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ABSTRACT
Improving the amount of organic carbon in soils is an attractive alternative to partially
mitigate climate change. However, the amount of carbon that can be potentially added
to the soil is still being debated, and there is a lack of information on additional storage
potential on global cropland. Soil organic carbon (SOC) sequestration potential is
region-specific and conditioned by climate and management but most global estimates
use fixed accumulation rates or time frames. In this study, we model SOC storage
potential as a function of climate, land cover and soil.We used 83,416 SOCobservations
from global databases and developed a quantile regression neural network to quantify
the SOC variation within soils with similar environmental characteristics. This allows
us to identify similar areas that present higher SOC with the difference representing
an additional storage potential. We estimated that the topsoils (0–30 cm) of global
croplands (1,410 million hectares) hold 83 Pg C. The additional SOC storage potential
in the topsoil of global croplands ranges from 29 to 65 Pg C. These values only equate
to three to seven years of global emissions, potentially offsetting 35% of agriculture’s 85
Pg historical carbon debt estimate due to conversion from natural ecosystems. As SOC
store is temperature-dependent, this potential is likely to reduce by 14% by 2040 due to
climate change in a ‘‘business as usual’’ scenario. The results of this article can provide
a guide to areas of focus for SOC sequestration, and highlight the environmental cost
of agriculture.

Subjects Agricultural Science, Soil Science, Data Mining and Machine Learning, Spatial and
Geographic Information Science
Keywords Carbon sequestration, Quantile regression, Digital soil mapping, Neural networks

INTRODUCTION
Soil is a major influencer of the global carbon and nutrient cycle and it holds more carbon
than all terrestrial vegetation combined. However, the use of soils for food production
causes 30–60% of this carbon to be lost, causing a decline in soil functionality (Kopittke
et al., 2019). The released carbon diffuses into the atmosphere as carbon dioxide, making
agriculture an important contributor to the increasing greenhouse gas emissions (IPCC,
2019). The loss of carbon from soils causes a loss of its productivity and associated ecosystem
services (Russel, Harrison & Wright, 1929;Mann, 1986; Davidson & Ackerman, 1993).

The carbon debt from agriculture poses the challenge of reversing the process. San-
derman, Hengl & Fiske (2017) estimated 31.2 Pg C had been lost in topsoil (0–30 cm)
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through 12,000 years of agricultural practices. SOC sequestration is considered as a viable
alternative to recoup part of this debt and to partially mitigate climate change by offsetting
part of the greenhouse gas emissions derived from anthropogenic activities (Minasny et
al., 2017). Researchers maintain that sustainable soil C sequestration practices need to be
scaled up globally (Amelung et al., 2020). However, there are still many conflicting results
on how much C can soil potentially store, especially in different regions of the world.
SOC stores and dynamics are driven by soil, environmental and human factors such as
soil type, climate, land use, and land management. However, SOC storage potential and
its controlling factors are not well understood at the global scale. Currently, SOC storage
potentials are often expressed as constant, per-year values based onmanagement tables and
assuming a uniform time to reach a new equilibrium, which is usually the 20 years default
value used by IPCC (Fuss et al., 2018). Additionally, since climate exerts an essential control
on SOC and global climatic data is readily available, most studies focus on temperature
and precipitation to model SOC retention (Jones et al., 2005; Kramer & Chadwick, 2018;
Shi et al., 2020). The effect of climate on SOC might not be well represented due to
other confounding, unmeasured variables acting as limiting factors (Cade & Noon, 2003).
Management practices are in this category, playing an essential role at the local scale, but
detailed global information about management practices is not available to date, the reason
why it is usually missing in global studies.

To partially overcome the lack of detailed management data, we create a model that
spatially predicts SOC distribution. Given a set of SOC observations from locations with
similar soil forming factors (which are accounted by the model), we hypothesise that
differences in SOC are mainly driven by management. Different parts of the statistical
distribution of SOC should represent locations with different management practices, with
‘‘good’’ practices in the higher quantiles and ‘‘bad’’ practices in the lower quantiles Fig. 1.
The model is not aware of the specific management at each location but it is capable of
representing different management levels and their impact on SOC given real world data.
This can be achieved using the quantile regression framework (Cade & Noon, 2003), the
framework we use in this work.

