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The ubiquitin proteasome system (UPS) is the main protein quality control system
responsible for recognition and degradation of damaged proteins. Accumulating evidence
demonstrates the potential role of UPS in diabetes and its complications, including diabetic
retinopathy (DR). In diabetes, the overall activity of the UPS is inhibited by the oxidative
stress. However, several factors responsible for antioxidative response are selectively
degraded by the UPS. Downregulation of some UPS components is associated with
endoplasmic reticulum stress and over-activation of unfolded protein response eventually
leading to retinal cell death. Increased proteasomal degradation of synaptophysin
compromises synaptic activity and contributes to neurodegeneration, this happens due to
upregulation of the angiotensin II receptors in diabetes. Dysregulation of the UPS leads
also to the rhodopsin degradation. Hypoxia-induced decrease of the UPS activity enhances
the response via HIF1-alpha, leading to pathological angiogenesis. Both stimulators and
inhibitors of the UPS activity and inhibitors of the UPS-mediated degradation of individual
proteins are tested as remedies against the diabetic retinopathy. Currently, there is
deficiency of literature reviews devoted to the role of UPS specifically in DR. A summary of
recent findings in the field is needed to structure existing data and help to identify gaps in
knowledge on UPS in DR. In this review, we briefly describe the physiologic regulation of
UPS and overview the data on changes in UPS regulation in diabetes and DR.

PeerJ reviewing PDF | (2021:10:67203:0:1:NEW 29 Oct 2021)

Manuscript to be reviewed

sreenivasa reddy
Highlight

sreenivasa reddy
Replace

sreenivasa reddy
Replace
proteins

sreenivasa reddy
Highlight

sreenivasa reddy
Note
English language



1 Ubiquitin - proteasome system in diabetic retinopathy

2

3 Zane Svikle1, Beate Pēterfelde1,2, Nikolajs Sjakste1, Kristīne Baumane1,2, Rasa 

4 Verkauskiene3, Chi-Juei Jeng4,5, Jelizaveta Sokolovska1

5

6 1 University of Latvia, Faculty of Medicine, Jelgavas Street 3, LV 1004, Riga, Latvia

7 2 Riga East University hospital, Ophthalmology department, Hipokrāta Street 2, LV-

8 1038, Riga, Latvia

9 3 Lithuanian University of Health Sciences, Institute of Endocrinology, Kaunas, 

10 Lithuania

11 4Taipei Medical University Shuang Ho Hospital, Ministry of health and welfare, 

12 ophthalmology department, Taipei, The Republic of China (Taiwan)

13 5National Taiwan University, college of Medicine, Graduate Institute of Clinical 

14 Medicine, Taipei, The Republic of China (Taiwan)

15

16 Corresponding author—Jeļizaveta Sokolovska, 

17 Phone: +371 28323196; University of Latvia, Faculty of Medicine, Jelgavas Street 3, 

18 LV 1004, Riga, Latvia

19 email: jelizaveta.sokolovska@lu.lv, 

20 Keywords

21 ubiquitin- proteasome system, retinopathy, diabetes, diabetic eye disease

22 Running head

23 Ubiquitin - proteasome system in diabetic retinopathy

24

PeerJ reviewing PDF | (2021:10:67203:0:1:NEW 29 Oct 2021)

Manuscript to be reviewed



25 Abstract

26 The ubiquitin proteasome system (UPS) is the main protein quality control system 

27 responsible for recognition and degradation of damaged proteins. Accumulating 

28 evidence demonstrates the potential role of UPS in diabetes and its complications, 

29 including diabetic retinopathy (DR). In diabetes, the overall activity of the UPS is 

30 inhibited by the oxidative stress. However, several factors responsible for antioxidative 

31 response are selectively degraded by the UPS. Downregulation of some UPS 

32 components is associated with endoplasmic reticulum stress and over-activation of 

33 unfolded protein response eventually leading to retinal cell death. Increased 

34 proteasomal degradation of synaptophysin compromises synaptic activity and 

35 contributes to neurodegeneration, this happens due to upregulation of the angiotensin II 

36 receptors in diabetes. Dysregulation of the UPS leads also to the rhodopsin 

37 degradation. Hypoxia-induced decrease of the UPS activity enhances the response via 

38 HIF1-alpha, leading to pathological angiogenesis. Both stimulators and inhibitors of the 

39 UPS activity and inhibitors of the UPS-mediated degradation of individual proteins are 

40 tested as remedies against the diabetic retinopathy. 

