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ABSTRACT
Clinical manifestations of pancreatic cancer often do not occur until the cancer
has undergone metastasis, resulting in a very low survival rate. In this study, we
investigated whether salivary bacterial profiles might provide useful biomarkers for
early detection of pancreatic cancer. Using high-throughput sequencing of bacterial
small subunit ribosomal RNA (16S rRNA) gene, we characterized the salivary micro-
biota of patients with pancreatic cancer and compared them to healthy patients and
patients with other diseases, including pancreatic disease, non-pancreatic digestive
disease/cancer and non-digestive disease/cancer. A total of 146 patients were en-
rolled at the UCSD Moores Cancer Center where saliva and demographic data were
collected from each patient. Of these, we analyzed the salivary microbiome of 108
patients: 8 had been diagnosed with pancreatic cancer, 78 with other diseases and 22
were classified as non-diseased (healthy) controls. Bacterial 16S rRNA sequences were
amplified directly from salivary DNA extractions and subjected to high-throughput
sequencing (HTS). Several bacterial genera differed in abundance in patients with
pancreatic cancer. We found a significantly higher ratio of Leptotrichia to Porphy-
romonas in the saliva of patients with pancreatic cancer than in the saliva of healthy
patients or those with other disease (Kruskal–Wallis Test; P < 0.001). Leptotrichia
abundances were confirmed using real-time qPCR with Leptotrichia specific primers.
Similar to previous studies, we found lower relative abundances of Neisseria and
Aggregatibacter in the saliva of pancreatic cancer patients, though these results were
not significant at the P < 0.05 level (K–W Test; P = 0.07 and P = 0.09 respectively).
However, the relative abundances of other previously identified bacterial biomarkers,
e.g., Streptococcus mitis and Granulicatella adiacens, were not significantly different
in the saliva of pancreatic cancer patients. Overall, this study supports the hypothesis
that bacteria abundance profiles in saliva are useful biomarkers for pancreatic cancer
though much larger patient studies are needed to verify their predictive utility.
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INTRODUCTION
In the United States, approximately 40,000 people die every year from pancreatic

adenocarcinoma, making it the fourth leading cause of cancer related death. Patients

diagnosed in the early stage of pancreatic cancer have a 5-year survival rate of 24%,

compared to 1.8% when diagnosed in the advanced stage (Li et al., 2004). Clinical

manifestations of pancreatic cancer do not appear until after the cancer has undergone

metastasis (Holly et al., 2004), emphasizing the need for early detection biomarkers.

The etiology of pancreatic cancer remains elusive, with cigarette smoking being the

most established risk factor (Vrieling et al., 2010; Nakamura et al., 2011; Fuchs, Colditz

& Stampfer, 1996; Zheng et al., 1993), although links have also been made to diabetes

(Haugvik et al., 2015; Liu et al., 2015), obesity (Bracci, 2012), and chronic pancreatitis

(Malka et al., 2002). Recent research has also shown that men with periodontal disease

have a two-fold greater risk of developing pancreatic cancer after adjusting for smoking,

diabetes, and body mass index (Michaud et al., 2007).

The human oral cavity harbors a complex microbial community (microbiome) known

to contain over 700 species of bacteria, more than half of which have not been cultivated

(Aas et al., 2005). Researchers have identified a core microbial community in healthy

individuals (Zaura, Keijser & Huse, 2009) and shifts from this core microbiome have

been associated with dental carries and periodontitis (Berezow & Darveau, 2011). The

composition of bacterial communities in saliva seems to reflect health status under certain

circumstances (Yamanaka et al., 2012), making the analysis of salivary microbiomes a

promising approach for disease diagnostics. A study by Mittal et al. (2011) found that

increases in the numbers of Streptococcus mutans and lactobacilli in saliva have been

associated with oral disease prevalence, while another study showed that high salivary

counts of Capnocytophaga gingivalis, Prevotella melaninogenica and Streptococcus mitis may

be indicative of oral cancer (Mager et al., 2005).

A recent study by Farrell et al. (2012) suggested that the abundances of specific salivary

bacteria could be used as biomarkers for early-stage pancreatic cancer. Using the Human

Oral Microbe Identification Microarray (HOMIM), researchers observed decreased levels

of Neisseria elongata and Streptococcus mitis in patients with pancreatic cancer compared

with healthy individuals, while levels of Granulicatella adiacens were significantly higher

in individuals with pancreatic cancer (Farrell et al., 2012). The HOMIM’s ability to

detect 300 of the most prevalent oral bacterial species has made it a suitable method for

assessing community profiles at the phylum level as well as many common taxa at the genus

level. However, the HOMIM microarray method fails to detect approximately half of the

bacterial species commonly present in saliva (Ahn et al., 2011).