This study aims to provide an estimate of the additional SOC storage potential in
global croplands. We focused our analysis on the top 30 cm of soil since it accounts for
a large proportion of the SOC stored in soils (Batjes, 1996; Jobbágy & Jackson, 2000), it is
considered the depth that can be effectively managed to capture carbon (VandenBygaart
et al., 2011), and presents faster turnover time (Shi et al., 2020). Since temperature and
precipitation are important controlling factors, we also evaluate how climate change
projections might affect this additional storage potential.

METHODS
Data sources and preparation
The soil information used in this study was derived from several sources, including
the World Soil Information Service (WoSIS) (Batjes, Ribeiro & Van Oostrum, 2020), the
Chilean Soil Organic Carbon database (CHLSOC) (Pfeiffer et al., 2020), and the data
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Figure 1 Diagram of a linear quantile regression fitted to the 50th, 75th percentiles to explain SOC
content based on a covariate x. The points correspond to different sites, where the lower values of SOC
are due to unmeasured limiting factors (such as management). A conventional regression model is usually
adjusted to the mean (close to q50) but a quantile regression is also capable of capturing the response of
high-performing sites (q75). Since our model includes soil, climate and topography, we hypothesise that
the difference is mainly due to management practices.

Full-size DOI: 10.7717/peerj.13740/fig-1

described in Stockmann et al. (2015). Since this is a collation of mostly legacy data, and
soil analytical methods change in time, part of the SOC data (Stockmann et al., 2015) were
harmonised to a common measuring method using pedotransfer functions (Skjemstad,
Spouncer & Beech, 2000). The observations correspond to soil profile data with SOC
measurements at varying depths, which were standardised to the 0–30 depth range using
the equal-area spline algorithm (Bishop, McBratney & Laslett, 1999). To estimate the soil C
stock, we derived a pedotransfer function to predict bulk density using samples from our
compiled dataset.

Land cover informationwas extracted from theMCD12Q1v6MODIS product, generated
by the Land Processes Distributed Active Archive Center, U.S. Department of the Interior
and U.S. Geological Survey (DOI: 10.5067/MODIS/MCD12Q1.006), specifically the IGBP
classification (Loveland & Belward, 1997) matching the year of each sample.

From the initial 83,416 samples, 5% were held out as a test dataset. The remaining 95%
were split into training and validation datasets using the bootstrapping routine (Efron &
Tibshirani, 1993) to find the optimal set of hyperparameters of themodel. Hyperparameters
are the group of parameters of a machine learning algorithm which cannot be learned in
the training process (e.g., learning rate, batch size, etc.). Here we report the results of the
best performing model after performing a parameter grid search.
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The covariates used as predictors included: (a) digital elevation model (GTOPO30
(USGS EROS, 2020)), which is provided at 30 arc-second resolution; and (b) long term
mean annual temperature (MAT) and total annual rainfall (TAP) derived from information
provided by WorldClim (Hijmans et al., 2005), at 30 arc-second resolution. All data layers
were resampled to a 500 m grid and standardised using the mean and standard deviation
estimated from the training dataset.

Quantile CNN model
To model SOC distribution in space, we used a fully-connected, multi-task neural network
with three hidden layers of 20 units each and ReLu activation functions. Since we were
interested in predictingmultiple percentiles of the SOCdistribution, the head of the network
consisted of five branches of a single unit with linear activation, which corresponds to the
25th, 50th, 75th, 90th and 95th percentiles (Fig. 2). Multi-task neural networks (i.e.,
that predict multiple targets simultaneously) have shown excellent predictive capability
compared with predicting a single target in digital soil mapping and we refer the reader
to Padarian, Minasny & McBratney (2019) for a detailed introduction. Each branch can
be considered as an independent model (in reality, they share the initial layers) where the
training process tries to minimise the loss (Eq. (1)). In a normal regression, the loss is
usually the deviation from the mean (using mean squared error) but in this case, it is the
distance to each percentile.