41 Currently, there is deficiency of literature reviews devoted to the role of UPS specifically 

42 in DR. A summary of recent findings in the field is needed to structure existing data and 

43 help to identify gaps in knowledge on UPS in DR. 

44 In this review, we briefly describe the physiologic regulation of UPS and overview the 

45 data on changes in UPS regulation in diabetes and DR.

46

47

48 Introduction

Abstract





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49 The number of patients with diabetes mellitus is increasing steadily throughout the 

50 world. Diabetes is a chronic condition characterized by hyperglycemia. In the case of 

51 type 1 diabetes (T1D), which is an autoimmune disease, hyperglycemia results from 

52 autoimmune destruction of pancreatic beta cells. In type 2 diabetes (T2D) 

53 hyperglycemia develops due a combination of pancreatic beta cell dysfunction and 

54 insulin resistance [1]. Diabetes is associated with increased morbidity and mortality 

55 mainly due to development of neuro-vascular complications. Diabetic retinopathy (DR) 

56 is the most common complication of diabetes, being the most prevalent reason of 

57 blindness among working-age population in developed world [2,3]. DR is characterised 

58 by microangiopathy [4] and neurodegeneration [5,6]. Microangiopathy is staged 

59 clinically according to the proliferative status of the retinal vasculature [7,8]. At first, 

60 retinal endothelial cell dysfunction appears with loss of pericytes [9] and development of 

61 capillaries with enhanced permeability and leukocyte adhesion [10], which leads to 

62 vascular obliteration, retinal ischemia and the resulting neovascularization [5,10]. 

63 Diabetes - induced retinal vascular lesions may progress independently of the neural 

64 degeneration [5]. Diabetic retinopathy is also known as one of inflammatory retinal 

65 diseases, where inflammatory cytokines influence protein metabolism [11,12].

66 Despite constant improvement of understanding of the pathogenesis of diabetic 

67 retinopathy, identification of novel biomarkers of DR is needed for improvement of 

68 patient risk stratification and development of novel prevention and therapeutic 

69 approaches.  

70 The ubiquitin proteasome system (UPS) is the main protein quality control system 

71 responsible for recognition and degradation of damaged proteins. Accumulating 
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72 evidence demonstrates the potential role of UPS in diabetes and its complications 

73 [1,13,14]. However, there is deficiency of literature reviews devoted to the role of UPS 

74 specifically in DR. A summary of recent findings in the field is needed to structure 

75 existing data and help to identify gaps in knowledge on UPS in DR. 

76 In this review, we briefly describe the physiologic regulation of UPS and overview the 

77 data on changes in UPS regulation in diabetes and diabetic retinopathy.

78 Survey methodology

79 The literature search was conducted in the PubMed and Medline databases. Emphasis 

80 was placed on articles published since 2015, but earlier articles were also included. The 

81 following keywords were used: proteasomes, ubiquitin-proteasome system, telomeres, 

82 retinopathy, diabetes, diabetic retinal disease, diabetic eye disease, diabetic macular 

83 edema. We included original studies and reviews that contained information about UPS 

84 and telomere length in diabetic complications, with an emphasis on diabetic eye 

85 disease. Case reports were excluded. Of the studies retrieved by this method, we 

86 reviewed all publications in English and those having English abstracts. Other articles 

87 cited in the reference lists of identified publications were considered as a potential 

88 source of information. 

89

90 Functions of the ubiquitin‐proteasome system (UPS).

91 UPS is the main protein quality control system responsible for recognition and 

92 degradation of damaged proteins in the body. UPS is essential in regulating cell cycle 

93 (progression, proliferation, apoptosis), immune response, inflammatory response, 

94 endoplasmic reticulum - associated degradation of proteins and protein misfolding. Its 

95 deregulation leads to multiple disturbances in the normal cell functioning [24,25]. 