In this study, we applied high-throughput sequencing (HTS) of the bacterial small-

subunit ribosomal RNA (16S rRNA) genes to determine the salivary profiles of patients
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with and without pancreatic cancer. The use of HTS to sequence 16S rRNA bacterial

genes from entire salivary microbial communities allows for a more comprehensive

profile of the microbiome in health and disease (Kuczynski, Lauber & Walters, 2011).

During this study, we collected 146 saliva samples from patients at the UCSD Moores

Cancer Center. HTS was used to characterize the salivary microbiome of patients with

pancreatic cancer and compare them to patients with other diseases (including pancreatic

disease, non-pancreatic digestive disease/cancer and non-digestive disease/cancer) as well

as non-diseased (healthy) controls. This allowed us to test the hypothesis that patients

with pancreatic cancer may have a distinct microbial community profiles compared to

non-diseased controls and to other forms of digestive and non-digestive diseases. Our

results demonstrated that patients with pancreatic cancer had a significantly higher

abundance ratio of particular bacterial genera.

MATERIALS AND METHODS
Sample collection and patient information
This study was approved by the University of California San Diego (UCSD) and San

Diego State University (SDSU) joint Institutional Review Board (IRB Approval #120101).

Patients recruited for the study were being clinically evaluated at the UCSD Moores Cancer

Center or were undergoing endoscopy procedures by UCSD Gastroenterologists in the

Thornton Hospital Pre-Procedure Clinic between May 2012 and August 2013. All patients

were required to fast for 12-hours prior to cancer evaluation and endoscopy procedures.

To avoid bias during enrollment, the research coordinator responsible for recruiting

participants was unaware of patient diagnosis at time of sample collection. Consenting

participants were provided with IRB-approved consent forms, and HIPAA forms, as well

as an optional, voluntary written survey in which they could share relevant information

about antibiotic, dental and smoking history. All participants gave informed consent and

their identities were withheld from the research team. Each subject was free to withdraw

from the study at any time. Participants were asked to give a saliva sample into a 50 mL

conical tube. If the amount of saliva exceeded 55 uL, 10 uL was transferred into tube

containing Brain-Heart Infusion media (BHI) and glycerol for future culturing. The

remaining saliva was broken up into 55 uL aliquots and stored in sterile cryovials. Both

BHI and saliva samples were then immediately stored at −80 ◦C until further processing.

Of the 146 participants, three subjects voluntarily withdrew and seven were not

included in the study due insufficient production of saliva (<55 uL) leaving 136 saliva

samples. After sample collection, the research coordinator accessed the participants’

medical records electronically for patient diagnosis information that was included under

a novel subject ID number. Diagnosis was used to determine health status and assess

the stage of disease when each sample was taken. The various diagnoses were grouped

into the following categories: pancreatic cancer, other disease (including pancreatic

disease, non-pancreatic digestive disease/cancer and non-digestive disease/cancer), and

healthy (non-diseased) controls. Healthy individuals were defined as participants with

no documented chronic digestive or non-digestive disease, and a 5-year resolution of any
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previously documented digestive or non-digestive disease. Exclusion criteria included

participants undergoing active chemotherapy or radiation therapy or use of antibiotics two

weeks prior to saliva collection as well as invasive surgery in the past year.

DNA isolation, PCR and 16S rRNA sequencing
Bacterial DNA was extracted directly from 50 uL of patient saliva using the MoBio

PowerSoil DNA Extraction Kit (Catalogue 12888-05, Mo Bio Laboratories, Carlsbad,

CA, USA) following the manufacturer’s protocol. Genomic DNA was quantified using the

NanoDropTM Spectrophotometer and stored at −20 ◦C.

