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Paper describes a data-driven framework based on spatio-temporal ensemble machine
learning to produce distribution maps for 16 forest tree species (Abies alba Mill., Castanea
sativa Mill. , Corylus avellana L., Fagus sylvatica L., Olea europaea L., Picea abies L. H.
Karst., Pinus halepensis Mill., Pinus nigra J. F. Arnold, Pinus pinea L., Pinus sylvestris L.,
Prunus avium L., Quercus cerris L., Quercus ilex L., Quercus robur L., Quercus suber L. and
Salix caprea L.) at high spatial resolution (30 m). Tree occurrence data for a total of 3
million of points was used to train different Machine Learning (ML) algorithms: random
forest, gradient-boosted trees, generalized linear models, k-nearest neighbors, CART and
an artificial neural network. A stack of 585 coarse and high resolution covariates
representing spectral reflectance (Landsat bands, spectral indices; time-series of seasonal
composites), different biophysical conditions (i.e. temperature, precipitation, elevation,
lithology) and biotic competition (other species distribution maps) was used as predictors
for realized distributions, while potential distribution was modelled with environmental
predictors only. Logloss and computing time were used to select the three best algorithms
to train an ensemble model based on stacking with a logistic regressor as a meta-learner
for each species. High resolution (30 m) probability and model uncertainty maps of
realized distribution were produced for each species using a time window of 4 years for a
total of 6 distribution maps per species for the studied period, while for potential
distributions only one map per species was produced. Results of spatial cross validation
show that Olea europaea and Quercus suber achieved the best performances in both
potential and realized distribution, while Pinus sylvestris and Salix caprea achieved the
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worst. Further analysis shows that fine-resolution models consistently outperformed coarse
resolution models (250 m) for realized distribution (average decrease in logloss: +53%).
Realized distribution models achieved higher predictive performances than potential
distribution ones. Importance of predictor variables differed across species and models,
with the green band for summer and the NDWI and NDVI for fall for realized distribution
and the diffuse irradiation and precipitation of the driest quarter being the most important
and frequent for potential distribution. The ensemble model outperformed or performed as
good as the best individual model in all potential species distributions, while for ten
species it performed worse than the best individual model in modeling realized
distributions. The framework shows how combining continuous and consistent EO time
series data with state of the art ML can be used to derive dynamic distribution maps. The
produced time-series occurrence predictions can be used to quantify temporal trends and
detect potential forest degradation.
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Paper describes a data-driven framework based on spatio-temporal ensemble machine learning to produce

distribution maps for 16 forest tree species (Abies alba Mill., Castanea sativa Mill., Corylus avellana L.,

Fagus sylvatica L., Olea europaea L., Picea abies L. H. Karst., Pinus halepensis Mill., Pinus nigra J. F.

Arnold, Pinus pinea L., Pinus sylvestris L., Prunus avium L., Quercus cerris L., Quercus ilex L., Quercus

robur L., Quercus suber L. and Salix caprea L.) at high spatial resolution (30 m). Tree occurrence data

for a total of 3 million of points was used to train different Machine Learning (ML) algorithms: random

forest, gradient-boosted trees, generalized linear models, k-nearest neighbors, CART and an artificial neural

network. A stack of 585 coarse and high resolution covariates representing spectral reflectance (Landsat

bands, spectral indices; time-series of seasonal composites), different biophysical conditions (i.e. temperature,

precipitation, elevation, lithology) and biotic competition (other species distribution maps) was used as

predictors for realized distributions, while potential distribution was modelled with environmental predictors

only. Logloss and computing time were used to select the three best algorithms to train an ensemble model

based on stacking with a logistic regressor as a meta-learner for each species. High resolution (30 m)

probability and model uncertainty maps of realized distribution were produced for each species using a time

window of 4 years for a total of 6 distribution maps per species for the studied period, while for potential

distributions only one map per species was produced. Results of spatial cross validation show that Olea

europaea and Quercus suber achieved the best performances in both potential and realized distribution,

while Pinus sylvestris and Salix caprea achieved the worst. Further analysis shows that fine-resolution models

consistently outperformed coarse resolution models (250 m) for realized distribution (average decrease

in logloss: +53%). Realized distribution models achieved higher predictive performances than potential

distribution ones. Importance of predictor variables differed across species and models, with the green

band for summer and the NDWI and NDVI for fall for realized distribution and the diffuse irradiation and

precipitation of the driest quarter being the most important and frequent for potential distribution. The

ensemble model outperformed or performed as good as the best individual model in all potential species

distributions, while for ten species it performed worse than the best individual model in modeling realized

distributions. The framework shows how combining continuous and consistent EO time series data with

state of the art ML can be used to derive dynamic distribution maps. The produced time-series occurrence

predictions can be used to quantify temporal trends and detect potential forest degradation.
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1 INTRODUCTION48

Reforestation and restauration are considered key strategies for tackling global warming and enhancing49

CO2 sequestration (Lefebvre et al., 2021; Domke et al., 2020; Nave et al., 2019). Under the European50

Green Deal and the EU biodiversity strategy for 2030, the EU has committed to planting at least 3 billion51

additional trees in the EU by 2030 (https://ec.europa.eu/environment/3-billion-trees_en).52

At the same time in Germany, trees in more than 2.5% of the country’s total forest area have died because of53

beetles and drought fueled by a warming climate (Popkin, 2021). Obtaining reliable information on forest54

tree species distribution in space and time has become paramount for stakeholders and decision-makers to55

anticipate and minimize climate change impacts (Keenan, 2015).56

The production of species distribution maps has been dominated by Species Distribution Modeling57
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(SDM) approaches (Franklin, 2010). Maps of species ecological niches are made by associating values58

of different predictors to known locations of the target species and then used to predict distribution in59

geographic space where no field data for the target species is available. Correlative SDM (C-SDM) in60

particular has recently become very popular due to the increase in advanced statistical techniques (i.e.61

Machine Learning) and geospatial data (satellites, drones etc.) availability (Gobeyn et al., 2019). This62

is also reflected in an increase of SDM-related publications in the last decade (Booth, 2018), as well as63

reviews (Booth et al., 2014).64

From the late 2000s, the focus in SDM has shifted from traditional statistical models to machine-65

learning (ML) algorithms (Elith et al., 2008). While statistical models start by assuming a particular66

structural model whose parameters are estimated from the data, ML tries to learn the relationship between67

the response and the predictors through the observation of dominant patterns (Breiman, 2001b). There68

are no ecological assumptions explicitly embedded in the algorithms (e.g. Random Forest, Artificial69

Neural Networks) and most of the time it is difficult to interpret their outputs, which is also referred to70

as the “black box” problem of ML (Molnar, 2020). However, the exponential increase in computing71

power (Gorelick et al., 2017), predictor variables availability (Zhu et al., 2019) and ecological “big data”72

gathered by multiple sources (i.e. sensors, cameras etc.) (Hampton et al., 2013) make ML increasingly73

suitable tool for SDM. Possibly it is even the only practical means, to gain insights from such an amount74

of information and to map, monitor or forecast changes on multiple geographical scales (Gobeyn et al.,75

2019).76

There is a broad variety of algorithms used for SDM (Gobeyn et al., 2019; Franklin, 2010): among the77

most used presence-absence we find Generalized Linear Models (GLM) (Nelder and Wedderburn, 1972),78

Classification and Regression Trees (CART) (Quinlan, 1986), gradient-boosted Trees (GBT) (Friedman,79

2002), Random Forest (RF) (Breiman, 2001a) and Artificial Neural Networks (ANN) (McCulloch and80

Pitts, 1943). In literature, many examples of tree species distribution maps created with regression-based81

and ML SDM can be found: Hill et al. (2017) used GLM to model the distribution of Acer platanoides and82

Fraxinus excelsior for Great Britain at 1 km resolution, Marchi and Ducci (2018) compared the predictive83

performances of nine different algorithms, including RF, ANN, GLM and GBT, to model the current84

distribution of Abies alba and Fagus sylvatica for Italy at 1 km resolution using National Forest Inventory85

(NFI) data; they also evaluated the potential change in the distribution of these species in 2050 according86

to two of the four Representative Concentration Pathway (RCP) scenarios adopted by IPCC. Prasad et al.87

(2006) used NFI data as well and were among the first to include topographical and land cover variables to88

predict the current distribution and future climate scenarios of Acer saccharum, Fagus grandifolia, Pinus89

taeda and Quercus alba in the eastern United States using RF and CART at 1 km resolution. Following90

this trend, Cord et al. (2009) added another layer of complexity: to model the distribution of tree species91

of the genera Pinus spp. and Quercus spp. in Mexico, they included multi-temporal remotely sensed data92

at medium resolution (250 m) as predictors and compared the influence of Earth Observation (EO) data93

on the predictive performance of the model.94

Meier et al. (2010) measured how strongly the influence of biotic interactions affects the prediction95

of species distribution in Swiss broadleaf forests. Biotic interactions are usually included in the form96

of distribution maps due to data availability: in this study they were included as predictors in the form97
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of relative abundance compared to the target species, relative abundance of large individuals and total98

shade by large individuals. Results showed how biotic variables considerably improved the predictive99

performances; their effect were independent from abiotic variables and helped in identifying aspects not100

easily captured by abiotic predictors only.101

Brus et al. (2012) mapped 23 species groups over Europe at 1 km resolution using NFI data, bioclimatic102

and topographical variables. Contrary to most SDM studies, where each species is mapped individually103

and one map per species is provided, Brus et al. (2012) use multinomial regression to assign a probability104

value in the interval [0–1] to each species, with probabilities adding up to 1. This means that each pixel105

shows the prevalent species, but not if multiple species may coexist in the same area. Another state-of-the-106

art data source on forest species distribution in Europe is the European Atlas of Forest Tree species. This107

is among the largest data sources with information on forest tree species for Europe (San-Miguel-Ayanz,108

J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, 2016). It describes in detail the auto-ecology109

of 76 different forest tree species and provides geographical information on each species in the form of110

chorological maps, probability of presence maps and maximum habitat suitability maps. While these111

predictions are useful to ascertain the species composition of European forests, there is now a need for112

spatio-temporal predictions of potential and realized distribution of forest tree species building on new113

methods that potentially better suited to deal with the increasing resolution and availability of data for114

both training and prediction.115

Spatio-temporal modeling, Earth Observation data and specifically the use of high spatial resolution116

data have only recently started to be explored for SDM (Gelfand and Shirota, 2021; Pérez Chaves et al.,117

2018; Hefley and Hooten, 2016). Commonly, SDM still relies on climatic or bioclimatic factors at118

coarse spatial resolution (≥1 km) while in the temporal dimension long time averages (30–50 years)119

are commonly used (Iturbide et al., 2018). The potential impact of differences in resolution of the input120

variables on the results is often ignored (Porfirio et al., 2014) despite the fact the forest spatial patterns in121