The results reported here are based on the predictions at 50th, 75th and 90th percentiles
and the 25th and 95th percentiles where included for regularisation purposes (Ruder,
2017). The model was trained using the best set of hyperparameters obtained from a grid
search, namely 100 epochs, a batch size of 32 samples and a learning rate of 0.001. For each
percentile (branch of the multi-task neural network), the loss is estimated by:

1
n

n∑
i=1

max
{
τ (yi− ŷi),(τ−1)(yi− ŷi)

}
(1)

as per Koenker & Hallock (2001), where τ is the corresponding percentile and n is the
number of training samples. The final, total loss corresponds to the sum of the five
individual losses. We trained different models for croplands, natural/pasture and forest
land covers although here we mostly focus on global croplands. Since most global SOC
models use a central estimate, such as themean ormedian, here we assume themedian (50th
percentile) as the current state of SOC in the world. Higher quantiles represent situations
where better management practices are in place (Fig. 1). These are percentiles are defined
by real-world observations with similar climate, soil, topography, and land cover where
higher SOC content values can be observed. To avoid considering very extreme cases and
ensure that the target SOC content was reached in an important proportion of the locations,
we used a regression to the 90th percentile as a technical maximum. Acknowledging that
increasing SOC content is a challenging task and this technical maximum might not be
always achievable, we considered a regression to the 75th percentile as an intermediate, a
technically achievable storage goal.
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Figure 2 Architecture of the multi-task network. Each branch corresponds to one of the predicted per-
centiles (25, 50, 75, 90 and 95th).

Full-size DOI: 10.7717/peerj.13740/fig-2

The model accuracy was evaluated on the test dataset by estimating the root mean
squared error (RMSE; Eq. (2))

RMSE =

√√√√1
n

n∑
i=1

(
yi− ŷi

)2 (2)

where ŷi corresponds to the prediction of the 50th percentile for the ith sample, yi is the
observed ith value, and n is the total number of observations.

Model interpretation
To understand how the different covariates control SOC distribution and to corroborate
that our model is capturing sound relationships, we used an approximation of Shapley
values (Lundberg & Lee, 2017) (SHAP) to estimate the contribution of each covariate to the
model predictions. In brief, to estimate the marginal contribution of a covariate, ideally we
would like to train models with an without the covariate and evaluate their difference. To
correctly estimate the contribution, this process should be done for all the combinations of
covariates to consider their interactions. Since this becomes computationally prohibitive
due to the exponential complexity of the problem, Lundberg & Lee (2017) developed the
SHAP method as an approximation. This method has been recently introduced in soil
sciences and has been applied to large extent digital soil mapping showing potential to
interpret complex models (Padarian, McBratney & Minasny, 2020), or interpreting soil
spectral models (Haghi, Pérez-Fernández & Robertson, 2021).

Historical carbon debt
While this work focuses on croplands, the model was trained considering croplands,
pastures/natural and forest land covers. This allowed us to simulate situations where
current croplands are replaced by pastures/natural and forest, but still accounting for local
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conditions. Without considering the high complexity of land use change and its feedback
(Ojima, Galvin & Turner, 1994), land cover substitution was used as a simple proxy to
estimate the historical debt due to agriculture. Since our model is capable of predicting
different percentiles, we substituted current croplands with (a) themedian (50th percentile)
of pasture/natural land cover and (b) the 90th percentile of forest land cover to get a range
of possible scenarios. As the range was quite wide, the mean was assumed as the historical
debt.

Future climate projections
To estimate the carbon stocks and additional storage capacity under future climate
projections, we ran the model using downscaled temperature and precipitation estimates
of nine General Circulation Models (BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1,
CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, and MRI-ESM2-0)
for the moderately pessimistic SSP3−7.0 scenario, which considers a world that does not
enact climate policies. We present the mean estimate of the aforementioned models for the
2021–2040 period. All the estimates were retrieved from the WorldClim 2.1 database (Fick
& Hijmans, 2017).