The 16S ribosomal RNA (rRNA) amplicon region was amplified using barcoded

‘universal’ bacterial primer 515F (5′-AATGATACGGCGACCACCGAGATCTACAC

TATGGTAATT GT GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-CAAGCAGAAGA

CGGCATACGAGAT XXXXXXXXXXXX AGTCAGTCAG CC GGACTACHVGGGTWT

CTAAT-3′) (X’s indicate the location of the 12-bp barcode) with Illumina adaptors used

by the Earth Microbiome Project (http://www.earthmicrobiome.org/emp-standard-

protocols/16s). The barcoded primers allow pooling of multiple PCR amplicons in a

single sequencing run. PCR was carried out using the reaction conditions outlined by the

Earth Microbiome Project. Thermocycling parameters were as follows: 94 ◦C for 3 min

(denaturing) followed by amplification for 35 cycles at 94 ◦C for 45 s, 50 ◦C for 60 s and

72 ◦C for 90 s, and a final extension of 72 ◦C for 10 min (Caporaso et al., 2011). PCR

amplicons were then sequenced on the Illumina MiSeq platform at the Argonne National

Laboratory Core sequencing facility (Lemont, IL).

Sequence analysis
16S rRNA sequences were de-multiplexed using the Quantitative Insights Into Microbial

Ecology (QIIME v.1.8.0, http://www.qiime.org) pipeline. Sequences were grouped into

operational taxonomic units (OTUs) at 97% sequence similarity using the Greengenes

reference database. OTUs that did not cluster with known taxa at 97% identity or higher

in the database were clustered de novo (UCLUST (Edgar, 2010). Representative sequences

for each OTU were then aligned using PyNast (Caporaso, Bittinger & Bushman, 2010),

and taxonomy was assigned using the RDP classifier (Version 2.2) (Cole et al., 2003). A

phylogenetic tree was built using FastTree (Price, Dehal & Arkin, 2009). Before performing

downstream analysis, patient samples were rarefied to 100,000 sequences per sample,

singletons and OTUs present in <25% of samples were removed prior to rarefaction.

Chimeric sequences were identified using ChimeraSlayer in QIIME, as well as with

DECIPHER (Wright, Yilmaz & Noguera, 2012), and subsequently removed. Alpha diversity

metrics were computed using QIIME. Beta diversity distance between samples (weighted

and unweighted UniFrac) were computed and used to account for both differences in

relative abundance of taxa and phylogeny (Vázquez-Baeza et al., 2013). Beta diversity

comparisons were done using analysis of similarities (ANOSIM). We also tested whether

there were significant differences in abundance ratios of particular genera between our

different categories with GraphPad Prism version 6.0 using the Kruskal–Wallis test

followed by Dunn’s multiple comparison correction. Statistical significance was accepted
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at a p < 0.05. Analysis and identification of potential contaminants was done using

SourceTracker (Knights et al., 2011).

Quantitative PCR (qPCR)
Leptotrichia abundance was determined using qPCR. Briefly, for each sample we

estimated Leptotrichia abundance using Leptotrichia specific 16S primers and normalized

their values to overall bacterial abundance estimated using qPCR with universal

bacterial 16S primers (5′-TCCTACGGGAGGCAGCAGT-3′ forward primer, and

5′-GGACTACCAGGGTATCTAATCCTGTT-3′ reverse primer) developed by Nadkarni

et al. (2002). qPCR was performed on a Bio-Rad CFX96 TouchTM Real-Time PCR

Detection Instrument. The maximum Ct (threshold cycle) for the universal 16S primers

was set to 35 cycles and Ct levels above this threshold were considered background noise.

Genus-specific primers for amplification of Leptotrichia were designed using 16S rRNA

sequences obtained from the RDP classifier (Version 2.2) (Cole et al., 2003). Primer3

online software was used for primer selection, and conditions were settled following

the recommendations of Thornton & Basu (2011). The Leptotrichia forward primer

sequence (5′-GGAGCAAACAGGATTAGATACCC-3′) and the Leptotrichia reverse primer

sequence (5′-TTCGGCACAGACACTCTTCAT-3′) generated an amplicon of 87 bp. The

PCR reaction contained 1 uM of both forward and reverse Leptotrichia primers with

thermocycling parameters of 50 ◦C for 2 min, 95 ◦C for 10 min and 40 cycles of 95 ◦C

for 15 s and 62.5 ◦C for 1 min. The amplification reactions for the universal primers and

Leptotrichia primers were carried out in at least duplicate using 25 uL of SYBR Green

Master Mix (Bio-Rad) and 0.85 ng/uL of extracted DNA as template. Various online

tools, including In silico PCR Amplification (Bikandi et al., 2004) and Ribosomal Database

Project (Cole et al., 2003) were used to check the specificities of the oligonucleotide primer

sequences for the target organism. A saliva sample was sequenced (Eton Bioscience, San

Diego, CA) using our novel primers and primer specificity was further confirmed with a

16S rRNA database BlastN search.