96 The UPS includes ubiquitin, ubiquitin enzymes, proteasome, its substrate proteins and 

97 deubiquitinases (DUBs). UPS – mediated protein degradation starts with ubiquitination 
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98 and continues with proteasomal degradation. During the ubiquitination process, 

99 ubiquitin proteins can be covalently coupled to a target protein by sequential actions of 

100 ubiquitination enzymes. These ubiquitination enzymes include ubiquitin activating 

101 enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin protein ligase (E3). To 

102 mark proteins for degradation, target proteins are covalently tagged with ubiquitin, a 

103 small protein with 76 amino acids [26]. Initially ubiquitin is activated by E1 (ubiquitin – 

104 activating enzyme) in an ATP-dependent manner and then the activated monoubiquitin 

105 molecule is transferred to a cysteine residue of the E2 enzyme [24,27]. E2 (ubiquitin – 

106 conjugating or carrier enzyme) receives ubiquitin from E1 and prepares it for 

107 conjugation [28]. E3 (ubiquitin ligase) identifies specific substrates and shifts ubiquitin 

108 from E2 to the lysine residue of a targeted protein, forming polyubiquitin chain which 

109 transfers the intended protein to the proteasome for degradation [24,27,29]. Eukaryotic 

110 cells contain more than 1,000 types of E3; different substrate proteins depend on the 

111 specific E3 [27,30,31]. The destiny of ubiquitinated substrate relies on the amount of 

112 ubiquitin added [29]. After polyubiquitination (i.e., four ubiquitins attached), substrate 

113 proteins are transferred to the 26S proteasome for breakdown. [28,32,33].

114 Proteasomes exist inside cells in multiple forms including proteasome complexes with 

115 different regulatory particles to carry out protein degradation. Eukaryotic cells have 

116 several types of constitutive proteasome complexes: 20S core proteasome [28,34–39], 

117 19S proteasome [27,36,40], 26S proteasome [41–43]. In addition, immunoproteasomes 

118 (i20S) are inducible form of “constitutive” 20S proteasome [38]. In nonimmune cells 

119 formation of immunoproteasome and 11S regulatory complex is induced by interferons, 
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120 TNF alpha and liposaccharides, oxidative stress as well as physiological causes, like 

121 environmental stress factors or aging. [43,45–48].

122 Immunoproteasome differs from constitutive proteasome - it has increased trypsin-like 

123 and chymotrypsin-like activities, but misses the caspase-like activity, also there are 

124 differences in sets of antigenic peptides produced by proteasomes [44]. 

125 Nearly 100 deubiquitinases (DUBs) are expressed by human genome to compensate 

126 the ubiquitination process [49]. DUBs can remove ubiquitin from substrates and 

127 deconstruct polyubiquitin chains, leading to protein stabilization [24]. DUBs usually have 

128 various substrates and are cell specific. The interaction between ubiquitination and 

129 deubiquitination appears to regulate equilibrium of proteasomal degradation, cell cycle 

130 progression, gene expression, apoptosis etc [50].

131 The UPS is also involved in the degradation of misfolded secretory proteins and most 

132 integral membrane proteins in the endoplasmic reticulum (ER) for proper folding through 

133 the protein quality control system - ERAD (Endoplasmic reticulum – associated protein 

134 degradation) pathway [28]. Proteins in the ERAD system are degraded in ER lumen and 

135 ER membrane in the cytoplasm [51]. E3 ligases of ERAD ubiquinate non-functional 

136 proteins, that are accumulated in the ER, for the proteasomal degradation, thereby 

137 protecting against ER stress -induced cell death [52,53]. Unfolded protein response 

138 (UPR) activates when misfolded proteins are accumulated into the ER [28]. Multiple 

139 pathologies and physiological states, like genetic mutations and oxidative stress, cause 

140 accumulation of misfolded proteins in ER and induce UPR activation. UPR has a 

141 protective function to restore ER homeostasis, but in prolonged stress situation UPR 