Europe are often linked to management decisions happening at local scales. Furthermore, previous studies122

comparing predictive performances at different spatial resolutions mention distribution maps with high123

spatial resolution (< 100 m) and slightly lower prediction accuracy can still be more useful for invasive124

species management than coarser (> 250 m) but more accurate maps (Manzoor et al., 2018; Guisan et al.,125

2013; Gottschalk et al., 2011; Prates-Clark et al., 2008).126

In the last decade, ecologists have conducted hundreds of studies to determine which methods best127

suit the needs of SDM. Some general findings are that presence-absence approaches are usually better128

than presence-only and better predictive power comes at the cost of transferability of the model (Valavi129

et al., 2021; Pecchi et al., 2019; Guisan et al., 2017) but no consensus has been reached yet. For example,130

previous studies have shown that distribution maps derived from the same dataset but using different131

models can lead to quite opposite conclusions (Araújo and New, 2007; Pearson et al., 2006). Inter-model132

variability in projections has been tackled using ensemble modeling, where numerous independent models133

are fit using a range of methods applied to the same input data while the outputs of the individual models134

are aggregated into the final prediction. Hao et al. (2019) provide a good general review in this sense,135

focusing only on SDM studies that use ensemble methods: they reviewed a total of 224 papers, limited,136

however, to ensemble methods implemented in the BIOMOD software. Strong conclusions could not137

4/46PeerJ reviewing PDF | (2022:01:69672:0:1:NEW 11 Jan 2022)

Manuscript to be reviewed

diogoborgesprovete
Riscado

diogoborgesprovete
Riscado

diogoborgesprovete
Riscado



be drawn due to lack of information on performances of ensemble models versus individual models. On138

top of that, only few ensemble strategies have been investigated: mean, median and weighted average.139

These strategies are intuitively simple and involve, in the first two cases, just taking the mean or median140

of the predictions of the individual models as a final prediction. The weighted average does the same141

but scales the predictions by weights assigned based on cross validation predictive performances of the142

models. A robust ensemble technique that, to our knowledge, has not been tested yet for SDM is stacking143

or stacked generalization. Outputs made by the individual models are the input of a meta-learner which144

then produces the final prediction (Wolpert, 1992). This approach will be used in this study.145

To enable more insight into tree species dynamics over EU we have set the following objectives:146

1. To develop a framework for modeling species distribution in space-time with state-of-the-art147

Machine Learning.148

2. To assess the importance of various sources of Earth Observation data for mapping tree species149

distributions.150

3. To explore and quantify the importance of high resolution data on model predictive performances.151

We first review the theory for space-time modeling of forest tree species using presence and absence152

data. We then show results of our experimental design to build a spatio-temporal ensemble model for153

SDM based on ML algorithms, variable importance and accuracy assessment for selection of tree species154

(16) based on 5–fold spatial cross-validation. Finally, we discuss variable importance of various EO data155

sources and visualize final predictions for sample areas and whole of EU.156

2 MATERIALS AND METHODS157

2.1 Species distribution model theory158

SDM, as any modeling tool, tries to provide a simplified and understandable conceptual representation159

of a complex phenomenon in the real world, in this case the geographical distribution of a species; it is160

therefore important to clarify, before any modeling attempt, what kind of distribution a particular study161

aims to quantify, i.e. what is the ecological meaning of the response variable predicted. Conceptually162

speaking, the applied procedure is the same: based on the similarity between the values of the predictors163

associated with the occurrence data, build a function that can be used to assign probability of presence of164

the target species to areas with unavailable field data. However, based on what is actually modelled, the165

choice of predictors, training data (presence-only or presence-absence) and modeling techniques may166

vary (Soberón, 2010).167

Hutchinson (1957) defined the distribution of a species as the n-dimensional hypervolume in a vectorial168

space where each component is a variable that positively influences the growth of the species and on169

which the species has no influence. These variables are usually abiotic/environmental variables, such as170

temperature, precipitation or elevation (Soberón, 2010; Soberón and Peterson, 2005). By considering the171

species physiological response to the combined effect of all these variables in the vectorial space, it is172

possible to capture the fundamental niche of a species, i.e. all the possible conditions that a species can173
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occupy in the environment. The realized niche is instead defined as a narrower region of this vectorial174

space constrained by biotic interactions and dispersal. The relationship between abiotic factors, biotic175

interactions and the regions accessible by the species through dispersion was formalized by Soberón and176

Peterson (2005) in the BAM diagram.177

By definition, it is not possible for SDMs to capture the entire fundamental niche because occurrence178

data gathered through field campaigns is already constrained by biotic interactions. While it is possible to179

analyze the fundamental niche of a species using mechanistic approaches, SDMs can only investigate the180

realm of the realized niche (Guisan and Thuiller, 2005). On top of the realized niche of a species, in this181

study we also model the potential niche. The potential niche is defined as that portion of the fundamental182

niche that exists in the study area at the time of the study (Peterson et al., 2011). The concept is relevant183

as it assesses whether the conditions as defined in the fundamental niche actually exist (Guisan et al.,184

2017). Guisan et al. (2014) suggested that the traditional approach of SDM to capture just a snapshot185

of the realized niche may be too restrictive. In the context of climate change, assessing the impact of186

changing conditions on the distribution of a species requires making predictions in space and time. For187

space-time modeling, the realized niche has to be built simultaneously considering: (a) different time188

periods, and (b) different geographical areas (e.g. native area or exotic areas). (Martinez-Minaya et al.,189

2018; Miller et al., 2007). The differences in definitions here discussed are then reflected in the way the190

two niches are modelled:191

1. Potential distribution is modelled using variables that capture the ecological gradients of the study192

area and that are in no way influenced by other species (i.e. no biotic interactions),193

2. Remotely sensed, reflectance-based data (i.e. land cover, spectral indices etc.) are not used to194

model potential distribution as vegetation species distribution may be influenced owing to human195

alteration of the landscape, underestimating the potential distribution, or capturing disturbed areas196

that are just temporary not suitable for the species (Bradley et al., 2012). The same is true for other197

human altered of environmental factors such as the Urban Heat Island (UHI) effect (Bechtel and198

Schmidt, 2011; Pigeon et al., 2007),199

3. The realized distribution is modelled using a combination of environmental variables (temperature,200

precipitation, topography), biotic variables and reflectance-based variables.201

Occurrence data used in SDM is either presence-only (i.e. records of locations where the species was202

observed) or presence-absence (i.e. locations of both presence and absence of a species have been recorded203

in the sampling design): ML algorithms for SDM treat the suitability task as a binary classification204

problem, where the response variable can assume a discrete value of 1 or 0 (i.e. binary response for205

respectively, presence or absence) or a continuous value from 0 to 100 (i.e. probability of presence), with206

the latter being the most used (Guisan et al., 2017). Species occurrence datasets are hard to obtain due207

to the high costs of the field surveys. Presence and true absence data usually suffer from preferential208

sampling, meaning that a) selection of the sampling locations is not independent from the response209

variable (i.e. species occurrence) and b) the locations in the study area are not equally likely to be sampled210

(Martinez-Minaya et al., 2018). True absence data is usually not available but replaced with background211
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data (Phillips et al., 2009), which does not try to infer where the species is absent but rather to characterize212

the environmental background of the study area. Alternatively, absence data is artificially generated and213

referred to as pseudo-absence. Generally, pseudo-absence indicates locations that researchers assume are214

potentially unsuitable for the target species, and points can be generated in several ways (Iturbide et al.,215

2015). Different kinds of absence data have to be used depending on the distribution modelled: potential216

distribution cannot be modelled with absence data coming from non environmental factors (i.e. a species217

being absent due to competition/biotic interactions) (Jiménez-Valverde et al., 2008).218

As a source of homogeneously distributed true absence data for both potential and realized distribution,219

in this study we will use the Land Use/Cover Area Survey (LUCAS) (EUROSTAT, 2017) dataset: in-situ220

observations of land use and land cover distributed on a 2 x 2 km grid covering the whole European221

Union (see d’Andrimont et al. (2021) for more information and https://ec.europa.eu/eurostat/222

web/lucas/data/lucas-grid for the official grid).223

2.2 General workflow224

Potential and realized distribution maps were produced for continental Europe for the time period January225

2000 – December 2020 using a spatio-temporal modeling approach. Final prediction maps show the226

probability of presence (0–100%) of at least one individual of the target species in the area covered by a227

30 m pixel. Probability of presence is relative to the mapped target species, irrespective of the potential228

co-occurrence of other species in the same 30 m pixel and should not be confused with the absolute229

abundance or proportion of each species in the pixel area. The sum of the presence probabilities of230

different species in the same pixel can thus exceed 100 %. With each probability map comes a model231

uncertainty map, where the user can check the reliability of probability map values per pixel. We produced232

one potential distribution map and six realized distribution maps for each species: the assumption is that233

the conditions in the study area that determine the potential distribution of the species did not change234

over the time period analyzed; this does not hold for the realized distribution. We split the time period235

analyzed in six time windows according to the following scheme:236

• 2000–2002,237

• 2002–2006,238

• 2006–2010,239

• 2010–2014,240

• 2014–2018,241

• 2018–2020.242

One realized distribution map was produced for each time period. The general workflow used to derive the243

distribution maps is shown in Fig. 1: two datasets for each species (potential and realized dataset) were244

produced and overlaid with a set of both static and dynamic predictor variables, matching both the point245

location in space (x, y) and time (t). Predictor variables used for potential and realized distribution follow246

the rules listed in the previous section: reflectance-based predictor variables and species distribution maps247
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were used to model only the realized distribution. The classification matrix produced was used to fit a248

spatio-temporal ensemble model based on stacking. The workflow was implemented in the Python and R249

programming languages.250

Figure 1. General workflow illustrating the preparation of the point data, the predictor variables used,

model building (feature selection — hyperparameter optimization — training) and preparation of

distribution maps.