RESULTS
Salivary microbial diversity profiles were generated for a total of 108 patients. 8 patients

were diagnosed with pancreatic cancer (P), 78 were diagnosed with other diseases

(including cancer) (O), and 22 were considered healthy (non-diseased) controls (H).

Table 1 details the individual clinical characteristics, including, gender and ethnicity. Of

the 108 patients, 23 patients in pancreatic, digestive, and non-digestive disease categories

were diagnosed with having cancer. Table 2 details the types of cancer, as well as category

groupings and the mean age of the cancer patients in each category.

Illumina sequencing yielded approximately 6.8 million sequences across all sam-

ples. The sequences are available on FigShare (http://dx.doi.org/10.6084/m9.figshare.

1422174) along with the mapping file (http://dx.doi.org/10.6084/m9.figshare.1422175).

An analysis of potential sample contamination using SourceTracker (Knights et al., 2011)

identified some evidence of human skin and/or environmental contamination. The

sequences associated with OTUs identified as contaminants, mostly Staphylococcus (skin)
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Table 1 Clinical characteristics of study sample (n = 108).

Demographics Pancreatic cancer (P) Other disease (O) Healthy control (H) Total

n = 8 n = 78 n = 22 n = 108

Sex

Male 6 38 12 56

Female 2 40 10 52

Ethnicity

Caucasian 6 56 15 77

Hispanic 2 6 5 13

Asian 0 4 1 5

Unknown 0 12 1 13

Table 2 Types of identified cancers (n = 23).

Cancer by category Age mean N

Pancreas (n = 8) 71.1

Pancreatic cancer 8

Digestive (n = 9) 64.7

Ampullary 3

Esophageal 3

Stomach 1

Rectal 2

Non-digestive (n = 6) 54.8

Breast 1

Skin 1

Testicular 1

Thyroid 3

and Cyanobacteria (chloroplasts), were removed from all subsequent analyses. From these

data, we identified a total of 12 bacterial phyla and 139 genera. Proteobacteria, Actinobac-

teria, Bacteroidetes, Firmicutes, and Fusobacteria were the 5 major phyla, accounting for

99.3% of oral bacteria (Fig. 1). The mean relative abundance of Proteobacteria was lower

in pancreatic cancer patients relative to other sample categories, while Firmicutes tended

to be higher, though these were not significant after adjusting for multiple comparisons

(FDR). The pancreatic cancer group also had higher levels of Leptotrichia, as well as lower

levels of Porphyromonas, and Neisseria (Fig. 2). In general, multi-level taxonomic profiles

of the healthy group resembled the ‘other’ disease group, while the pancreatic cancer group

was readily distinguishable (Fig. S1). However, there were no significant differences among

the three main groupings (H, O, and P) in either beta diversity (ANOSIM; P = 0.1) or

alpha diversity (Chao1, K–W test; P = 0.6; Faith’s PD, K–W test; P = 0.56).

As in previous studies by Farrell et al. (2012) and Lin et al. (2013), we saw lower

relative abundances of Neisseria and Aggregatibacter, although these differences were not
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Figure 1 Relative abundance of phyla identified in patient saliva summarized by diagnosis group. Rel-
ative abundance of phyla in oral communities from 108 study patients summarized by diagnosis group
(H, healthy control; O, other disease; and P, pancreatic cancer).

Figure 2 Mean relative abundances of particular genera in pancreatic cancer patients (P) compared
to healthy (H) and other disease (O) patient groups. Relative abundances of genera in oral communities
from 108 patients. Arrows point to specific genera that showed interesting trends across diagnosis groups.

significant (K–W test; P = 0.07 and P = 0.09 respectively). Bacteriodes was more abundant

in pancreatic cancer patients compared to healthy individuals, similar to what Lin et

al. observed, although this too was not significant (K–W test; P = 0.27). We did not see any

difference in the relative abundance of Streptococcus or Granulicatella, which were shown to

differ in a prior pancreatic cancer study (Farrell et al., 2012). Additional analytical targets

were based on a preliminary study consisting of our first 61 saliva samples (including 3
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Figure 3 Abundance ratio of Leptotrichia to Porphyromonas between different patient cate-
gories. Each symbol represents the ratio of Leptotrichia Oral Taxon 221 and Leptotrichia hongkongenesis
to Porphyromonas for an individual patient (n = 108). Patients are grouped into 3 different categories
depending on their diagnosis: healthy control (H), other diseases (including cancer) (O), and pancreatic
cancer (P). Horizontal bar and error bars represent the mean and SEM, respectively. ∗∗∗p < 0.001
(Kruskal–Wallis test followed by Dunn’s multiple-comparison test).

from pancreatic cancer patients), which showed significantly higher Leptotrichia and lower

Porphyromonas in pancreatic cancer patient saliva.

