sis

106 22 1 4.7135 0.83919 1 1 0 0 P38 C06429

Vitamin A
(retinol)
metabolism

67 41 1 2.9793 0.96749 1 1 0 0 P39 C16679;
C16677;
C16680

Valine, leucine
and isoleucine
degradation

65 26 1 2.8903 0.88497 1 1 14 0.14 P40 C00123;
C00407

Fatty Acid
Metabolism

63 15 1 2.8014 0.71158 1 1 0 0 P41 C02571
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Pathway Path-
way
tot.

Hits
tot.

Hits
sig.

Expected FET EASE Gamma Emp.
Hits

Emp. Path-
way
No.

Cpd.
Hits

Heparan sulfate
degradation

34 5 1 1.5119 0.33844 1 1 0 0 P42 C00140

TCA cycle 31 18 1 1.3785 0.77539 1 1 0 0 P43 C00390
Arachidonic
acid
metabolism

95 75 1 4.2243 0.99823 1 1 0 0 P44 C04741;
C04843;
C14782;
C14814;
C00639

Phosphatidyl-
inositol
phosphate
metabolism

59 29 1 2.6235 0.91057 1 1 0 0 P45 C01235

Prostaglandin
formation from
arachidonate

78 61 1 3.4684 0.99409 1 1 0 0 P46 C04741;
C05959;
C00639

Vitamin B6
(pyridoxine)
metabolism

11 8 1 0.48913 0.48401 1 1 3 0.03 P47 C00314

N-Glycan
Degradation

16 8 1 0.71147 0.48401 1 1 1 0.01 P48 C00140

Vitamin B12
(cyanocobal-
amin)
metabolism

9 3 1 0.4002 0.21943 1 1 0 0 P49 C00019

Carbon 昀椀xation 10 10 1 0.44467 0.5629 1 1 0 0 P50 C00049
Nitrogen
metabolism

6 4 1 0.2668 0.28138 1 1 4 0.04 P51 C00049

Drug
metabolism
- other enzymes

31 22 1 1.3785 0.83919 1 1 5 0.05 P52 C16631

Aminosugars
metabolism

69 25 1 3.0682 0.87491 1 1 3 0.03 P53 C00140;
C00645

Beta-Alanine
metabolism

20 15 1 0.88933 0.71158 1 1 11 0.11 P54 C00049

Prostaglandin
formation
from dihomo
gama-linoleic
acid

11 8 1 0.48913 0.48401 1 1 0 0 P55 C04741

As indicated in Table 4 and Figure 6, 昀椀ve pathways demonstrated enrichment above the214

de昀椀ned threshold limits:215
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Figure 6. Enriched pathways from the Mummichog analysis.
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• Urea cycle/ amino group metabolism216

• Alanine and aspartate metabolism217

• Drug metabolism - cytochrome P450218

• Aspartate and asparagine metabolism219

• Ubiquinone biosynthesis220

Especially the appearance of urea cycle/ amino group metabolism as the 昀椀rst hit gives con-221

昀椀dence to the Mummichog algorithm since no information about the origin of the samples was222

given to the MetaboAnalyst platform.223

Thus, ions assigned to metabolites of enriched pathways have increased con昀椀dence in our224

further discussion.225

4 DISCUSSION226

4.1 Classi昀椀cation of normal weight vs. overweight-obese, based on metabolic signature227

To develop a predictive classi昀椀cation model, we used the untargeted LC-MS features with at228

least a 1.3-fold change. The features correspond to ions with a particular retention time. Al-229

though a 30% increased or decreased metabolite level might not be critical for health, it can230

indicate a disturbed pathway.231

Identifying compounds corresponding to the features is theoretically possible. However, the232

reliable assignment of metabolites is tedious (Rathahao-Paris et al., 2015; Je昀昀ryes et al., 2015;233

Gil-de-la Fuente et al., 2019; Djoumbou-Feunang et al., 2019; Dührkop et al., 2019), and the data234

mining models are helpful without knowing the related compounds (Winkler, 2015). Thus, we235

limited the identi昀椀cation of compounds to important variables.236

The OPLS-DA analysis already indicated distinct metabolic identities (Figure 3B) for nor-237

mal weight and overweight-obese individuals. A predictive model that we developed with238

the Adaptive Boost Algorithm was able to classify normal weight and overweight-obese indi-239

viduals with an overall error of 5.5% (Table 2). Notably, the highest errors were found in the240

validation and testing data of healthy soldiers wrongly classi昀椀ed as overweight or obese. These241

assignments could indicate a possible tendency of the soldiers to gain weight.242