2.3 Study area251

The study area covers the European continent, that is all countries included in the Corine Land Cover252

(CLC) database (Büttner et al., 1998) except Turkey. European forests cover 33% of the continent’s land253

area. Owing to the variety of climatic conditions across both latitudinal and longitudinal gradients, twelve254

out of the 20 FAO Forest Ecological Zones are represented in European forests (de Rigo et al., 2016b).255

8/46PeerJ reviewing PDF | (2022:01:69672:0:1:NEW 11 Jan 2022)

Manuscript to be reviewed

diogoborgesprovete
Comentário do texto
cite packages and software accordingly



The European Atlas of Forest Tree Species (San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston256

Durrant, T., Mauri, 2016) reports detailed information for a total of 76 forest tree species. From those, the257

following 16 were chosen and modelled in this study:258

1. Silver fir (Abies alba Mill.),259

2. Sweets chestnut (Castanea sativa Mill.),260

3. Common hazel (Corylus avellana L.),261

4. European beech (Fagus sylvatica L.),262

5. Olive tree (Olea europaea L.),263

6. Norway spruce (Picea abies L. H. Karst.),264

7. Aleppo pine (Pinus halepensis Mill.),265

8. Austrian pine (Pinus nigra J. F. Arnold),266

9. Stone pine (Pinus pinea L.),267

10. Scots pine (Pinus sylvestris L.),268

11. Sweet cherry (Prunus avium L.),269

12. Turkey oak (Quercus cerris L.),270

13. Holm oak (Quercus ilex L.),271

14. Common oak (Quercus robur L.),272

15. Cork oak (Quercus suber L.),273

16. Goat willow (Salix caprea L.).274

2.4 Training points275

2.4.1 Preparing and combining legacy occurrence points276

A total of 2,454,997 tree species occurrence locations from three different sources was gathered. The277

majority of points (71%) comes from the Global Biodiversity Information Facility (GBIF) which is an278

open database fed by field observations from individual researchers. National forest inventory data from279

multiple EU member states published by Mauri et al. (2017) forms another 23% of the dataset. The280

remaining 6% comes from the LUCAS dataset.281

All sources were filtered, harmonized and supported by additional information. Entries were filtered282

for species included in the European Atlas of Forest Tree Species (San-Miguel-Ayanz, J., de Rigo, D.,283

Caudullo, G., Houston Durrant, T., Mauri, 2016). Occurrences with a taxonomy rank other than species284

or genus were omitted. Same applies to points which had flags indicating serious location issues (i.e.285

missing coordinates). Geometries were re-projected to coordinate reference system ETRS89 / LAEA286

Europe (EPSG: 3035). A high resolution land mask for Europe (Hengl et al., 2020) was applied to further287
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Figure 2. Map of the study area overlaid with a grid of 30 km tiles used for spatial 5–fold cross

validation. Pixel value shows the number of presence points per tile.

exclude misplaced occurrence points. GBIF taxon and genus keys were derived for the other two data288

sources. Quality flag variables for location accuracy and date were established from existing metadata289

to indicate potentially problematic entries. The harmonized point dataset has information on species290

and genus (including respective GBIF keys), year of observation, country, original data source, citation,291

and license among other auxiliary variables. Its generation is reproducible. The dataset was published292

separately and is openly available along with the code and individual GBIF dataset citations (Heisig and293

Hengl, 2020).294

We used yearly forest masks derived from Witjes et al. (2021) to decide upon including point data295

lacking the year of observation. Witjes et al. (2021) provides yearly probability maps at 30 m for the296

period 2000–2020 for 43 land cover classes according to the CLC level 3 legend. We overlaid the points297

with the probability maps for the classes:298

• 311: Broad-leaved forest,299

• 312: Coniferous forest,300

• 313: Mixed forest,301

• 323: Sclerophyllous forest,302
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• 324: Transitional woodland-shrub,303

• 333: Sparsely vegetated area.304

Points were used only if the probability value extracted for at least one of the classes was ≥50% for305

all the years considered. Each unique combination of longitude, latitude and year was then considered306

as an independent sample. An additional quality flag was added to distinguish points coming from this307

operation and the points with original year of observation coming from source datasets.308

2.4.2 Preparing non-occurrence points309

A total of 883,630 land cover points was gathered from the LUCAS database as provided by Eurostat310

and used as absence data. All LUCAS survey data (2006, 2009, 2012, 2015 and 2019) was used: each311

survey was first downloaded individually and then aggregated. As for the occurrence points, each unique312

combination of longitude, latitude and year was considered as an independent sample. The survey assigns313

each location as belonging to one of the following 8 main categories:314

• A: Artificial land,315

• B: Cropland,316

• C: Woodland,317

• D: Shrubland,318

• E: Grassland,319

• F: Bareland,320

• G: Water,321

• H: Wetlands.322

The above classes were used for selecting observations for the absence dataset. Points in class C were323

excluded as absence data as that class already served the selection of presence data. For modelling324

the actual distribution, all remaining points were included in the first selection, while for the potential325

distribution points coming from classes A and B were excluded. For modelling the potential distribution326

the selection of absence points was more restrictive. Points were overlaid with a rasterized chorological327

map for each of the target species downloaded from the European Atlas of Forest Tree Species portal328

(see subsection: 2.1). Only points falling outside the area indicated by the chorological map were used as329

absence for the potential distribution.330

2.5 Predictor variables331

A total of 585 harmonized variables covering continental Europe (Hengl et al., 2020) at different spatial332

resolution were used as predictors to model the realized distribution of the species. In this study we333

included both dynamic (i.e. time-series of data of different temporal resolution) variables covering the334

time period January 2000 – December 2020 and static (i.e. variables not expected to change during the335
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modelled time period) variables. A subset of only 318 variables were used instead to model the potential336

distribution (see Fig. 1). All data was reprojected in the Projected coordinate system for Europe (EPSG337

code: 3035) before the analysis.338

2.5.1 Dynamic data339

We used a reprocessed version of Landsat ARD data provided by GLAD (Potapov et al., 2020): time340

series used in this study covers the period 1999–2020. Cloud and cloud shadow pixels were removed341

from the images, maintaining only the quality assessment-QA values labeled as clear-sky. Afterwards,342

individual images were averaged by season according to three different quantiles (25th, 50th and 75th)343

and the following calendar dates for all period:344

• Winter: December 2 of previous year until March 20 of current year,345

• Spring: March 21 until June 24 of current year,346

• Summer: June 25 until September 12 of current year,347

• Fall: September 13 until December 1 of current year.348

84 images (3 quantiles × 4 seasons × 7 Landsat bands) were produced for each year. Missing values were349

imputed using the Temporal Moving Window Median algorithm. For more details on the preprocessing of350

Landsat data for this study see Witjes et al. (2021). 7 different spectral indices were computed for each351

year and season using the 50th quantile only, for a total of 7 x 4 = 28 spectral indices variables per year.352

Table 1. Table with Landsat-derived spectral indices used in this study.

Spectral Index Abbreviation Formula Reference

Enhanced Vegetation Index EVI 2.5× NIR−RED

NIR+6×RED−7.5×BLUE +1
(Huete et al., 2002)

Enhanced Vegetation Index 2 EVI2 2.5× NIR−RED

NIR+2.4×RED+1
(Jiang et al., 2008)

Modified Soild Adjusted Vegetation Index MSAVI
(2×NIR+1)−

√

(2×NIR+1)2 −8× (NIR−RED)

2
(Qi et al., 1994)

Normalized Burned Ratio NBR
NIR−SWIR2

NIR+SWIR2
(Key and Benson, 1999)

Normalized Difference Vegetation Index NDVI
NIR−RED

NIR+RED
(Tucker, 1979)

Normalized Difference Wetness Index NDWI
NIR−SWIR1

NIR+SWIR1
(Gao, 1996)

Soil Adjusted Vegetation Index SAVI (1+0.5)× NIR−RED

(NIR+RED+0.5)
(Huete, 1988)

A reprocessing of the ERA5 Land hourly dataset has been used to have monthly aggregates of air353

temperature (2 meters above ground), surface temperature and precipitation. Original ERA5 data was354

aggregated to daily data, and subsequently to monthly data, with increased resolution (1 km) using355

CHELSA data (Karger et al., 2020): in this way the general spatial and temporal pattern of ERA5 Land356

dataset was kept while using the fine spatial detail coming from the CHELSA dataset. The following357

steps were used for temperature data:358

1. aggregate CHELSA to ERA5 spatial resolution,359
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2. calculate difference between ERA5 Land and aggregated CHELSA,360

3. interpolate differences with a Gaussian filter to 30 arc seconds,361

4. add the interpolated differences to CHELSA.362

A different approach was used for precipitation, with proportions instead of differences: using proportions363

ensures that areas without recorded precipitation remain areas without precipitation; only in the case364

of actual precipitation in a given area, precipitation was redistributed according to the spatial detail of365

CHELSA:366

1. aggregate CHELSA to ERA5 spatial resolution,367

2. calculate proportion between ERA5 Land and aggregated CHELSA,368

3. interpolate proportion with a Gaussian filter to 30 arc seconds,369

4. multiply the interpolated proportion with CHELSA.370

For air and surface temperature we obtained the monthly minimum, mean and maximum, while for371

precipitation the monthly sum. We then computed the standard deviation of each of these variables372

and added these as additional predictor variables for modeling. To simulate the cumulative effect of373

temperature and precipitation regimes on a short term scale (5 years), we also calculated the monthly374

average of the previous 5 years for each variable, for a total of 336 climatic time series layers.375

2.5.2 Static covariate datasets376

As additional static covariates, we used the following datasets:377

• 19 bioclimatic variables (Hijmans et al., 2005) for the period 1979 - 2013 to provide a baseline378

of the actual state of the climate; we however decided use the bioclimatic variables from the379

CHELSA dataset (1 km spatial resolution) since CHELSA has been claimed to better match data380

from meteorological stations than WorldClim (Karger et al., 2017). Layers were freely downloaded381

from https://chelsa-climate.org/bioclim/,382

• 50 different chorological maps downloaded from the Europena Atlas of Forest Tree Species web383

portal. Chorological maps provide a qualitative overview of the spatial distribution of a species384

over an area, differentiating between native and introduced. We considered both the native and385

introduced areas as the potential distribution of a species for the time period covered by the study.386

The maps are harmonized products derived from different historical biobliographic sources or from387

the EUFORGEN website (http://www.euforgen.org); they are provided as vectorial layers388

and the minimum mapping unit may vary across the species. To include these layers in the models,389

we first rasterized the maps on a 10 km grid, assigning a value of 100 or 0, respectively, where390

the species could potentially be present or not. We then resampled the maps at a spatial resolution391

of 30 m using the cubic spline method to create a smoothed, continuous area around the reported392

range,393
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• Global bare ground cover from Hansen et al. (2013). The layer is derived from annual com-394

posites from 2000 to 2012 and provides information on bare ground cover on a percent (1–395

100) scale at 30 m resolution; it was downloaded from https://glad.umd.edu/dataset/396

global-2010-bare-ground-30-m,397

• Solar direct and diffuse irradiation images at 1 km resolution were downloaded from https:398

//globalsolaratlas.info/download,399

• 13 cloud fraction layers (monthly averages and annual average) derived from MODIS (Wilson and400

Jetz, 2016) at 1 km resolution obtained from https://www.earthenv.org/cloud,401

• Digital terrain model (DTM) for Europe (Hengl et al., 2020) and DTM-derived (slope, hillshade)402

variables at 30 m resolution, available along with its reproducible code at https://doi.org/10.403

5281/zenodo.4724549,404

• Easterness, northness derived in GRASS GIS (Olaya, 2009), and positive and negative openness405

derived using SAGA GIS and available via https://doi.org/10.5281/zenodo.4486135,406

• Probability of surface water occurrence at 30 m resolution derived from Landsat time series (Pekel407

et al., 2016), obtained from and freely available at https://global-surface-water.appspot.408

com/,409

• Height above nearest drainage (HAND) and flow accumulation area at 90 m resolution from the410