The abundance ratio of Leptotrichia, specifically two OTUs (arbitrarily named OTU

31235 and OTU 4443207), to Porphyromonas was significantly higher in pancreatic cancer

patients (Fig. 3). A BLAST comparison of these OTUs to the 16S sequence in the Human

Oral Microbiome database (Chen et al., 2010) (HOMD RefSeq Version 13.2) found OTU

31235 to be 100% similar to Leptotrichia sp. Oral taxon 221, while OTU 4443207 was

99.3% similar to Leptotrichia hongkongensis. We found a strong positive correlation (Pear-

son’s correlation r = 0.903, P = 0.0000001) between Leptotrichia abundances obtained

from 16S rRNA sequencing (OTU relative abundances) and from real-time qPCR (Fig. 4).

DISCUSSION
Our analysis of salivary microbial profiles supports prior work suggesting that salivary

microbial communities of patients diagnosed with pancreatic cancer are distinguishable

from salivary microbial communities of healthy patients or patients with other diseases,

including non-pancreatic cancers. At the phylum level, pancreatic cancer patients tended

to have higher proportions of Firmicutes and lower proportions of Proteobacteria (Fig. 1).

At finer taxonomic levels, we observed differences in the mean relative abundances of

particular genera in pancreatic cancer patients compared to other patient groups (Fig. 2).

For instance, there was a higher proportion of Leptotrichia in pancreatic cancer patients,

while the proportion of Porphyromonas and Neisseria were lower in these patients.

The most striking difference we found between the microbial profiles of pancreatic

cancer patients and other patient groups was in the ratio of the bacterial genera

Leptotrichia and Porphyromonas (LP ratio) (Fig. 3). The LP ratio had been identified

as a potential biomarker from a preliminary analysis and an analysis of the full dataset

found significantly higher LP ratio in pancreatic cancer patient saliva than in other patient
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Figure 4 Correlation between Leptotrichia abundance from 16S rRNA sequences and from real-time
qPCR. Cross validation of total Leptotrichia OTU abundance using real-time qPCR. After using 16S
rRNA as a reference gene for normalization of the levels of Leptotrichia genus, data was normalized
by fold change to three healthy controls with relatively low Leptotrichia OTU abundance. Each symbol
represents a patient: P = 6, and O = 12. Leptotrichia OTU abundance was correlated with qPCR fold
change according to Pearson’s correlation (r = 0.903).

groups. To verify these differences using another method, we cross-validated the relative

abundances of Leptotrichia (Fig. 4). Interestingly, during the analysis of the 16S rRNA data,

we successfully used the LP ratio to reclassify one of the patients in the non-pancreatic

cancer disease group. This particular individual had been initially diagnosed as having

an unknown digestive disease, but the patient’s high LP ratio suggested pancreatic cancer

(Fig. 3). Subsequently, the patient was re-evaluated and diagnosed with pancreatic cancer,

supporting the notion that the LP ratio may serve as a pancreatic cancer biomarker.

Despite the small cohort of patients in this study, we believe our results are especially

noteworthy because we were able to distinguish between patients with pancreatic cancer

and patients with a variety of other diseases (including non-pancreatic cancer), in addition

to healthy controls. Other researchers have proposed the use of ratios of bacterial taxa

previously. Galimanas et al. (2014) suggested using salivary bacteria abundance ratios as

a means for differentiating between healthy and diseased patients. Taxonomic ratios have

been used to differentiate between subjects in studies of obesity (Lazarevic et al., 2012),

diabetes (Zhang & Zhang, 2013), and periodontal disease (Moolya et al., 2014). Ratio

Torres et al. (2015), PeerJ, DOI 10.7717/peerj.1373 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.1373


comparisons also help to control for high levels of taxonomic variability among individuals

(Ding & Schloss, 2014; Segre, 2012; Schwarzberg et al., 2014; Wang et al., 2013).

A review of the literature revealed that Leptotrichia’s role in oral health remains elusive.