RESULTS AND DISCUSSION
SOC and controlling factors
In terms of accuracy, the model evaluated on the test dataset (5% of the available data)
showed a good performance, with a root mean squared error of 3.14% estimated as the
deviation from the median (50th percentile). This value is lower than the error reported
by the latest release of SoilGrids which obtained an error to the median of 3.97% using a
quantile random forest regression (Poggio et al., 2021).

First, we considered croplands and pastures/natural land covers, and our model showed
an upward trend from the current state to the achievable potential and technical maximum,
withmedian SOCcontents around 1.47% representing the current state, and 2.06 and 2.81%
for the 75th and 90th percentile in croplands. The 75th and 90th percentile in pastures were
higher with estimates of 2.43 and 3.43%, respectively. To illustrate the spatial variability
of the additional storage potential, we generated global maps of the SOC median, 75th
and 90th percentile (Fig. 3). The maps show the expected global SOC trend, with low SOC
contents in areas such as the Sahara, Arabian, Gobi, Australian and Atacama deserts, and
high SOC contents in the humid tropics and towards the poles. The maps also show the
increasing concentrations of SOC in the current, 75th and 90th percentiles (Figs. 3A, 3B
and 3C, respectively).

The SHAP values corroborated that the model captured sensible relationships between
the environmental covariates and SOC distribution (Figs. 4A–4D). Here, we describe the
SOC dependence on environmental factors, but there are also intrinsic edaphic factors
that control soil carbon storage. Soil clay content has been recognised as a key factor in
SOC stabilisation (Oades, 1988; Schimel et al., 1994) and, ideally, our model should include
this significant relationship. We used global soil texture information (Poggio et al., 2021),
however, the resulting model did not show the expected spatial global patterns. This is
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Figure 3 Global maps of topsoil organic carbon predictions under (A) current condition, (B) 75th and
(C) 90th percentile.

Full-size DOI: 10.7717/peerj.13740/fig-3

probably due to the current global texture maps do not capture enough local variation. In
consequence, we excluded clay content from our model but we stress the importance of it
in local models when good covariates are available.

For all the SOC percentiles, climatic variables had the greatest influence, closely followed
by elevation and land cover. All the contributions increased at higher percentiles as a
consequence of the higher predicted SOC values. To normalise these values, we calculated
the percentage change from the 50th percentile which revealed a greater influence of land
cover (64.16 and 257.95% to the 75th and 90th percentiles) when compared to other
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Figure 4 Contribution of each covariate to the final mapmodel predictions and important interac-
tions (SHAP values). Contributions to the 50th (A), 75th (B) and 90th (C) percentiles. The land cover co-
variate consists of three classes, namely croplands, pastures, and forest (red, purple and blue, respectively).
D–E Soil organic carbon dependency on temperature and precipitation. (D) Global distribution of the
three identified temperature groups and (E) precipitation dependency (SHAP values).

Full-size DOI: 10.7717/peerj.13740/fig-4

environmental factors (33.09 and 107.24% for MAT; 33.07 and 60.62% for TAP; 37.29
and 54.92% for elevation). The results clearly show the influence of land cover on SOC
stocks. At the median (Fig. 4A), the model assigned a modest negative contribution to land
cover. As we move towards higher percentiles, the negative effect of croplands (blue dots
in the land cover row) increases substantially, clearly differentiating itself from the other
two classes (pastures and forest). The contribution of MAT also increased considerably,
particularly for the observations with low temperatures, due to the decrease in carbon
turnover (Carvalhais et al., 2014).