MERIT Hydro global hydrography datasets, freely available at http://hydro.iis.u-tokyo.411

ac.jp/~yamadai/MERIT_Hydro/,412

• Long-term flood hazard map calculated on a 500 years time period at 1 km resolution (Dottori et al.,413

2016),414

• Continental Europe surface lithology based on the European Geological Data Infrastructure (EGDI)415

at 1:1M scale produced by GEOZS, Slovenia, and available at https://doi.org/10.5281/416

zenodo.4787631,417

• Water vapor pressure (kPa) based on the WorldClim2.1 dataset (Fick and Hijmans, 2017); obtained418

from http://www.worldclim.com/version2,419

• Long-term snow probability (2000–2012) at 500 m resolution based on the MODIS (MOD10A2)420

and available at https://doi.org/10.5281/zenodo.5774953,421

• Monthly wind speed (1998–2018) at 5 km resolution from TerraClimate available at https:422

//www.climatologylab.org/terraclimate.html.423

2.6 Species datasets424

Points were overlaid with the predictor variables and two presence-absence datasets were produced for425

each species, one to be used for potential distribution and one for realized distribution. The final dataset426

contains predictor variables plus 8 columns with metadata used to uniquely identify the points:427
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• id: unique point identifier,428

• year: year of observation,429

• postprocess: quality flag to identify if the temporal reference of an observation comes from the430

original dataset or is the result of spatiotemporal overlay with forest masks,431

• tile id: contains the tile id from the 30 km grid,432

• easting: longitude coordinates in Coordinate Reference System ETRS89 / LAEA Europe (= EPSG433

code 3035),434

• northing: latitude coordinates in Coordinate Reference System ETRS89 / LAEA Europe (= EPSG435

code 3035),436

• atlas class: name of the tree species according to the European Atlas of Forest Tree Species or437

NULL in case of absence point,438

• lc1: contains original LUCAS land cover class or NULL if it’s a presence point.439

While absence points are homogeneously distributed in the study area, the same is not true for presence440

points. Fig. 2 shows the number of presence points for all the species selected in this study aggregated441

using a 30 km grid: clusters of points can be observed in Scandinavia, France and Spain, while some442

countries (i.e. Cyprus, Iceland) have no points at all.443

To obtain a spatially balanced presence-absence dataset for each species, we empirically defined a444

fixed amount of points to be selected from each tile: we first overlaid the points with a 30 km grid and445

counted the amount of points per tile. We selected the highest number scored by each species and then446

calculated the median of the distribution made by all the highest scores. Results of this thinning operation447

can be seen in Table 2 and Fig. 3.448

2.7 Feature selection449

Features for potential and realized distribution for each species were selected using the Recursive Feature450

Eliminitation (RFE) strategy, implemented in the Python programming language and publicly available in451

the scikit-learn library. For each combination of species and modelled distribution we trained a random452

forest classifier (num.trees = 50, default values were used for the other parameters): RFE fits the model453

and removes the weakest feature (or features) until a specified number of features is reached, then ranks454

the importance of the features based on the model’s coefficients (for regression-based models) or feature455

importance (for random forest).456

The minimum number of features was not known before hand: to select this number, we ran the457

Recursive Feature Elimination with a spatial 5–fold Cross Validation (RFECV), using the logarithmic loss,458

or logloss, as a scoring estimator. Logloss is one of the most robust performance metric when it comes to459

imbalanced datasets (Ferri et al., 2009). Logloss is indicative of how close the predicted probability for460
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Figure 3. Distribution of presence points per species after thinning. Absence points are omitted for

visualization purposes.

an observation i is to the corresponding label y. For binary classification with label y ∈ 0,1 the overall461

logloss was calculated as:462

f ∗Logistic =− 1

N

N

∑
i=1

yi · ln [p(yi)]+(1− yi) · ln [1− p(yi)] (1)

where N is the total number of observations and p(yi)is the predicted probability for an observation with463

yi = 1. It follows that values close to 0 indicate high prediction performances, with logloss = 0 being a464

perfect match, and values that are positive to infinite are progressively worse scores. For comparison, the465

value of logloss for random assignment depends on the number of classes (a) and the prevalence of the466

classes (b): for binary classification and a balanced (50:50) dataset with N = 10 observations, the equation467

(1) gives a value of 0.69.468

We ran the RFECV on a 25% random subsample for each species and modelled distribution; this469
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Table 2. Number of presence and absence points used to model potential and realized distribution for

each species before and after the thinning operation.

Distribution Species Presence Absence Presence thinned Absence thinned Prevalence Prevalence thinned

Potential Abies alba 45,495 108,603 45,410 108,445 0.42 0.42

Potential Castanea sativa 77,382 107,667 49,269 107,363 0.72 0.46

Potential Corylus avellana 32,321 64,135 32,141 63,955 0.50 0.51

Potential Fagus sylvatica 197,240 55,595 180,817 55,266 3.50 3.30

Potential Olea europaea 50,656 191,830 12,761 191,769 0.26 0.07

Potential Picea abies 360,271 172,879 351,063 172,769 2.10 2.00

Potential Pinus halepensis 233,964 180,795 71,258 179,931 1.30 0.40

Potential Pinus nigra 139,516 225,382 54,739 224,752 0.62 0.24

Potential Pinus pinea 239,254 221,263 41,188 221,050 1.10 0.19

Potential Pinus sylvestris 507,681 44,652 415,859 44,077 11.00 9.40

Potential Prunus avium 22,978 88,517 22,862 88,401 0.26 0.26

Potential Quercus cerris 13,856 104,782 13,774 104,700 0.13 0.13

Potential Quercus ilex 57,690 203,273 52,213 203,207 0.28 0.26

Potential Quercus robur 113,044 52,493 111,399 52,190 2.20 2.10

Potential Quercus suber 419,975 211,403 26,361 211,253 2.00 0.12

Potential Salix caprea 45,967 76,263 45,789 76,082 0.60 0.60

Realized Abies alba 45,495 558,564 44,882 558,493 0.08 0.08

Realized Castanea sativa 77,382 558,564 48,969 554,503 0.14 0.09

Realized Corylus avellana 32,321 558,564 32,141 554,781 0.06 0.06

Realized Fagus sylvatica 197,240 558,564 179,108 557,490 0.35 0.32

Realized Olea europaea 50,656 558,564 12,483 542,354 0.09 0.02

Realized Picea abies 360,271 558,564 348,682 557,571 0.64 0.63

Realized Pinus halepensis 233,964 558,564 68,400 553,831 0.42 0.12

Realized Pinus nigra 139,516 558,564 53,717 557,050 0.25 0.10

Realized Pinus pinea 239,254 558,564 39,766 555,684 0.43 0.07

Realized Pinus sylvestris 507,681 558,564 412,502 555,730 0.91 0.74

Realized Prunus avium 22,978 558,564 22,862 558,556 0.04 0.04

Realized Quercus cerris 13,856 558,564 13,774 558,559 0.03 0.03

Realized Quercus ilex 57,690 558,564 52,213 558,280 0.10 0.09

Realized Quercus robur 113,044 558,564 110,748 558,267 0.20 0.20

Realized Quercus suber 419,975 558,564 25,617 556,598 0.75 0.05

Realized Salix caprea 45,967 558,564 45,769 558,558 0.08 0.08

operation was replicated 5 times. For each iteration we selected the minimum of the function showed in470

Fig. 4 and the averaged result was then used as the minimum number of features for the RFE.471

2.8 Model building and evaluation472

2.8.1 Modeling methods473

To build an ensemble model, we decided to compare predictive performances and computing time474

(hyperparameter tuning — cross validation — prediction time) of different machine learning algorithms475

on a random 25% subset of observations for both potential and realized distribution datasets. A detailed476

workflow of this process is shown in Fig. 5. We decided to conduct this test on seven different species:477

choice of the species was based on the spatial distribution of the training points and the ratio between478

presence and absence points. In this way, algorithms performances can be tested on different ecological479

conditions (latitudinal and longitudinal gradient) and imbalance of classes. The species selected were:480

Abies alba, Castanea sativa, Fagus sylvatica, Picea abies, Pinus halepensis and Pinus sylvestris.481

The following algorithms were compared:482

• Random Forest (RF) (Breiman, 2001a),483

• Gradient-boosted trees (GBT) (Friedman, 2002),484

• Classification trees (CART) (Therneau and Atkinson, 2011),485

17/46PeerJ reviewing PDF | (2022:01:69672:0:1:NEW 11 Jan 2022)

Manuscript to be reviewed

diogoborgesprovete
Comentário do texto
mode this to the suppl mat

diogoborgesprovete
Riscado

diogoborgesprovete
Riscado



• Generalized Linear Models (Nelder and Wedderburn, 1972) with Lasso regularization (Tibshirani,486

1996) (just GLM from now on),487

• C5.0 (Quinlan, 1986),488

• K-nearest neighbor (KNN) (Fix and Hodges, 1989),489

• Artificial Neural Network (ANN) (Ripley and Venables, 2017),490

Analyses were conducted using the mlr (Machine Learning for R) package (Bischl et al., 2016): the491

package provides a standardized framework that wrap different machine learning algorithms already492

implemented in R in other independent packages. It also provides hyperparameter tuning with different493

optimization strategies, resampling functionalities (bootstrapping, cross validation), benchmarking and494

visualizations through the ggplot2 package. For each algorithm, an hyperparameter space was defined:495

combinations of hyperparameters were generated per model based on a grid search of 5 steps per496

hyperparameter. Due to computational constraints, we set the num.trees parameter for Random forest to497

85. The tested activation functions for the neural network were sigmoid and tanh, while for the output we498

tested both sigmoid and softmax. For GLM we used the automatically generated λ sequence and selected499

the λmin. The rest of the hyperparameter ranges are shown in Table 3.500

2.8.2 Selecting component models501

We evaluated each combination of hyperparameters by comparing logarithmic loss values during a 5–fold502

spatial cross validation replicated 5 times: we used spatial cross validation instead of normal cross503

validation for hyperparameter tuning because it educes overoptimistic performance results in the presence504

of strong data clustering (Schratz et al., 2019). We used the tile ID produced in the tiling system for505

Figure 4. Log Loss performances by number of selected features. In this iteration ran for the realized

distribution of the silver fir, 330 is the minimum of the function.