142 activation leads to ER induced cell death [28,54]. 
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143

144 Derangements of ubiquitin - proteasome system in diabetes and 

145 diabetic retinopathy

146 Accumulating  evidence  demonstrates the potential role of UPS in diabetes [1,13,14]. 

147 The regulation of protein quality and its homeostasis in the retinal cells is essential for 

148 maintaining visual function. This regulation is mainly mediated by the UPS in the retina 

149 [12]. The summary of UPS involvement in the pathogenesis of DR is presented in 

150 Figure 1. 

151 UPS in development of diabetes. Hyperglycemia may decrease proteasome activity in 

152 pancreatic beta cells thus contributing to their ER stress, dysfunction and apoptosis 

153 [1,34,54–56]. Long term activation of unfolded protein response (UPR) due to 

154 hyperglycemia contributes to development of insulin resistance as well [28,57,58]. 

155 Initially beta cells activate proinsulin synthesis to adapt to insulin resistance, but 

156 increased proinsulin concentration burden for ER does not allow proper proinsulin 

157 folding and trafficking [54,59]. ER stress triggers the UPR to remove misfolded 

158 proinsulin and to re-establish protein homeostasis. If protein misfolding persists, beta 

159 cells eventually die [60].

160 UPS is involved in the development of autoimmune diabetes [51,60,61]. In the presence 

161 of insulitis, proinflammatory cytokines interrupt homeostasis of ER, leading to ER stress 

162 [62], that activates ER sensors: inositol-requiring enzyme 1α (IRE1 alpha), PRKR-like ER 

163 kinase (PERK) and ATF6, and triggers the UPR [61]. It is considered that PERK 

164 pathway plays an important role in the pathogenesis of diabetes [63]. UPR predisposes 

165 to activation of chaperone protein synthesis, reducing protein translation into the ER to 
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166 restore ER homeostasis [28]. This adaptive phase is considered to initiate the 

167 development of autoimmunity [61].

168 Nuclear Factor KappaB (NF-kB) transcription factors regulate expression of genes 

169 involved in inflammation, immunity and beta cell development. NF-kB activation is 

170 mediated through proteasomal degradation for transcriptional activation. [28]. Ubiquitin - 

171 editing protein A20 (tumor necrosis factor alpha – induced protein 3, TNFAIP3) acts as 

172 a negative – ubiquitin - dependent regulator of NF-kB [64] and is a potent anti - 

173 inflammatory signalling molecule. There are indications on involvement of A20 

174 dysfunction in autoimmune and inflammatory diseases, including diabetes [65]. Several 

175 mutations in A20 have been recognized to be associated with T1D [66]. A20 protected 

176 mice from streptozotocin-induced diabetes [67] possibly via impact on beta cell survival 

177 pathways [65]. 

178 UPS-associated genetic factors, diabetes and diabetic retinopathy. In humans, 

179 polymorphisms in PSMA3, PSMA6 and PSMC6 proteasome genes have been found to 

180 be associated with T1D in a cohort of Latvian patients. Moreover, correlations have 

181 been revealed between some polymorphisms of proteasome genes and 42 T1D-

182 susceptible genes encoding proteins involved in innate and adaptive immunity, antiviral 

183 response, insulin signalling, glucose-energy metabolism and other pathways implicated 

184 in T1D pathogenesis [68]. Several SNPs and microsatellite alleles localized inside the 

185 PSMA6 proteasome gene and in its vicinity are associated with the risk of T2D [69,70]. 

186 Moreover, PSMD9 gene SNPs rs74421874, rs3825172 and rs14259 were reported in 

187 association with diabetic retinopathy in T2D and non-diabetic retinopathy in Italians [71], 

188 as well as PSMD9 SNPs were linked with other microvascular T2D complications – 
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189 nephropathy [72], neuropathy [73] and late – onset T2D itself [74]. PSMD9 association 

190 is also observed with MODY3 [75]. 