The dependence of SOC on temperature and precipitation at the global scale has
been thoroughly described in the literature (e.g., Davidson & Janssens (2006)). Our model
captured this dependency, showing a clear interaction between both factors. In Figs.
4D–4E, using SHAP values, we can distinguish three groups of SOC responses. First, for
temperatures above 17.5 ◦C, the TAP dependency follows a logistic curve with a relatively
low plateau due to the high soil respiration rates and SOC turnover, corresponding mainly
to tropical and dry regions. A second intermediate group, with temperatures between
10.0 and 17.5 ◦C, also follows a logistic curve but with a higher plateau compared to the
previous group due to the slower turnover due to lower temperatures. A third group, with
temperatures below 10.0 ◦C, shows an unbounded and broader range of contributions
within a narrower range of precipitation, describing circumpolar and alpine regions.
Additionally, our results also show an important threshold of around 1,000 mm of annual
rainfall where the contribution of TAP becomes positive (above the mean). Areas with
precipitation above this threshold are generally located in tropical and temperate regions
where water is not a limiting factor for plant development.
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Global additional SOC storage potential
To estimate the carbon stocks, we estimated bulk density using a pedotransfer function
generated from the data used in this study (Eq. (3)).

BD(g cm−3)=
83.2687−0.011oc
0.635oc+52.847

(3)

where oc is the soil organic carbon content in g kg−1. This global PTF had a good accuracy,
generating an unbiased prediction and a RMSE of 0.25 g cm−3. The predicted bulk density
also showed the expected behaviour with decreasing values as SOC increases (Fig. 5).

Considering the difference between (a) the current and most common practices
described by the central tendency of the SOC distribution (50th percentile) and (b)
the higher ends of the SOC distribution (75th and 90th percentile) of similar soil under
similar climate and defined land cover as the additional storage potential, we estimated its
magnitude and spatial distribution at the global scale. Our results show that the soils with
the highest SOC additional storage potential are located towards the circumpolar region
(Fig. 6), which corresponds to areas with high carbon density (Stockmann et al., 2015).
Continental climates present the highest SOC additional storage potential (2.81 kg m−2),
followed by Temperate and Polar/Alpine regions (both with 1.92 kg m−2), Tropical regions
(1.59 kg m−2) and Dry regions (1.12 kg m−2).

Clearly, not all soils can be managed for SOC sequestration, thus we focussed on
the topsoil (0–30 cm) of global croplands (1,410 million hectares) which, according to
our model (50th percentile), currently contain an estimate of 83 Pg C (Table 1) with a
median SOC concentration of 1.37% (or 59.1 Mg C ha−1). Our results are lower than the
estimate of Zomer et al. (2021) who estimated the global C stock of 131.81 Pg C on 1,593.5
million hectares cropland, or a 82.7 Mg C ha−1. A SOC stock of 82.7 Mg C ha−1 would be
equivalent to 1.9–2.7%, which may be too high for global croplands. Zomer et al. (2021)
used the SoilGrids data from Hengl et al. (2017), which could be overestimated (Tifafi,
Guenet & Hatté, 2018). Our results show that the areas with the greatest SOC additional
storage potential are located in the ecoregions with high pre-cultivation carbon density (e.g.,
boreal forests/taiga, flooded grasslands and savannas, and temperate broadleaf and mixed
forests). Under the practicable scenario, the potential additional topsoil OC storage (the
difference between 75th and 50th percentiles) of global cropland is 29 Pg C. Ecoregions of
temperate broadleaf and mixed forests, and temperate grasslands, savannas and shrublands
account for 59% of the total additional storage potential with 17.2 Pg C. For the technical
maximum(difference between 90th and 50th percentiles), the total potential is 65 Pg C,
and both ecoregions account for a similar proportion (59%).

Recent years have seen increased interest in the potential of improving SOC stock in
croplands. For example, the ‘‘4 per mille’’ initiative, launched during COP21 in December
2015 (Minasny et al., 2017), estimates that increasing SOC stocks by 4h yr−1 could offset
some fraction of annual CO2 emissions into the atmosphere. There has been a debate on
its actual potential as the assumption was made that all soils of the world would increase
its SOC more or less uniformly. Accumulation of SOC, regardless of the rate, can only be
achieved for a limited time as soils have a natural upper limit for carbon storage which is

Padarian et al. (2022), PeerJ, DOI 10.7717/peerj.13740 9/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.13740