18/46PeerJ reviewing PDF | (2022:01:69672:0:1:NEW 11 Jan 2022)

Manuscript to be reviewed

diogoborgesprovete
Riscado

diogoborgesprovete
Riscado

diogoborgesprovete
Comentário do texto
move this to the suppl mat

diogoborgesprovete
Riscado



Europe (Coordinate Reference System ETRS89 / LAEA Europe, epsg:3035) as the blocking parameter506

in the training function in mlr. All the compared algorithms were used in ”probability” mode, that is,507

predicting for each observation in the dataset a probability value for presence (class 1) and absence (class508

0). Besides the performance achieved in the logloss metric, computing time for the hyperparameter509

tuning, a 5–fold spatial cross validation and prediction time for a 30 km tile were also considered as510

additional criteria: we calculated these two metrics only for the species that had the highest computational511

costs (Pinus sylvestris). This gave us an estimate of how long the process of training each component512

model could take during the building of the ensemble model. We used logloss performance as the first513

criteria to choose the component models: only in the case of two or more methods performing within one514

standard deviation from the average performance, we chose the computationally fastest one across all515

areas (hyperparameter tuning — cross validation — prediction) and tasks (potential — realized).516

2.8.3 Training ensemble model using stacking517

Stacked generalization involves combining predictions made by level 0 models and using them as training518

data for a level 1 model (or meta-model or meta-learner from now on) (Wolpert, 1992). To avoid or limit519

overfitting, there are currently two approaches used to prepare the training data: via hold-out method,520

which splits the original dataset in training and test, or via k–fold cross validation. We used the latter in521

this study, via a 5–fold spatial cross validation: the out-of-fold predictions were used to build a level 1522

Figure 5. Example workflow illustrating the feature selection and benchmarking process for one species
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Table 3. Hyperparameter space for the analyzed algorithms. In light gray the name of the R package

used to implement the algorithm is reported, in brackets the name of the algorithm. p refers to the number

of predictor variables, while columns Lower and Upper indicate the bounds of the regions in the

hyperparameter space.

Algorithm Hyperparameter Type Lower Upper

C5.0

(Classification trees) minCases integer 0 10

CF numeric 0 0.5

kknn

(k-nearest neighbor) k integer 1 50

deepnet

(Artificial neural network) learning rate numeric 0.0001 0.00001

numepochs integer 10 20

batchsize integer 50 150

hidden dropout numeric 0.1 0.3

activationfunction discrete - -

output discrete - -

momentum numeric 0 0.05

number.of.layers integer 2 4

units integer 32 64

ranger

(Random forest) mtry integer
√

p/3 p

rpart

(CART) minsplit integer 20 25

minbucket integer 5 10

cp numeric 0.01 0.1

maxcompete integer 3 4

maxsurrogate integer 4 5

usesurrogate discrete - -

surrogatestyle discrete - -

maxdepth integer 5 15

xgboost

(gradient-boosted trees) nrounds integer 10 20

max depth integer 3 5

eta numeric 0.01 0.1

subsample numeric 0.5 0.9

min child weight integer 10 20

colsample bytree numeric 0.5 0.9

training dataset for the meta-learner. We used logistic regression with Lasso regularization (Tibshirani,523

1996) as a meta-learner, which is usually the most used model for classification problems (Gomes et al.,524

2012). Final predictions are delivered as probability maps (0–100%) for presence together with model525

uncertainty maps: we consider as model uncertainty the standard deviation of the predicted values of526

the base learners. The principle is that the higher the standard deviation the more uncertain the model is527

towards the right value to assign to the pixel (Brown et al., 2020).528

2.8.4 Variable importance assessment529

To assess to what extent the three level 0 models used different parts of the available feature space and530

the agreement between these models, we compared the variable importance when possible. For Random531

forest and CART we used Gini importance, for C5.0 the ”percentage of training set samples that fall into532

20/46PeerJ reviewing PDF | (2022:01:69672:0:1:NEW 11 Jan 2022)

Manuscript to be reviewed

diogoborgesprovete
Comentário do texto
move this to the suppl mat



all the terminal nodes after the split”(Quinlan, 1986), for Gradient boosted trees the gain metric (Shi533

et al., 2019) and for Generalized linear models the coefficients for the minimum fitted value of λ (Hastie534

et al., 2016).535

2.8.5 Model evaluation536

Predictive performances of the ensemble model was assessed through spatial 5–fold cross-validation537

repeated 5 times (Roberts et al., 2017) with logloss as performance metric. To investigate if the ensemble538

model outperformed the component models, we compared results of the spatial cross validation of the539

ensemble with the results of the component models. The area under the ROC curve (AUC) is a commonly540

used metric to evaluate SDMs predictive performances due to being threshold independent (Shabani et al.,541

2018); however, it is also more sensitive to prevalence than logloss (Ferri et al., 2009), hence our choice542

of logloss as a performance metric to compare different models coming from different training datasets.543

3 RESULTS544

3.1 Spatio-temporal ensemble machine learning framework545

Table 4 shows the logloss performances based on the spatial 5–fold cross-validation repeated 5 times. This546

clearly indicates that GLM and Random forest have the highest predictive performances for all species.547

Both algorithms scored the lowest logloss among the other algorithms in 7 cases out of 14, with GLM548

excelling in potential distribution tasks and Random forest having better performances in the realized549

distribution tasks.550

Table 4. Average logloss and standard deviation for the compared algorithms and for the subset of seven

target species. In bold are highlighted the best performing learners for each task.

Distribution Species ANN C5.0 GBT GLM KNN RF CART

Potential Abies alba 0.170±0.014 0.042±0.003 0.089±0.001 0.009±0.001 0.057±0.012 0.023±0.001 0.057±0.005

Potential Castanea sativa 0.253±0.018 0.055±0.004 0.100±0.003 0.015±0.002 0.066±0.016 0.028±0.003 0.082±0.011

Potential Fagus sylvatica 0.423±0.014 0.069±0.005 0.115±0.002 0.021±0.001 0.076±0.009 0.036±0.002 0.170±0.008

Potential Picea abies 0.450±0.012 0.070±0.002 0.120±0.001 0.032±0.001 0.091±0.008 0.040±0.002 0.142±0.008

Potential Pinus halepensis 0.341±0.033 0.035±0.001 0.087±0.002 0.008±0.001 0.049±0.010 0.016±0.003 0.076±0.017

Potential Pinus sylvestris 0.451±0.016 0.080±0.004 0.134±0.001 0.050±0.001 0.107±0.005 0.043±0.003 0.212±0.006

Potential Quercus robur 0.401±0.018 0.074±0.006 0.120±0.002 0.023±0.001 0.070±0.009 0.040±0.003 0.156±0.006

Realized Abies alba 0.628±0.004 0.143±0.002 0.138±0.007 0.074±0.007 0.206±0.039 0.069±0.007 0.189±0.016

Realized Castanea sativa 0.565±0.019 0.247±0.074 0.187±0.020 0.161±0.018 0.372±0.068 0.107±0.021 0.271±0.035

Realized Fagus sylvatica 0.544±0.013 0.094±0.017 0.113±0.003 0.050±0.005 0.145±0.034 0.048±0.006 0.127±0.016

Realized Picea abies 0.650±0.058 0.122±0.009 0.168±0.003 0.093±0.001 0.244±0.022 0.079±0.005 0.244±0.015

Realized Pinus halepensis 0.595±0.028 0.125±0.034 0.127±0.004 0.039±0.004 0.112±0.033 0.053±0.009 0.143±0.027

Realized Pinus sylvestris 0.316±0.016 0.072±0.005 0.114±0.003 0.056±0.006 0.103±0.017 0.042±0.006 0.111±0.011

Realized Quercus robur 0.627±0.039 0.183±0.024 0.180±0.008 0.107±0.009 0.249±0.032 0.098±0.007 0.248±0.024

Overall, GLM shows best performance in sense of achieving the lowest values of standard deviation.551

Random forest, however, scored close to GLM hence the difference does not seem to be significant.552

The absolute difference between values scored by GLM and Random forest is lower (0.089) than when553

Random forest had the advantage over GLM (0.105). This indicates a high reliability of Random forest554

performances even when other models outperform it. The neural network scored the highest logloss values555

in all tasks, so it was immediately excluded from the pool of level 0 models to choose from. It was time556

consuming to find a common hyperparameter range well suited for different tasks, since neural networks557

are often extremely situation-dependent. After a preliminary selection, we used the range shown in Table558
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3: despite that, our results remained inferior to those obtained with the other learners. On top of that, the559

mlr implementation of neural networks, based on the deepnet package, doesn’t allow the use of ReLU560

(rectified linear activation function) as an activation function, which would have been beneficial for our561

purposes. Based on logloss performances, we selected RF and GLM as the first two components of the562

ensemble. Based on similar values of logloss (within one standard deviation of the average performance)563

scored by C5.0, GBT, KNN and CART, we used computational costs to choose the third component564

model. Table 5 shows the required time by each algorithm to run the hyperparameter tuning, 5–fold565

spatial cross validation and to predict a probability map on one tile. KNN was excluded due to computing566

time values being from one to two order of magnitude higher than the ones scored by the other models.567

Table 5. Hyperparameter tuning, cross validation and prediction time for each model and distribution

task. Time values are reported in seconds. Tests were conducted in a parallel computing setup on a CPU

server running 2 x Intel(R) Xeon(R) Gold 6248R - 3.00GHz (96 threads) with 504 GB RAM.

Distribution Process ANN C5.0 GBT GLM KNN RF Rpart

Potential Tuning 661.2 220.7 680.1 345.9 2334.6 318.3 1019.3

Potential Cross validation 54.8 45.5 34.4 305.7 582.5 426.1 14.5

Potential Prediction 24.12 231.1 24.8 14.8 19272.9 53.4 14.1

Realized Tuning 1772.3 944.5 851.1 427.2 16198.4 1873.8 3298.1

Realized Cross validation 16.2 184.8 20.5 344.1 2919.9 2347.5 39.9

Realized Prediction 19.3 389.3 32.6 17.8 > 1 day 78.4 16.4

Total 2547.92 2015.9 1643.5 1455.5 > 1 day 5097.5 4402.3

Even though the CART scores very low value in cross validation and prediction time in both potential568

and realized tasks, tuning time is the second highest, just behind KNN. C5.0 is faster than GBT in the569

whole potential workflow (497.3 seconds against 739.3) but slower in the realized workflow (1518.6570

seconds against 904.2). Considering both workflows, GBT proved to be faster and more consistent in571

cross validation and prediction time, showing an increase in tuning time of just 25% with double the572

amount of training data (see Table 2). After the training of the component models and the meta-learner,573

this is an example of final fitted ensemble model:574

Species: Pinus_sylvestris

Distribution: Potential

Logloss: 0.0255

Call:

stats::glm(formula = f, family = "binomial", data = getTaskData(.task,

.subset), weights = .weights, model = FALSE)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.5683 0.0586 0.0587 0.0595 3.4006

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.78660 0.05221 -110.83 <2e-16 ***

classif.ranger 8.12492 0.10953 74.18 <2e-16 ***
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classif.xgboost 1.49208 0.08233 18.12 <2e-16 ***

classif.glmnet 2.53462 0.07296 34.74 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 290519 on 459919 degrees of freedom

Residual deviance: 23472 on 459916 degrees of freedom

AIC: 23480

Number of Fisher Scoring iterations: 8

The output shows that all algorithms are significant predictors for the response variable (column Pr(>| z |)),575

while from the coefficient estimate values we infer that predictions coming from Random forest have, for576

this specific case, the highest weight in the final predictions of the meta-learner, followed by GLM with577