The Adaptive Boost model demonstrates metabolic di昀昀erences between normal weight and243

overweight-obese individuals, which can be used for classi昀椀cation. Further, the Adaptive Boost244

could provide a sensitivemethod to estimate themetabolic state and the tendency of a person to245

gainweight. However, additional studies are necessary to evaluate the performance ofAdaptive246

Boost models with untargeted metabolic data as a predictive tool in clinical diagnostics and247

treatment.248
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Figure 7. Green pathways contain at least one unique putative compound. Green putative
compounds are unique for one pathway.
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4.2 Metabolic pathways in obesity-overweight and potential biomarkers249

Compiling the biomarker candidate ionswith likelymetabolite identi昀椀cations resulted in Figure250

7.251

Several ions and the metabolic pathway integration-derived metabolites hint at S-adenosyl-252

L-methionine (SAM). A previous study reported a 42% increase of SAM in the serum of test per-253

sons who were overfed by 1,250 kcal per day and gained weight above the median (Elshorbagy254

et al., 2016). SAM is synthesized from methionine and ATP and is a key metabolite since it255

donates methyl groups to di昀昀erent molecules, such as DNA, RNA, proteins, and lipids, in enzy-256

matic reactions. The demethylated S-adenosyl-homocysteine (SAH) is hydroxylated by adeno-257

sylhomocysteinase, resulting in adenosine and homocysteine. Methionine synthase builds me-258

thionine by transferring amethyl group from5-methyl-tetrahydrofolate to homocysteine (Finkel-259

stein, 2000).260

Several of these reactions have been reported to be altered in obesity. For example, high261

serum levels of homocysteine have been correlatedwith reducedhigh-density lipoprotein (HDL)262

levels. The accumulation of homocysteine comes with lower SAM and SAH levels, leading to263

a diminished production of phosphatidylcholine, which is essential for the production of low-264

density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) (Obeid and Herrmann,265

2009). Hyperlipidemia with increased serum homocysteine increases the risk of developing an266

atherosclerotic disease in overweight patients (Glueck et al., 1995). In addition, elevated serum267

homocysteine is related to hepatic steatosis. The later e昀昀ect was pronounced with low folate268

intake (Gulsen et al., 2005). Strikingly, we also found the folate metabolism a昀昀ected in our269

present study.270

Another altered SAM-related pathway, we detected, is related to nicotinamide metabolism.271

Nicotinamide-N-methyl transferase (NNMT)methylates nicotinamide, using SAM as a methyl272

donor (Ramsden et al., 2017). As a result, NNMT is enriched in adipose tissue and the liver of273

patients with obesity and type 2 diabetes mellitus (DM2) (Kraus et al., 2014).274

The possibility of detecting excess food energy intake in urine bymeasuring SAMwould pro-275

vide a non-invasive method for monitoring patients during weight-loss diets and professionals276

who require high physical 昀椀tness, such as soldiers. Thus, the level of SAM will be assayed in277

the following study during the treatment of obese military personnel.278

In addition, several ions that putatively correspond to compounds fromamino acidmetabolism279

were identi昀椀ed. Changes in amino acid levels and related metabolites in obese patients have280

been reported in several studies (Xie et al., 2012; Maltais-Payette et al., 2018; Yu et al., 2018).281

Therefore, our 昀椀nding is expectable. However, since we found the alteration of amino acid282

pathways through a variable importance analysis of untargeted metabolomics data, we suggest283

a high relevance of amino acid-related biomarkers compared to other groups of compounds284

such as TCA-cycle metabolites.285
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Therefore, besides the SAM level, we will investigate the role of amino acid metabolism in286

obesity and weight reduction in future studies.287

5 CONCLUSIONS288

An Ada Boost model based on urinary metabolomics data could discriminate obese and over-289

weight fromhealthymilitary personnelwith a lowoverall error rate of 5.5%, indicating ametabolic290

signature related to the excessive ingestion of food.291

Important variables from data mining, statistical analyses, and metabolic pathway enrich-292

ment analysis suggest S-adenosyl-methionine (SAM) as a possible urine biomarker for over-293

feeding. Increased SAM levels were found for overfed people in plasma, but monitoring SAM294

in urine could be used daily for close follow-up of patients, for example, in the treatment of295

losing weight or persons that need a high level of physical 昀椀tness, such as soldiers.296

As well, the amino acid metabolism showed signi昀椀cant changes.297

Therefore, in ongoing studies, we include SAM, amino acid metabolism compounds, and298

acylcarnitines for evaluating the metabolic state of military personnel. In the future, our results299

will support the design of low-cost biochemical assays for the broad public.300
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MetaboAnalyst data upload report (TXT format).302
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