0.0 0.5 1.0 1.5 2.0 2.5
Observed BD (g cm 3)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Pr
ed

ict
ed

 B
D 

(g
 c

m
3 )

a

100

101

102

Nu
m

be
r o

f o
bs

er
va

tio
ns

0 100 200 300 400 500 600 700
Observed OC (g kg 1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Pr
ed

ict
ed

 B
D 

(g
 c

m
3 )

b

Figure 5 Pedotransfer function performance and relationship with SOC. (A) Observed vs. predicted
bulk density values. (B) Predicted bulk density showing the decrease in bulk density at higher carbon con-
tents.
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Figure 6 Amount of soil organic carbon required to reach the maximum soil carbon storage capacity
to the technical maximum (90th percentile; A) and to the more feasible scenario (75th percentile; B).

Full-size DOI: 10.7717/peerj.13740/fig-6

also limited bymanagement. Using our additional storage potential estimates, we generated
global maps simulating a 4h yr−1 accumulation rate (based on the baseline stock) from the
current condition (Fig. 7) and calculated the number of years to reach the practicable and
technical maximum. It is important to note that soils will accumulate carbon at different
rates, but we used the fixed rate of 4h yr−1 because it is currently being used to design
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Table 1 Total topsoil (0–30 cm) SOC stocks (in Pg C) for global croplands by ecoregions.

Current
(q50)

Intermediate
(q75)

Technical
maximum (q90)

Cropland area
(km2)

Boreal Forests/Taiga 1.64 2.33 3.06 174,224
Deserts and Xeric Shrublands 3.23 4.45 5.88 1,052,258
Flooded Grasslands and Savannas 0.97 1.41 1.94 145,205
Mangroves 0.20 0.27 0.35 31,880
Mediterranean forests, woodlands and scrub 4.38 5.84 7.58 859,799
Montane grasslands and shrublands 1.29 1.73 2.18 214,602
Temperate broadleaf and mixed forests 29.47 40.38 54.03 4,178,195
Temperate conifer forests 1.15 1.54 2.02 173,098
Temperate grasslands, savannas and shrublands 20.33 26.58 33.91 2,777,674
Tropical and subtropical coniferous forests 0.27 0.37 0.48 43,780
Tropical and subtropical dry broadleaf forests 4.89 6.71 9.25 1,314,051
Tropical and subtropical grasslands, savannas and
shrublands

4.92 6.91 9.53 1,262,423

Tropical and subtropical moist broadleaf forests 9.87 13.37 17.48 1,771,950
Tundra 0.05 0.07 0.09 10,712
Global 82.68 111.97 147.75 14,009,852

35 118 >200

Years under 4

Figure 7 Years to reach the 75th percentile for global croplands. This assumes a fixed 4h yr−1 accumu-
lation rate which might not be adequate in all cases but it is currently used as an aspirational target.

Full-size DOI: 10.7717/peerj.13740/fig-7

policies in many places. Our results showed a large spatial variation of the maximum
amount of years under the four per mille initiative, with a median period of 86 and 200
years to reach the 75th and 90th percentiles, respectively. For both percentiles, the average
capture rate is around 0.34 Pg C yr−1 which corresponds to only 4% of the C emissions
used to estimate the 4h rate (8.9 Pg C yr−1) (Minasny et al., 2017).

In addition to using a fixed accumulation rate, the results presented in Fig. 7 assume
a linear accumulation. Soils behave differently with SOC accumulation diminishing
approximately exponentially in time (Minasny et al., 2017; Franzluebbers et al., 2012) but it
might still be a valid estimate since SOC accumulation rates, in many cases, could be greater
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than 4h (Francaviglia et al., 2019). Our estimates are in line with other studies that report
croplands reaching a new, higher SOC concentration equilibrium after over a century
(Smith, Powlson & Glendining, 1996; Soussana et al., 2004). Regardless of the accumulation
rate, the total additional carbon storage potential of the topsoil in croplands is limited. Our
total estimates of 29 and 65 Pg C for the 75th and 90th percentiles are equivalent only to
three and seven years of global emissions (37.4 Pg CO2 eq. yr−1 of greenhouse gas derived
from anthropogenic activity (Friedlingstein et al., 2022)).