Lasso and finally GBT.578

3.2 Variable importance579

We generated the variable importance for the three component models for all species and distributions:580

for each of these combinations we computed the relative variable importance and then took the top–20581

variables from each set. This resulted in a total of 146 unique variables for potential distributions and 178582

for realized distributions; of those, 54 variables are present in both potential and realized set of important583

variables. To better analyze the results and identify driving factors of species distributions, we aggregated584

the whole set of 270 variables in 7 macro-classes:585

• Climate (i.e. precipitation, wind speed, water vapor, snow probability etc.),586

• Temperature (i.e. time series of recorded temperatures for the observed time period),587

• Bioclim (i.e. bioclimatic variables from CHELSA),588

• Topography (i.e. DTM and DTM-derivative variables),589

• Landsat band (i.e. all percentiles, all seasons),590

• Distribution (i.e. species distribution maps from European Atlas of Forest Tree Species),591

• Spectral index (i.e. spectral indices derived from Landsat bands).592

Results are presented in Fig. 6. Each plot can be divided in four quadrants, from the top left clockwise:593

variables with high relative importance but low frequency (i.e. important for one or few species), variables594

with high importance and high frequency (i.e. important for all species), variables with low importance595

and high frequency (i.e. they occured often but were not important) and variables with low importance596

and low frequency.597

For potential distribution, diffuse irradiation, precipitation of the driest quarter (BIO17) and precipita-598

tion of the driest month (BIO14) were the most important and most frequent predictors across all models599
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Figure 6. Relative variable importance vs frequency of the variables of the top–20 most important

across the component models and all species for potential (a) and realized (b) distribution. Variables were

aggregated in seven different classes, colors are shown in legend. Labeled dots are variables that recorded

high values of relative variable importance or frequency: each plot shows in the top right corner the most

important and most frequent variables across all models and species.
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and species. The density distributions per macro-class help understanding how the Bioclim macro-class600

was the one with on average both most important and most frequent variables. Other variables are more601

species-specific: the cumulative precipitation of May computed on a 5 years time window records the602

highest absolute value in relative importance but it was important for just two species (Abies alba and603

Castanea sativa, see additional statistical outputs at https://zenodo.org/record/5821865). The604

Temperature macro-class accounts the highest numbers of predictors, but the values recorded in both605

variable importance and frequency are the lowest among all the macro-classes. The Climate macro-class606

had the largest variety in predictors and variables in this class are homogeneously spread out across all the607

species in both variable importance and frequency.608

For realized distribution, the summer aggregates of Landsat green (25th and 50th quantiles) were609

the two most important and most frequent variables across all models and species, closely followed610

by the fall aggregates of NDVI and NDWI and summer and spring aggregates of SAVI. Reflectance-611

based macro-classes clearly outperformed the other ones in this case. The distribution maps scored612

the highest values for variable importance (distribution of the Quercus suber and the Pinus pinea) but613

they were species-specific (i.e. important for just three species, see additional statistical outputs at614

https://zenodo.org/record/5821865). Despite the green Landsat band scoring the best values615

across all the other predictors, the Spectral index macro-class scored on average as the most important in616

both variable importance and frequency.617

Overall, the component models show more differences in variable importance in the potential distribu-618

tion models than in the realized ones. On average, Random forest and Gradient Boosted Trees selected the619

same variables in the top–10 but not always in the same order, while GLM tended to choose completely620

different variables. This suggests how the ensemble models tend to use a wider proportion of the feature621

space than single models. This tendency is most apparent in the potential distribution models. In the622

realized distribution models, the component models agree in selecting the top-10 most important variables623

predictors from Landsat bands or Spectral indices. Random forest and Gradient Boosted Trees considered624

on average the Landsat bands as the most important, while GLM selected the spectral indices more often.625

3.3 Accuracy assessment626

We ran a 5–fold spatial cross validation repeated 5 times with the tuned component models and the627

ensemble model to provide conservative estimates of predictive performance. Predictions on the left-out628

folds were aggregated to assess model performance. Table 6 shows logloss and standard deviation values629

for component models and ensemble model across all species and distributions compared with the value630

of logloss for the intercept-only model. All models were better than random assignment. In general,631

the models for realized distribution achieved better predictive performances than those for potential632

distribution. This does not hold for three species: Fagus sylvatica, Olea europaea and Quercus suber.633

The ensemble model:634

• outperformed the component models in 15 cases of the potential distribution tasks but only in one635

case of the realized distribution tasks,636

• performed as good as the best component model in one case of the potential distribution tasks and637

25/46PeerJ reviewing PDF | (2022:01:69672:0:1:NEW 11 Jan 2022)

Manuscript to be reviewed

diogoborgesprovete
Comentário do texto
cite the dataset accordingly

diogoborgesprovete
Riscado

diogoborgesprovete
Comentário do texto
move this to method

diogoborgesprovete
Riscado



in five cases of the realized distribution tasks,638

• performed worse than the best component model in ten cases of the realized distribution tasks,639

with small differences.640

Table 6. Average logloss and standard deviation for the component learners and the ensemble model. In

bold are highlighted the best performing learners for each task. Random logloss values are dependent on

presence-absence ratio in the species dataset and are here used as a baseline for predictive performances

comparison.

Distribution Species GBT GLM RF Ensemble Random

Potential Abies alba 0.062 ±0.008 0.071 ±0.005 0.071 ±0.011 0.046 ±0.005 0.606

Potential Castanea sativa 0.133 ±0.052 0.148 ±0.016 0.119 ±0.027 0.080 ±0.013 0.622

Potential Corylus avellana 0.109 ±0.018 0.125 ±0.008 0.118 ±0.027 0.080 ±0.009 0.638

Potential Fagus sylvatica 0.032 ±0.004 0.074 ±0.007 0.048 ±0.008 0.029 ±0.003 0.544

Potential Olea europaea 0.007 ±0.004 0.005 ±0.002 0.008 ±0.004 0.005 ±0.002 0.233

Potential Picea abies 0.069 ±0.004 0.089 ±0.005 0.072 ±0.005 0.067 ±0.004 0.634

Potential Pinus halepensis 0.048 ±0.012 0.037 ±0.005 0.057 ±0.011 0.033 ±0.006 0.596

Potential Pinus nigra 0.091 ±0.011 0.101 ±0.008 0.117 ±0.012 0.077 ±0.005 0.494

Potential Pinus pinea 0.033 ±0.007 0.035 ±0.004 0.047 ±0.012 0.023 ±0.004 0.434

Potential Pinus sylvestris 0.031 ±0.003 0.055 ±0.003 0.035 ±0.004 0.026 ±0.002 0.315

Potential Prunus avium 0.096 ±0.010 0.115 ±0.007 0.103 ±0.019 0.071 ±0.006 0.509

Potential Quercus cerris 0.063 ±0.017 0.037 ±0.009 0.049 ±0.011 0.024 ±0.005 0.360

Potential Quercus ilex 0.071 ±0.008 0.094 ±0.007 0.071 ±0.015 0.058 ±0.007 0.508

Potential Quercus robur 0.075 ±0.007 0.113 ±0.010 0.084 ±0.006 0.069 ±0.007 0.626

Potential Quercus suber 0.016 ±0.012 0.011 ±0.004 0.021 ±0.012 0.009 ±0.003 0.348

Potential Salix caprea 0.106 ±0.012 0.138 ±0.010 0.117 ±0.011 0.091 ±0.008 0.662

Realized Abies alba 0.017 ±0.002 0.014 ±0.002 0.022 ±0.002 0.016 ±0.002 0.264

Realized Castanea sativa 0.024 ±0.004 0.026 ±0.003 0.031 ±0.004 0.025 ±0.002 0.281

Realized Corylus avellana 0.024 ±0.003 0.02 ±0.002 0.031 ±0.002 0.022 ±0.002 0.212

Realized Fagus sylvatica 0.030 ±0.002 0.031 ±0.001 0.043 ±0.001 0.030 ±0.002 0.554

Realized Olea europaea 0.012 ±0.004 0.006 ±0.001 0.012 ±0.004 0.008 ±0.002 0.107

Realized Picea abies 0.037 ±0.002 0.043 ±0.002 0.049 ±0.001 0.040 ±0.002 0.666

Realized Pinus halepensis 0.013 ±0.002 0.011 ±0.001 0.020 ±0.003 0.011 ±0.001 0.346

Realized Pinus nigra 0.018 ±0.002 0.016 ±0.002 0.027 ±0.004 0.016 ±0.002 0.297

Realized Pinus pinea 0.013 ±0.005 0.009 ±0.002 0.019 ±0.005 0.010 ±0.002 0.245

Realized Pinus sylvestris 0.043 ±0.001 0.053 ±0.001 0.058 ±0.001 0.045 ±0.002 0.682

Realized Prunus avium 0.022 ±0.002 0.020 ±0.002 0.030 ±0.002 0.020 ±0.002 0.165

Realized Quercus cerris 0.009 ±0.002 0.006 ±0.001 0.013 ±0.003 0.007 ±0.002 0.113

Realized Quercus ilex 0.023 ±0.004 0.019 ±0.002 0.027 ±0.004 0.018 ±0.002 0.291

Realized Quercus robur 0.041 ±0.002 0.036 ±0.002 0.045 ±0.003 0.036 ±0.001 0.448

Realized Quercus suber 0.012 ±0.008 0.005 ±0.001 0.011 ±0.004 0.006 ±0.002 0.180

Realized Salix caprea 0.028 ±0.002 0.031 ±0.002 0.035 ±0.002 0.030 ±0.002 0.268

Among the best performing models, the ensemble for potential distribution of Olea europaea and GLM641

for realized distribution of Quercus suber achieved both the absolute and relative (i.e. scaled with the642

random value) lowest values of logloss. The ensemble for potential distribution of Salix caprea achieved643

the highest absolute value, while the highest relative value was achieved by the ensemble for potential644

distribution of Pinus nigra.645

3.4 Influence of high resolution on predictive performances646

To assess the effect of high resolution products on predictive performances, we excluded Landsat bands647

and Landsat-derived spectral indices from the list of predictors used for realized distribution. We then648
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649

Figure 7. Comparison of potential distribution with realized distribution for the period 2018–2020 for

Fagus sylvatica on a 30 km tile located in Tuscany, Italy. This area was chosen due to the presence of a

national park (Foreste Casentinesi National Park) and a Natura 2000 area (Vallombrosa and Sant’Antonio

forest) well known for Fagus sylvatica stands. Satellite view provided by Google Maps (left) and ground

view provided by Google Street View (right) are shown in Row 1. Row 2 to row 4 show probability (left)

and uncertainty (right) maps. Two realized distributions are shown: excluding and including Landsat data

among the predictor variables.650
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651

Figure 8. Comparison of potential distribution with realized distribution for the period 2018–2020 for

Pinus halepensis on a 30 km tile located in the Ebro Basin, Spain. The species was introduced in this area

in the Mesolithic period. Satellite view provided by Google Maps (left) and ground view provided by

Google Street View (right) are shown in Row 1. Row 2 to row 4 show probability (left) and uncertainty

(right) maps. Two realized distributions are shown: excluding and including Landsat data among the

predictor variables652
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applied our spatio-temporal ensemble machine learning framework (feature selection — hyperparameter653

tuning — ensemble model training) on each species and we ran a 5–fold spatial cross validation repeated654

5 times to evaluate model performances. For the ensemble model we used the same component models655

(Random forest, GBT and penalized GLM) and meta-learner (penalized logistic regression). Results656

of this analysis were then compared with the performances achieved by the ensemble models using657

Landsat data. Comparison is shown in Table 7: for all species, ensemble models including Landsat data658

consistently overperformed models of the same species without the Landsat data. In all cases, models659

including Landsat data show better predictive performances (lower values of logloss) and less uncertainty660

(lower values of standard deviation). Fig. 7 and 8 show a visual comparison of the models for two species661

(Fagus sylvatica and Pinus halepensis) on sample areas.662

Table 7. Average logloss for modelling realized distribution with and without the Landsat bands and

spectral indices. Random logloss values are shown as a baseline for predictive performances.