191 Two PSMB8 SNPs, rs3763365 and rs9276810, were also identified as genetic risk 

192 factors for T1D development [76]. It is observed that PSMB8-B/B may be the protective 

193 genotype, but PSMB8-B/A could be susceptible genotype for T1D development in Asian 

194 population [77]. Other study concluded that allelic and dominant models of PSMB8 

195 G37360T could be protective in T1D in Caucasian population, but dominant model of 

196 PSMB9 CfoI could be a risk factor for T1D in Asian population [78]. 

197 Genetic deletion of proteasome activator genes, PA28α and PA28β genes, protected 

198 the diabetic mice in the experimental STZ-induced diabetes model against renal injury 

199 and retinal microvascular injury and prolonged their survival compared with wild type 

200 STZ diabetic mice. The authors conclude that diabetic hyperglycemia promotes PA28-

201 mediated alteration of proteasome activity in vulnerable perivascular cells resulting in 

202 microvascular injury and development of diabetic nephropathy and DR [86]. Thus 

203 decrease of the proteasome activity appears to be favourable in the above case. 

204 UPS, diabetes - induced oxidative stress and diabetic retinopathy. Diabetes is a 

205 state of chronic hyperglycemia - induced oxidative stress [87]. 26S proteasomes are not 

206 very effective in degrading oxidised proteins, in contrast 20S proteasome - mediated 

207 degradation is more or less intact, even in the presence of high concentrations of H2O2 

208 [88]. However, hydrogen peroxide (H2O2) interferes with proteasomal activity and 

209 increases the amount of ubiquitinated proteins [89]. Immunoproteasome is more 

210 resistant to reactive oxygen species (ROS) and degrades oxidised proteins more 

211 successfully than the 20S proteasome [45]. In case of moderate oxidative stress 
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212 immunoproteasomal activity can be increased to sustain protein homeostasis. 

213 Continuous oxidative stress elevates amount of damaged proteins and UPS 

214 impairment, that leads to their build - up in cells [89,90].  

215 Oxidative stress plays an important  role in the pathogenesis of diabetic retinopathy 

216 [10,91,92]. Levels of reactive oxygen and nitrogen species, including the highly reactive 

217 oxidant peroxynitrite are  increased  in diabetic retinas [93].  Fernandes et al. reported 

218 that increased oxidative stress in diabetic retinas led to inactivation of the 20S 

219 proteasome in Goto – Kakizaki rats with dyslipidaemia. They showed that oxidative 

220 stress induced the accumulation of ubiquitinated proteins and affected the chymotrypsin 

221 - like activity of the proteasome under the influence of chronic hyperglycemia. 

222 Application of atorvastatin had a local antioxidative effect and restored the ubiquitin –

223 proteasome pathway in atherogenic diet - fed rats [10]. In this case decrease in 

224 proteasomal activity appears to be unfavourable.

225 Transcription factor NF-E2 related factor 2 (Nrf2) is one of the stress-response proteins 

226 for antioxidative defence of the cell [94]. Under unstressed conditions, Kelch-like ECH-

227 associated protein 1-nuclear factor (Keap1) serves as an adaptor for ubiquitin E3 ligase 

228 and promotes proteasomal degradation of Nrf2. Nrf2 is stabilized when Keap1 is 

229 inactivated under oxidative/electrophilic stress conditions. Once activated, Nrf2 migrates 

230 into the nucleus and binds to the DNA at the location of the antioxidant response 

231 element (ARE) to control the expression of cytoprotective genes. In diabetes, however, 

232 Nrf2 binding to KEAP1 is increased, leading to its proteasomal degradation and 

233 decreased cell-stress response.  In DR, epigenetic changes of Keap1 gene can lead to 

234 decreased Nrf2 expression, and impaired anti-oxidative response [95]. Also, Nrf2 
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235 function in diabetes is suppressed by stress response protein regulated in development 

236 and DNA damage 1 (REDD1). Specifically, REDD1 suppressed Nrf2 stability by 

237 promoting its proteasomal degradation independently of Nrf2's interaction with Keap1, 

238 preventing antioxidative response in retinal cells of diabetic mice [96]. Taken together, 

239 these findings suggest that targeting proteasomal degradation of Nrf2 is a promising 

240 approach in DR, as increased proteasomal degradation of Nrf2 seems to be nocive. 