Compared with previous estimates, our results show a slightly higher additional carbon
storage potential for global croplands. A total of 18 to 37 Pg C, under medium and high
storage scenarios with accumulation rates of 0.9 and 1.85 Pg C yr−1 and the assumption
of reaching a new equilibrium after 20 years has been reported by Zomer et al. (2017),
with estimates based on gridded predictions (Hengl et al., 2017) and considering a uniform
sequestration rate for all croplands. A slightly wider range of sequestration potential has
been reported by Lal et al. (2018) with a total of 7.63 to 43.25 Pg C over a period of 25 to
50 years, assuming the adoption of region-specific best management practices. According
to an extensive review by Fuss et al. (2018), the best estimate of realistic technical potential
(close to the median of the minimums of their reviewed studies) is between 20.1 and 46.2
Pg C until 2050. From that year onwards, the accumulation rates could be challenged by
sink saturation. It is important to remember that our approach estimates the additional
storage potential based on real observations, within a similar climatic context, and not on
technical accumulation rates of specific management practices. Since our approach is not
based on fixed technical accumulation rates, our results are not necessarily constrained to
the 20–50 years period which most studies consider, and could be another reason for our
higher estimates.

Historical carbon debt
Our practicable potential (29 Pg C) is close to the 31.2 Pg C historical debt due to agriculture
estimated by a recent study (Sanderman, Hengl & Fiske, 2017). However, we believe that
their estimate is too low. In their publication, Sanderman, Hengl & Fiske (2017) report a
current SOC stock in global croplands of 62 Pg. If we consider that, in general, soils of
agroecosystems contain 25% to 75% less SOC than their counterparts under natural
ecosystems (Don, Schumacher & Freibauer, 2011; Lal et al., 2018), the pre-agriculture
content would be between 83 and 248 Pg C, which yields a debt between 21 and 186
Pg C, making their estimate very conservative.

Using our model, we estimated a historical carbon debt ranging between 10 and 160 Pg
C by replacing all croplands with a range of region-specific natural ecosystems, as described
in the methods section. If we consider a midpoint within the latter range as the historical
debt due to agriculture (85 Pg C), our practicable potentials account for only 35% of
the historical carbon debt (78% for the technical maximum). Here, we only considered
croplands as these areas have lost more SOC. There is potential for managed grasslands,
however, currently we cannot differentiate between managed and natural grassland using
satellite imagery at the global level.
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Effect of climate change
An important point to consider is that carbon the sequestration potential could vary under
the future climate. Given the high dependence of SOC on temperature, it is expected that
relatively fast global warming will shift most ecosystems toward a lower SOC equilibrium
(Figs. 4D–4E) and that this effect will be more pronounced in areas with larger SOC
concentrations (Figs. 4A–4C). These projections have been reported in many studies
(Robinson, 2007; Crowther et al., 2016; Melillo et al., 2017) and they are likely to result in
reduced sequestration potential.

Utilising CMIP6 downscaled future climate projections for a moderate ‘‘business as
usual’’ shared socio-economic pathway (SSP3−7.0), we estimated a mean reduction of
14% in the total sequestration potential in croplands in the next 20 years, from 29.9 Pg C to
25.2 Pg C, and from 66.6 Pg C to 56.6 Pg C for the 75th and 90th percentiles, respectively.
That estimate does not include the drop in carbon concentration of the current state (50th
percentile) which implies an additional loss of 7.9 Pg C.

Note that here we have only included changes that affect ourmodel (i.e., temperature and
precipitation) but we have not included the potential changes in net primary productivity
(NPP), which is projected to increase in all the CMIP6 scenarios (Gang et al., 2017). Our
model does not explicitly consider the relationship between NPP and SOC but it is an
implicit factor since there are observations covering a gradient of climatic conditions (and
NPP) for a given combination of the rest of the covariates.