Species Landsat No Landsat Random

Abies alba 0.016 ±0.002 0.036 ±0.003 0.264

Castanea sativa 0.025 ±0.002 0.065 ±0.007 0.281

Corylus avellana 0.022 ±0.002 0.045 ±0.003 0.212

Fagus sylvatica 0.030 ±0.002 0.088 ±0.003 0.554

Olea europaea 0.008 ±0.002 0.010 ±0.003 0.107

Picea abies 0.040 ±0.002 0.093 ±0.002 0.666

Pinus halepensis 0.011 ±0.001 0.041 ±0.004 0.346

Pinus nigra 0.016 ±0.002 0.039 ±0.004 0.297

Pinus pinea 0.010 ±0.002 0.018 ±0.003 0.245

Pinus sylvestris 0.045 ±0.002 0.104 ±0.003 0.682

Prunus avium 0.020 ±0.002 0.041 ±0.003 0.165

Quercus cerris 0.007 ±0.002 0.018 ±0.003 0.113

Quercus ilex 0.018 ±0.002 0.032 ±0.003 0.291

Quercus robur 0.036 ±0.001 0.108 ±0.006 0.448

Quercus suber 0.006 ±0.002 0.010 ±0.003 0.180

Salix caprea 0.030 ±0.002 0.051 ±0.003 0.268

4 DISCUSSION663

4.1 Summary findings664

In this paper we have developed, tested and reported a methodological framework for predicting the665

potential and realized distributions of 16 forest tree species by Ensemble Machine Learning and analysis-666

ready Earth Observation data. In general, our ensemble model achieved better predictive performances667

than individual models when modeling the potential distribution, while performing slightly worse than668

the best component model for ten species when modeling the realized distribution.669

Even at high resolution (i.e. on a local scale), climate proved to be the key driver of vegetation670

potential distribution across Europe mainly through temperature and precipitation. These results are671

consistent with findings of Hutchinson (1957) and Mather and Yoshioka (1968). Reflectance-based672

covariates were the most important predictors of the realized distributions. Overall, potential distribution673

proved to be significantly more complex to map accurately than realized distribution. In general, the674

ensemble and component models achieved better predictive performances for the realized distributions675
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than for the potential distributions as judged from the cross-validation logloss estimates (see Table 6 and676

Fig. 9).677

Our results indicate a consistent increase in predictive performances for realized distribution when678

adding high resolution data, especially Landsat data at 30 m resolution and vegetation indices to the list679

of predictors (see Table 7). Significant findings of our work include:680

1. Predictive modeling of forest tree species can be efficiently automated to the level of full automation,681

but this assumes high quality / artifact free training points with a homogenous distribution of682

occurrence and absence points whenever possible (Fig. 3)683

2. Complexity of Ensemble Machine Learning methods can be significantly reduced by implementing684

the following two generic processes: (1) hyperparameter tuning on data subsets, (2) running efficient685

feature selection (Fig. 4).686

3. Analysis-ready Landsat time-series are maybe cumbersome to prepare and gap-fill for clouds and687

artifacts (Witjes et al., 2021), but overall come as the most important inputs for mapping forest tree688

species, hence the Landsat project stands out as the most important data source for continuous and689

consistent time-series forest mapping.690

Compared to the previous application of Machine Learning methods for mapping forest tree species691

over the whole European continent described in Hengl et al. (2018), we have identified the following692

methodological improvements:693

• A framework to face the problem of preferential sampling and absence data unavailability to create a694

presence-absence datasets mainly by using LUCAS points (EUROSTAT, 2017). In contrast, Hengl695

et al. (2018) and de Rigo et al. (2016a) used only occurrence points, which probably introduced696

bias (i.e. overestimation or underestimations) in the predictions.697

• A framework for spatio-temporal predictive mapping. We built a single model per forest tree698

species to predict through the whole spatio-temporal datacube cube and produce time-series of699

predictions. Maps can then be used as input data for further analysis / work, i.e. to detect species700

geographical range contraction or expansion, areas of forest degradation / restoration, species701

composition changes.702

• Methodological steps to help with reduction of the model complexity (Fig. 4): these have shown to703

be beneficial for reducing the production costs and enabled us to map more forest tree species.704

4.2 Modeling framework705

Combining models using the ensemble approach is thought to reduce model uncertainty and increase its706

robustness in modelling species distributions (Araújo and New, 2007). We used ensemble with stacked707

generalization as ensemble approach, which has not been tested yet for species distribution modelling.708

We also trained the models in a spatio-temporal framework, expecting the models to generalize better709

when predicting in a temporal window not included in the training data. Part of the intent of the paper710

is to provide a reproducible framework to model species distributions, so we compare our results with711
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those available from previous publications that use ensemble modeling for either potential or realized712

distributions. Our study, however:713

• models both potential and realized distributions,714

• uses only one functional group (trees) on one continent (Europe),715

• adds several layer of complexity (ensemble based on stacking, spatio-temporal framework),716

• uses a large (585) set of predictor variables,717

• uses logloss as a performance measure,718

• uses spatial cross validation,719

• does not test model transferability,720

so not all results from other studies can be directly compared. Hao et al. (2020) used a similar method-721

ological framework to the one used in this study. They modelled the distribution of 13 species of the genus722

Eucalyptus in South Australia and tested performances of ensemble model against individual models;723

they used mean and weighted average as ensemble strategies. They also tested cross validation versus724

spatial cross validation for model performances. The study doesn’t specify which type of distribution was725

modelled: according to the definition provided in this study and the list of predictor variables used by Hao726

et al. (2020), we can classify the task as potential distribution.727

Their results show how spatial cross validation performances were more conservative than cross728

validation ones when compared with performances on independent validation sets. This supports and729

reinforces our use of spatial cross validation as a validation strategy for the modeling framework. Ensemble730

models performed well but were outperformed by not tuned individual models and by a tuned GBT. There731

was also no clear advantage in predictive performances when using different ensemble strategies. This is732

in contrast with our results, where the ensemble based on stacking outperformed even tuned component733

models in 15 cases of the potential distribution tasks and performing as good as the best component model734

in the last case. This may be an indication of stacking being a better ensemble strategy when modeling735

species distribution.736

In our case, a tuned GBT outperformed the ensemble only in realized distribution tasks. By comparing737

Table 4 and 6 we can also see that Random forest and GLM are clearly the best component models to738

map both potential and realized distributions when trained on a data sample, but GBT often outperforms739

Random forest or even the ensemble when tuned and trained on the whole dataset. In general, differences740

in predictive performances between the ensemble and the component models are also higher in potential741

distribution than in realized distribution. The list of variable importance per component model, species742

and task (see additional statistical outputs at https://zenodo.org/record/5821865) may give an743

insight to this: in the potential tasks, the component models use different parts of the feature space before744

the predictions are combined by the meta-learner. All the models select as most important variables for the745

task different predictors. For realized distribution tasks, the models all agree in selecting either Landsat746
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bands or spectral indices as most important variables, resulting in predictions that are highly correlated747

and with less variance between the models.748

Ensemble modeling is known to perform best when there is a high diversity between the base749

models (a) and no or negative correlation between their outputs (b) (Zhou, 2019). The introduction750

of Landsat bands and spectral indices in general greatly increased the predictive performances of the751

models for realized distribution (see Table 7) compared to potential distribution models (see Table752

6). However, it also homogenized predictions, which makes the (b) condition reported above not753

valid. We separately compared the repeated spatial cross validation performances of ensemble and754

component models excluding the Landsat bands and spectral indices (see additional statistical outputs at755

https://zenodo.org/record/5821865). In this case, the ensemble performed worse than the best756

component model only in four cases instead of ten. While most of ensemble SDM studies use no more757

than 15–20 predictor variables (Kaky et al., 2020; Hao et al., 2019; Kindt, 2018), even after feature758

selection we ended up using more than 300 variables to model the realized distribution of some species.759

A stricter feature selection could maybe remove the problem in future works. In general, if the ensemble760

provides predictive performances as good as or worse than the best component model, the best component761

model must be preferred (Zhang and Ma, 2012). However, ensemble models can still provide more762

advantages than individual models since they reduce model uncertainty and are more robust towards763

extrapolation (Mehra et al., 2019).764

4.3 Species distributions765

Our cross-validation accuracy assessment results indicate high predictive performances for all species, in766

both potential and realized distributions. In the case of mapping potential distribution, diffuse irradiation767

and precipitation of the driest quarter (BIO17) come as overall most important covariate layers. By design,768

potential distribution maps produced in this study are indicators of where a species is not likely to survive769

(see section 2.1). Our interest was to map those areas deemed not suitable by the model and identify770

which of the considered predictor variables would have been the limiting factors. Which environmental771

variables and their relative importance as limiting factors are still unclear for many tree species and few772

peer reviewed studies focused on investigating the importance of different environmental predictors on773

potential distributions are available. We found that, on average, each component model considers two774

or more predictors from the Bioclim macro-class among the top-10 most important variables to predict775

the potential distribution (see additional statistical outputs at https://zenodo.org/record/5821865).776

Previous findings in literature have shown the importance of bioclimatic variables when modeling species777

distributions (Fourcade et al., 2018), but this may also be a consequence of bioclimatic variables and778

elevation being the most employed, if not the only, predictors in numerous SDM studies (Fois et al.,779

2018). Bucklin et al. (2015) compared the influence of different sets of environmental predictors on model780

performances, but the list of predictors used in the study included human influenced factors, so their781

results cannot be used to assess the driving factors for potential distributions. Pearson and Dawson (2003)782

argued that environmental predictors only are not able to describe all the processes that limit species783

ranges, but this claim is directed at realized distributions only. Even if our results show the bioclimatic784

variables as the most important predictors for potential distributions, further studies in this direction may785
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Figure 9. Potential and realized distribution for Pinus sylvestris for the period 2018–2020. Clockwise,

from the top left corner: probability map for potential distribution (a), probability map for realized

distribution (b), uncertainty map for potential distribution (c) and uncertainty map for realized

distribution (d).
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be needed. The scale of the study may affect the importance of predictor variables: on a large scale,786

distribution may be influenced by macro environmental factors, while at a local scale, other environmental787

factors may limit mangrove distribution more significantly. Walthert and Meier (2017) and Weigel et al.788