241 UPS and diabetes - induced ER stress. Downregulation of ERAD components was 

242 documented in experimental diabetes [97]. Shruthi et al. observed that there are 

243 changes in ERAD components in the cerebral cortex of animals with experimental 

244 diabetes. Upregulation of ERAD components (HRD1, Derlin1, and VCP) in early 

245 diabetes is observed and might represent a defensive mechanism against ER stress. 

246 However, continuing chronic hyperglycemia and oxidative stress leads to significant 

247 decrease of the mentioned ERAD components, further elevating ER stress [1]. 

248 ER stress is also involved in development of diabetic retinopathy [11,14], possibly 

249 because of reduced amounts of E1 and HRD1 (ER stress induced protein with ubiquitin 

250 – ligase - like activity), components of UPS. Treatment with a chemical chaperone 4-

251 phenylbutyric acid (4-PBA) altered retinal cells, restored levels of deubiquitinases and 

252 improving ER stress – related cell death [14]. In cultured human retinal pericytes 

253 exposed to high glucose treatment, induction of ER stress was associated with 

254 upregulation of proteasome activator 11S REG (PA28 a/-β) [98–100].

255 UPS and neurodegeneration in diabetic retinopathy. Angiotensin II and its receptors 

256 angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R) become upregulated 

257 in experimental diabetic eye disease [5,6]. Synaptophysin is a major synaptic vesicle 
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258 protein which is co-expressed with AT1R in the inner layers of the retina [101]. 

259 Synaptophysin levels are reduced in neurodegenerative diseases such as dementia, 

260 Parkinson’s disease and Alzheimer’s disease [102,103]. In the diabetic retina, 

261 angiotensin II and AT1R are upregulated together with AT1R’s downstream extracellular 

262 signal - related protein kinase (ERK) activation [6], that induces synaptophysin 

263 degradation. Therefore, activation of the angiotensin II - AT1R - ERK pathway increases 

264 the ubiquitin-conjugated synaptophysin protein levels [6] leading to decreased 

265 synaptophysin levels in experimental diabetic retinopathy [5,12]. Increased proteasomal 

266 degradation of synaptophysin compromises synaptic activity, worsens neuronal cell 

267 survival and vision in diabetes. However, synaptophysin degradation can be inhibited by 

268 blocking AT1R signalling in vivo by angiotensin receptor blockers. Telmisartan  and 

269 valsartan significantly reversed diabetes-induced changes in the electroretinogram, 

270 suggesting that suppression of diabetes - induced retinal dysfunction and synaptophysin 

271 degradation is a class effect for angiotensin receptor blockers [12]. Antioxidant lutein 

272 can also prevent ERK activation and the following reduction of synaptophysin in the 

273 diabetic retina [91]. 

274 Decreased levels of rhodopsin have been observed in rats with experimental diabetes 

275 and may be associated with vision impairment in early diabetes [104]. Degradation of 

276 rhodopsin, an essential protein for photoreceptor function, is mediated by the STAT3-

277 dependent E3 ubiquitin ligase, Ubr1 [105], suggesting impairment of UPS regulation as 

278 one of the reasons for decrease of rhodopsin in diabetic retina.
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279 Reduced protein expression of UPS components were observed in retinal ganglion and 

280 horizontal cells [14,106] possibly contributing to neurodegeneration in diabetic eye 

281 disease [91,107].

282 UPS, hypoxia and diabetic retinopathy. Diabetes is a state of chronic hypoxia, due to 

283 glycation of  haemoglobin and increased oxidative stress [108]. Proteasome activity is 

284 impaired in response to hyperglycemia - associated hypoxia [99,109]. As a result, 

285 changes in degradation of proteins involved in anti - hypoxic defence might occur.  A 

286 protein important for pathogenesis of DR is hypoxia - induced factor 1 alpha (HIF1-

287 alpha). HIF-alpha undergoes hydroxylation by prolyl hydroxylase domain in a normoxic 

288 conditions, resulting in proteasomal degradation. Under hypoxia or prolyl hydroxylase 

289 domain inhibition, HIF1-alpha is not hydroxylated, but is stabilized in cytosol and forms 

290 a heterodimer with HIF1-beta. This heterodimer translocates into the nucleus, binds to 

291 the consensus enhancer through hypoxia -responsive elements and activates 

292 downstream genes such as GLUT1, erythropoietin, vascular endothelial growth factor 

293 (VEGF) [110] and angiopoietin 2 [111] involved in pathogenic angiogenesis in DR. 