SOC sequestration is still a priority
We have shown that the total amount of additional carbon croplands can store is
relatively modest compared to the sustained emission of greenhouse gases derived from
anthropogenic activity. It is unreasonable to expect that a single sector can offset global
emissions, especially considering their increasing trend. Nevertheless, incorporating
carbon into soils by improving management practice should still be a priority to ensure
food security. According to our estimates, agriculture generates a carbon debt, so we need
to properly manage croplands to be sustainable and avoid the expansion of agricultural
land due to the loss of soil productivity.

Agricultural productivity has been directly related to SOC contents. If reduced below
some critical limits, soil condition declines and so does crop yield (Lal, 2006; Kopittke et
al., 2019). By increasing SOC to its practicable and technical upper limits (75th and 90th
percentiles), between 224 and 418 million hectares could be taken above the critical SOC
limits of 1.1% and 2% for tropical (Aune & Lal, 1997) and temperate (Loveland & Webb,
2003) areas, respectively.

Several studies have raised concerns about the barriers to sequester SOC (Rumpel et
al., 2020). One of the main advantages of our study is that we use a large global database
and the estimates are based on real world observations, meaning that a group of locations
already reached the target SOC stocks for a given combination of environmental conditions.
However, a current limitation to have in mind is that our model is based on biophysical
factors but does not take into account socio-economic barriers, disproportionally affecting
developing countries, that can impede the adoption of new management practices.
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There are still many knowledge gaps that need to be filled and that could help to improve
our current model. As mentioned in previous sections, detailed texture information at
the global scale is still required and that is also applicable to other soil properties that
highly correlate with SOC (Rasmussen et al., 2018). This is necessary to account for local
variability. Additionally, our approach placesmanagement practices into different quantiles
of a distribution based on their SOC density, but it is not capable of identifying them. More
research is needed to identify region-specific management practices that can enhance soil
carbon. Many countries have a national registry of lands (e.g., Land Parcel Identification
in Europe (Leo & Lemoine, 2001)), at least for the management of agricultural subsidies,
which should be integrated into soil information systems and added to this type of model.
In this work, the selection of such quantiles is illustrative of what we think can be achievable
potentials but in practice, any percentile above the median is a gain. The specific percentiles
should be adjusted to accommodate different targets, defined by different stakeholders,
as concluded by Chen et al. (2019) who applied a similar approach at a national scale in
France. In terms of the uncertainty of estimates from this study, they are still large in spite
of the methodological improvements. This is the case for all current global carbon stock
estimates. Further data collection is required, under different management and biophysical
conditions, to increase the confidence of such estimates. Future work should take into
account such uncertainty to provide a more robust estimation and potentially guide future
soil assessments.

CONCLUSIONS
Our results put in perspective the expectation around soil carbon sequestration in global
croplands. They indicate that, even if the additional amount of carbon croplands can
accumulate is large (30–67 Pg C), the process is slow, spanning periods up to over a
century. Regardless of the accumulation rate, the total additional storage is relatively small
compared to the sustained emission of greenhouse gases derived from anthropogenic
activity, equating to only three to seven years of emissions offsetting.

Regarding the historical impact of agriculture, our results suggest that the current
management practices close to our 75th percentile can only recoup 32% of our estimated
92 PgChistorical debt. Even considering the best currentmanagement practices (equivalent
to our 90th percentile), we would not be able to recoup that debt fully, only offsetting 72%
of them. Hence, agriculture has an intrinsic environmental cost that needs to be taken into
account for territorial planning.

Soil carbon capturing measures should be complementary to general carbon emission
reduction plans in order to tackle climate change. Moreover, given the high contribution of
climate to SOC accumulation, it is expected that the additional SOC storage potential will
be affected by climate change if this is not the case. Our results showed that the potential
could be reduced by 14% under a moderate ‘‘business as usual’’ shared socio-economic
pathway (SSP3-7.0).

The total amount of additional carbon that global croplands can store is relatively small
in the context of global carbon emissions. However, it is critical in the context of soil and
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food security.We estimate that it is possible to restore between 224 and 418million hectares
if we implement management practices conducive to achieve 75th and 90th percentiles.
Soil carbon is directly related to agricultural productivity and any improvements in soil
condition are a step closer to more sustainable and resilient agricultural systems.
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