(2019) proved that soil properties are more important than either bioclimatic or only climatic variables789

when modeling potential tree species distribution at, respectively, country and regional scale.790

For realized distribution, variable importance confirms that Earth Observation layers such as the 25th791

and 50th quantile summer aggregates for the Landsat green band and the 50th quantile fall aggregates of792

NDVI and NDWI are overall the most important layers for mapping realized distribution of species (Fig.793

6). The inclusion of Landsat data and derived spectral indices increases predictive performances (see Table794

7) and contains more detailed information on species distribution ranges (see Fig. 7 and 8). Importance of795

NDVI is well known since it is one of the most used proxies in vegetation studies such as biodiversity796

estimation (Madonsela et al., 2017; He et al., 2009), net primary productivity (Schloss et al., 1999) and797

land degradation (Easdale et al., 2018), phenology (Fawcett et al., 2021) and species composition changes798

(Wang et al., 2021). NDVI incorporates information from the red and the near-infrared (NIR) portion of799

the electromagnetic spectrum (see Table 1). Vegetation’s behavior in this portion of the spectrum has long800

been used in vegetation mapping to distinguish between coniferous and deciduous tree species (Hoffer,801

1984). The green band, although usually less important than the red and NIR band, has already proved802

useful in vegetation mapping to classify forest types (Gao et al., 2015), predict forest variables (stem803

volume, diameter and tree height) at species level (Astola et al., 2019) and forest biomass at community804

level (Nandy et al., 2017).805

Comparing our results with chorological maps from the European Atlas of Forest Tree Species806

(San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, 2016), we can see that in807

general both potential and realized distribution correctly capture the species ranges. Overall, potential808

distribution maps show homogeneous patterns of high probability values for all target species, while809

realized distribution maps show very fragmented patterns. Fig. 7 and 8 show sample areas for two810

different species where the potential distribution model indicates high probability for the target species.811

The realized distribution model helps discriminating the presence or absence of the species due to biotic812

or other external factors. A high geographical overlap between probability maps of realized distribution813

may reflect co-existence of different species within the same forest stands and could help with clearly814

defining forest communities.815

4.4 High resolution contributions: is finer always better?816

Bioclimatic variables available only at coarse spatial resolution were used as predictor variables in817

both potential and realized distribution. The Landsat bands and the spectral indices were not the only818

high resolution layers used in this study: terrain and terrain-derived predictors were also included at819

30 m resolution. However, regardless of the terrain data high resolution, the tree species potential820

distribution patterns mostly reflect the original spatial resolution of the bioclimatic variables. Thus,821

climate influences species distribution on European scale. Even though this might indicate that mapping822

potential distributions at high resolution may not be necessary, it can still be useful for different case823

studies. For example, comparing the difference, and hence mapping the gap, between potential and824
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realized distribution at the same fine scale, as we show in Fig. 7 and 8, may prove to be an invaluable tool825

for both forest managers and conservation planners that work on the local level.826

Potential distribution maps can be used to identify suitable areas for species in reforestation and827

restoration programs; realized distribution maps can inform the forest managers on the presence or828

absence of said species in those areas at a particular point in space and time (see Fig. 10). By removing829

the biotic factors that limit the presence of the species in a potential reforestation site, using multiple830

distribution maps and including expert knowledge on species synecology, structurally complex forest831

stands could be planned and developed in a much more informed way. The opposite approach could be832

used by conservation planners. Potential distribution is modelled by studying the relationship between a833

species and the environmental conditions found in its native range, where the species is at equilibrium834

(Jiménez-Valverde et al., 2011). Invasive species are usually more abundant and have greater performances835

in the introduced range than in their native ranges (Hierro et al., 2005). This is due to the absence of836

biotic factors that normally limit species distribution in their native range in the introduced range. Thus,837

a species that occupies only 10% of its potential distribution in its native range may end up occupying838

a bigger percentage of it in the introduced range. Estimation of potential distribution in the introduced839

range that depends only on environmental factors are conservative by definition, potential distribution840

maps may provide a good indication to conservation planners of how much the invasive species could841

spread in the introduced range.842

For realized distribution, including high resolution predictor variables in the model not only increases843

predictive performances but also lowers overall (see Table 7) and local (see Fig. 7 and 8) values of844

uncertainty. For forest management purposes, a large, consistent, standardized, long-term and high845

resolution image collection such as the one provided by the Landsat program can help extending in space846

and time information on tree species presence, composition and abundance. A spatial resolution of 30 m847

is particularly well suited for national forest inventory applications: Strickland et al. (2020) derived848

probability maps of forest tree species for a 25 years time period (1985–2010) using yearly Landsat849

composites to extend missing information from the Canadian NFI and estimating changes in forest cover,850

species composition and forest disturbances. The increasing availability of even higher-spatial resolution851

satellite data from the European Copernicus program (i.e. Sentinel 1 and 2) and commercial providers (i.e.852

Planet) can potentially further enhance predictions by including more data and a better spatial matching853

of in-situ and satellite-derived information.854

4.5 Technical limitations855

The spatio-temporal Ensemble Machine Learning based on stacking is highly computational and requires856

significant investment in High Performance Computing. The total computing time required to conduct857

feature selection, hyperparameter tuning, model training, accuracy assessment and predictions of all858

probability and uncertainty maps described for just 1 species exceeds 25,000 CPU hours based on the Intel859

Xeon Gold chips, which within our infrastructure implied 19 days of non-stop computing with full capacity.860

This estimation doesn’t include training data and predictor variables pre-processing and harmonization.861

We decreased processing costs by using Amazon S3 (Palankar et al., 2008) and full parallelization862

of all processes including spatio-temporal overlay (see http://eumap.readthedocs.org/), hyper-863
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Figure 10. Realized distribution of Fagus sylvatica for the period 2018-2020. Detailed insets show a

region around L’Aquila city, in Central Italy. The Fagus sylvatica forest on the northern outskirts of the

city was affected by a serious wildfire in 2007. The realized distribution maps can be used to track

changes through time.

parameter tuning and prediction, but the processing costs remain high. Due to the high production costs864

and data availability we have eventually decided to deviate from the original plan to map all forest tree865

species from the European Forest Atlas (76) to focus on a smaller subset (16).866

Even though we achieved high values of predictive performances, this result was possible only thanks867

to a high quality and artifact free dataset. Density of observations in the dataset varies greatly across868

Europe and different species, leaving large areas either overrepresented or poorly covered (Fig. 2).869

Model uncertainty around predicted probability values depends strongly on both density and quality of870

observations, with areas scarcely covered or underrepresented in the datasets having higher uncertainty871

values or becoming source of extrapolation for the model. In our maps this can be seen in various locations872

in Norway (no absence data available) and Iceland (no presence or absence data available) across multiple873

species distribution maps, in both potential and realized distributions (Fig. 9).874

Because our interest was to map distribution of forest species on a long time scale, we had to balance875

between using the best Earth Observation images and time-coverage (2000–2020). Eventually we have876

decided not to use any of the Sentinel-2 or similar products as they only span 2016–2020. In reality,877

Sentinel-1,2 images are more detailed (from 20 to 10 m resolution) and could probably help increase878

accuracy of the more recent years.879

We have tried implementing predictions models that are holistic i.e. include inter-specific interactions880
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between target forest species and other species through species distribution maps; in practice this was not881

easy to implement because consistent, long-term distributions of species i.e. distribution maps from the882

European Atlas of Forest Tree Species (San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant,883

T., Mauri, 2016) are only available at relatively coarse spatial resolutions and not for all of the forest tree884

species. In addition, we have not considered other valuable information that can be classified among the885

biotic factors i.e. relative abundance/richness (Kass et al., 2020) or abundance of large individuals (Meier886

et al., 2010) due to data unavailability for both spatial and temporal scale of the study. The prediction887

errors are provided as standard deviation of the base learners. This approach is computationally acceptable,888

but could be further fine-tuned to increase accuracy of errors as in van den Hoogen et al. (2020).889

4.6 Future work and directions890

The predictions of forest tree species we have produced are possibly the most detailed and certainly the891

largest open datasets available to date. Although we had to innovate both Species Distribution Modelling892

methods and our computing and coding skills, we still recognize many future areas of improvements.893

These include:894

• Fusing ALL Earth Observation data available e.g. Harmonized Landsat Sentinel-2 (HLS) and895

eventually Sentinel 1 data to help improve predictions.896

• Adding and testing hyper-spectral images (e.g. from the future hyper-spectral missions such897

as ENMAP, see https://www.enmap.org/) for helping increase accuracy of predictions for898

especially species that grow under dominant species.899

• Incorporating more species data, in particular those from NFI plots would further improve the900

species predictions at European and national scales.901

• Adding more sophisticated and different Machine Learning algorithms such as Deep learning902

techniques (Lakshminarayanan et al., 2016) and similar.903

• Modeling dynamics of forest tree species not as fields, but as objects through cellular automata or904

similar algorithms.905

• Using spatio-temporal Machine Learning to predict future states of forest tree distributions using906

climate scenarios and similar.907

We have released the maps and the code under open data / open source licenses to enable other similar908

research and to help speed up land restoration and reforestation projects in Europe. The code is avail-909

able in our GitLab repository at https://gitlab.com/geoharmonizer_inea/spatial-layers/910

-/tree/master/veg_mapping. To suggest any improvement visit instead https://gitlab.com/911

geoharmonizer_inea/spatial-layers/-/issues. The predictions of tree species are available as912

Cloud-Optimized GeoTIFFs via https://maps.opendatascience.eu and can be displayed using913

compare tool in 2D and 3D. (Fig. 11).914

European forest dynamics, even though some recent results indicate increased mortality in forest tree915

species e.g. Popkin (2021), is probably among the least troubling in comparison to other continents. Our916
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Figure 11. Difference between potential and realized distribution for Fagus sylvatica in Northern Spain

for the period 2018–2020 visualized using slider in the Open Data Science Europe viewer

(https://maps.opendatascience.eu).

methodological framework could thus potentially be implemented also at a global scale, and possibly917

through Google Earth Engine (van den Hoogen et al., 2021) or through the ESA’s OpenEO platform918

(https://openeo.cloud/) to produce high resolution (10–30 m) predictions of global forest dynamics.919

Our estimate is that globally there are much more forest tree species important for forest management920

and monitoring i.e. at the scale of 500–1000 m. For example, in Brazil, it has been estimated that921

about 220 forest tree species cover most of the land and represent over 95 of the biomass i.e. so called922

“hyper-dominant species” (Draper et al., 2021). Scaling up approach described in this paper to help produce923

objective predictions and help monitor forest dynamics and support re-forestation efforts across globe is924

our next frontier.925
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