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ABSTRACT
The spotted sardinella, Amblygaster sirm (Walbaum, 1792), is a commercial sardine
commonly caught in Malaysia. Lack of management of these marine species in
Malaysian waters could lead to overfishing and potentially declining fish stock popula-
tions. Therefore, sustainablemanagement of this species is of paramount importance to
ensure its longevity. As such, molecular information is vital in determining the A. sirm
population structure and management strategy. In the present study, mitochondrial
DNACytochrome bwas sequenced from10A. sirm populations: the Andaman Sea (AS)
(two), South China Sea (SCS) (six), Sulu Sea (SS) (one), and Celebes Sea (CS) (one).
Accordingly, the intra-population haplotype diversity (Hd) was high (0.91–1.00), and
nucleotide diversity (π) was low (0.002–0.009), which suggests a population bottleneck
followed by rapid population growth. Based on the phylogenetic trees, minimum
spanning network (MSN), population pairwise comparison, and FST, and supported
by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance
(SAMOVA) tests, distinct genetic structures were observed (7.2% to 7.6% genetic
divergence) between populations in the SCS and its neighboring waters, versus those
in the AS. Furthermore, the results defined A. sirm stock boundaries and evolutionary
between the west and east coast (which shares the same waters as western Borneo) of
Peninsular Malaysia. In addition, genetic homogeneity was revealed throughout the
SCS, SS, and CS based on the non-significant FST pairwise comparisons. Based on the
molecular evidence, separate management strategies may be required for A. sirm of the
AS and the SCS, including its neighboring waters.
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INTRODUCTION
The delineation of marine resources’ population or stock structure is critical for
fisheries management and conservation (Shaklee et al., 1999; Maunder & Punt, 2013;
Phinchongsakuldit et al., 2013; Prasetyo, Dharmadi & Purwoko, 2019; Ha et al., 2020),
particularly for species that are susceptible to commercial exploitation (Garcia et al.,
2003; Ha et al., 2020; Ryman & Utter, 1987).

According to Ihssen et al. (1981), a stock is ‘‘an intraspecific group of randomly mating
individuals with temporal and spatial integrity’’. Later,Coyle (1998) redefined it ‘‘as a group
of fish population inferred to be genetically isolated due to reproductive isolation’’. Many
biologists consider fish stocks an interbreeding entity originating from a single gene pool.
The genetic diversity must be preserved, and population structure patterns considered
to optimise resource use (Carvalho & Hauser, 1994). The stock concept equips fishery
managers with essential information for sustainable fishery management.

Genetic data is now being incorporated, albeit slowly, in designing marine protected
area networks, stock restoration, and fisheries management policies (von der Heyden et
al., 2014). These strategies can be formulated once the fishery stock has been genetically
defined, to achieve sustainable fishery management. For instance, the common fishery
management strategy is suitable for a panmictic population, while non-panmictic fishery
stocks warrant different management or policies (Adamson & Hurwood, 2015; Laikre, Palm
& Ryman, 2005; Ward, 2000).

Tropical and subtropical sardine species (collectively known as Sardinella), such as
herrings, sprats, shads, wolf-herrings, and anchovies from the clupeoid fishes (suborder
Clupeoidei and order Clupeiformes) are abundant throughout the Atlantic, Indian, and
Pacific oceans (Whitehead, 1985). They are classified into two genera, Amblygaster and
Sardinella, with three species in the former and 22 in the latter. The Amblygaster sirm
(Walbaum, 1792) or spotted sardinella is one of the small pelagic fishes commonly
caught in Southeast Asia. This species is locally known as ‘‘Tamban Beluru’’ in Malaysia
(Department of Fisheries Malaysia, 2019) and ‘‘Siro’’ in Indonesia (Suseno et al., 2014). The
A. sirm is commonly caught using the purse seine gears, a common fish-catching device
among Malaysian fishermen (Department of Fisheries Malaysia, 2019). In addition, the
species is important in the manufacture of downstream products such as fish crackers and
dried salted fish, thus, making it one of the economically important fish in the local seafood
enterprise (SEAFDEC, 2017). Recent reports have highlighted the disproportionality in A.
sirm in harvest production or fish landing numbers in the Southeast Asia waters (SEAFDEC,
2017). This situation needs urgent attention to ensure equitable and continuous production
patterns. Nevertheless, there is limited data to develop effective regional strategies for A.
sirm stock management regulations, especially in this region. Few studies related to stock
assessment have been reported on this species with, only a handful conducted in this
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locality. For instance, stock assessments on reproductive and biological characteristics
have been reported in Indian waters (Devi et al., 2018; Pradeep, Shirke & Kar, 2014), a
population genetics study in Sri Lanka waters (Aluwihare, Jayasinghe & Dalpathadu, 2019),
and a one biomass study in Indonesia (Atmaja & Sadhotomo, 2006).