However, these bacteria have been found in the bloodstream of immune-compromised

patients (Eribe & Olsen, 2008) and co-occur significantly with colorectal tumors (Warren

et al., 2013). Leptotrichia have been isolated from cardiovascular and gastrointestinal

abscesses, from systemic infections, and are thought to be pathogenic (Han & Wang,

2013). In regards to Porphyromonas, antibodies to Porphyromonas gingivalis have been

directly associated with pancreatic cancer (Michaud et al., 2012). A European cohort study

measured plasma antibodies to 25 oral bacteria in pre-diagnostic blood samples from 405

pancreatic cancer patients and 416 matched controls and found a >2-fold increase in risk

of pancreatic cancer among those with higher antibody titers to a pathogenic strain of P.

gingivalis (Michaud et al., 2012). At first glance, it appears contradictory that individuals

with higher Porphyromonas antibody titers would have lower oral abundances. However,

studies of systemic immunization of animals to particular periopathogens including

Porphyromonas have shown reduced colonization of these bacteria in the mouth and

a reduction of periodontitis (Evans et al., 1992; Persson et al., 1994; Clark et al., 1991).

Similarly, higher Porphyromonas antibody titers in individuals with pancreatic cancer may

decrease their oral abundance, though this connection needs to be formally tested.

Shifts in salivary microbial diversity could also be a systematic response to pancreatic

cancer. Pancreatic cancer is known to weaken the immune system (Von Bernstorff et al.,

2001), which could lead to overgrowth of oral bacteria and a shift towards systemically

invasive periodontal pathogens. The proliferation of bacterial pathogens could assist

cancer progression through systemic inflammation (El-Shinnawi & Soory, 2013) or

immune distraction (Feurino, Zhang & Bharadwaj, 2007). Thus, an initial increase in

Porphyromonas might be followed by a decrease due to systemic invasion and antibody

production. Indeed, inflammation is thought to play a significant role in the development

of pancreatic cancer (Farrow & Evers, 2002).

We also compared the relative abundances of several other bacterial genera that were

indicated as potential biomarkers in previous work by Farrell et al. (2012). Like Farrell et

al., we found a lower proportion of Neisseria in pancreatic cancer patient saliva compared

with the healthy and other disease category, though this trend was not significant.

However, we did not find the same results as Farrell et al. for the other bacterial genera they

identified. Our data also showed an increase in Bacteroides and decrease in the abundance

of the bacterial genus Aggregatibacter in patients with pancreatic cancer, supporting the

results of a pilot study by Lin et al. (2013), though neither trends were significant.

Methodological differences between our study and the Farrell et al. study in particular,

may partially explain our divergent results. For instance, the inability of the V4 region of

the16S rRNA gene to discriminate Streptococcus mitis from other Streptococcus species may

have prevented us from detecting difference in this species’ abundance (Farrell et al., 2012).

Additionally, our study had a broader array of patient categories and cancers were not

always confined to the pancreas at the time of sampling.
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Interestingly, since the completion of our study, Mitsuhashi et al. (2015) reported the

detection of oral Fusobacterium in pancreatic cancer tissue. A retrospective review of our

abundance data also found a lower relative abundance of Fusobacterium in pancreatic

cancer patients compared to other patient categories (Fig. 2; K–W test, P = 0.03 prior

to FDR correction) suggesting the processes driving differences in Fusobacterium may

be similar to our proposed mechanism for Porphyromonas. Although the result was not

significant after adjusting for multiple-comparisons (FDR), we suggest Fusobacterium

abundance should be considered as a potential biomarker target for future studies with

larger patient cohorts.

Overall, our study suggests that members of the salivary microbiome have promise

as potential pancreatic cancer biomarkers and we may have uncovered an important

new prospect in this regard (i.e., the LP ratio). However, our relatively small number

of samples from pancreatic cancer patients and the discrepancies between our findings

and previous work indicate that much larger patient cohorts will be needed to determine

whether salivary biomarkers are diagnostically useful. Future studies should focus on

improved metadata collection, including diet and oral health information (i.e., periodontal

disease), which would make it possible to run statistical analyses that control for multiple

factors involved in shaping oral microbial diversity. It will also be important to sample the

same individual’s saliva over time to assess whether we can distinguish between disease

stages and also to control for intra-individual variation. Further, it is possible that single

biomarkers may never be able to consistently identify pancreatic patients from other

conditions. Thus, we may need more complex metrics that combine the abundances of

multiple salivary bacteria, metabolite profiles, and detailed patient metadata. Effective

diagnostic biomarkers for pancreatic cancers have been difficult to find, but are sorely

needed and have the potential to save thousands of lives each year.
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