294 UPS in the adaptive mechanisms in diabetic retinopathy. Hyperglycemia is 

295 associated with increased ubiquitination and proteasomal degradation of some proteins, 

296 which might represent an adaptive mechanism [112,113]. In diabetic retinopathy in the 

297 setting of oxidative stress, subcellular redistribution of glucose transporter 1 (GLUT1) 

298 occurs [113], which is the main isoform of glucose transporters in retinal endothelial 

299 cells [114]. In conditions of increased oxidative stress, endothelial cells upregulate 

300 ubiquitin proteasome pathway with subsequent increases turnover of ubiquitin 

301 conjugates. GLUT1 seems to be mono- or diubiquitinated and accordingly targeted for 
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302 lysosomal degradation, decreasing glucose transport into retinal endothelial cells and 

303 thus the associated glycotoxicity [113]. 

304 UPS targeted therapies in diabetic microangiopathy. Proteasome inhibitors have 

305 entered clinical practice to treat malignancies, especially multiple myeloma. In addition, 

306 a variety of novel preparations targeting different components of UPS system are under 

307 development and testing in neurodegenerative disease nowadays [28]. As 

308 neurodegeneration is a crucial mechanism of diabetic eye disease, we are looking 

309 forward to preclinical studies also in DR. Current data on UPS - affecting treatments in 

310 diabetic microangiopathy are very limited. A compound under investigation Trichostatin 

311 A induced  ubiquitination of p300 - histone acetyltransferase leading to reduced levels of 

312 NADPH oxidase 4 (Nox4), a mediator of angiogenesis, and inhibited angiogenesis in in 

313 vitro model [115]. There are slightly more data on UPS-affecting treatments in diabetic 

314 nephropathy. Proteasome inhibitor MG132 leads to inhibition of TGF-beta activation, 

315 affects Nrf2 pathway and antioxidative capacity, all involved in the pathogenesis of 

316 microvascular disease in diabetes [116–120]. Furthermore, inhibitors of heat shock 

317 protein 90 (Hsp90) which stabilises HIF1-alpha, can promote proteasomal degradation 

318 of HIF1-alpha modulating hypoxia-induced pathways of retinal neovascularization. 

319 Examples of Hsp90 inhibitors include geldanamycin, its analogues and deguelin, which 

320 demonstrated promising results in experimental studies [121].

321 Conclusions

322 Increasing evidence is indicating the major role of UPS regulation in the pathogenesis of 

323 diabetic eye disease. Currently available data indicate that diabetes induced 

324 derangements of UPS mainly result from hyperglycemia, increased oxidative stress and 

325 hypoxia. These UPS derangements include impaired degradation of oxidized proteins, 
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326 ER stress, increased proteasomal degradation of protective and functional proteins 

327 (e.g., synaptophysin, rhodopsin, Nrf2), and decreased proteasomal degradation of 

328 proteins involved in progression of DR (e.g., HIF1-alpha). Moreover, promising results 

329 have been obtained on modulation of UPS in experimental DR. Further studies are 

330 needed to improve the understanding of UPS regulation in diabetic eye disease and to 

331 promote development of therapies targeting these biomarkers of diabetic 

332 microangiopathy.
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Figure 1
Involvement of ubiquitine-proteasome system in the pathogenesis of diabetic
retinopathy.

UPS – ubiquitine–proteasome system; NF-kB – nuclear factor kB; HIF1-α – hypoxia-inducible
factor 1α; Nrf2 - nuclear factor erythroid 2–related factor 2; ER - endoplasmic reticulum
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