The series of landing data from 2008 to 2018, indicated an alarming decline of theA. sirm
population at 30%. In Malaysia, the A. sirm stock in the South China Sea decreased from
1,729.95 metric tons (mt) in 2017 to 1,326.58 mt in 2018 (SEAFDEC, 2020a; SEAFDEC,
2020b). The reason underlying this situation remains uncertain. Generally, such declines are
associated with overexploitation, the identified cause for the decreasing Sardinella fimbriata
(SEAFDEC, 2017; SEAFDEC, 2020a; SEAFDEC, 2020b) in Malaysia. Alternatively, a change
in management strategies, limited harvest or number of landings resulting from the
controlled fishing effort, duration of fishing activities, type of fishing gears, or engine
horsepower, gross register tonnage (GRT) (Hale et al., 2015; Wallace & Fletcher, 1996)
could also be contribute to this calamity.

Incorporating population genetic data into stock assessment is vital in formulating
and implementing a comprehensive management strategy of A. sirm. Hypothetically, all
the populations are genetically homogeneous or panmictic due to the pelagic nature of
the species (Fratini et al., 2016; Garoia et al., 2004; Hauser & Ward, 1998). Malaysia and
its neighboring countries should develop a common sustainable fisheries management
strategy if the results support this hypothesis. On the other hand, separate management
for each evolutionary unit is required if the hypothesis is rejected. The importance of
population genetics data has been acknowledged for the fishery management of Spanish
mackerel, Scomberomorus commerson in the northern Indian Ocean (Radhakrishnan et al.,
2018); tiger shark, Galeocerdo cuvier across the Indo-Pacific Ocean (Holmes et al., 2017);
Chinese loaches, Misgurnus mohoity and M. bipartitus in Northeast China (Yi et al., 2016)
and Asian green mussel, Perna viridis along the Indian coast (Divya et al., 2020).

In the present study, the mitochondrial DNA (mtDNA) Cytochrome b (Cyt b) gene
was utilized to elucidate the population genetic structure of spotted sardinella, A.
sirm, in Malaysian waters and to establish a management plan for this species. This
protein-coding gene has been proven to be highly efficient in determining intra and
inter-specific and higher-level phylogenetic relationships (Roques et al., 2006; Schönhuth
& Mayden, 2010; Zhang et al., 2018). The mtDNA Cyt b gene is also one of the most
extensively sequenced genes to date, and the evolutionary dynamics have been intensively
characterised. Furthermore, this gene has been widely applied in systematic studies to
investigate divergence at taxonomic levels (Peng, He & Zhang, 2004; Habib et al., 2011;
Rahim et al., 2012; Schmidt, Bart & Nyingi, 2018).

The study outcomes are essential for fishery managers to develop sound fishery strategies
across regions and countries to prevent the irreversible decline of resources. Population
stock study is essential to support resource recovery through improved knowledge of stock
delineation. This knowledge will pave the way forward effective monitoring of populations,
as suggested by previous studies on other pelagic species such as longtail tuna, Thunnus
tonggol (Kasim et al., 2020). Additionally, this will guarantee food security and decrease
the poverty level in the community, which is of high priority to the nation, and to achieve
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Table 1 Sampling locations, coordinates, collection date, sample size, historical demographic analyses and population genetic statistics of 10 A.
sirm populations based onmtDNA Cyt b region sequences.

Sampling locations Sea Sampling date Latitude/Longitude N h PS Hd π Tau Hri Tajima’s
D

Fu’s
F

θ0 θ1 R2

Ranong (SRG) 15.12.2019 9◦55′52′′N 98◦24′30′′E 11 9 22 0.96 0.006 7.5 0.10 −0.59* −1.98* 0.06 29.33 0.121

Kuala Perlis (SKP)
AS

6.12.2018 6◦24′1’’ N 100◦7′51′′E 10 8 36 0.97 0.009 1.5 0.04 −1.25* −1.77* 10.63 3589.03 0.133

Pulau Kambing (SPK) 15.1.2018 5◦21′14′′N 103◦8′35′′E 16 13 27 0.95 0.005 4.4 0.05 −1.54 −4.56 3414.98 74.68 0.057

Kuantan (SKT) 22.1.2018 3◦45′32′′N 103◦23′10′′E 35 24 30 0.95 0.003 2.9 0.04 −2.19 −23.20 0.00 1.14 0.034

Kuching (SKC) 12.3.2015 1◦44′10′′N 110◦38′28′′E 34 25 39 0.96 0.003 3.9 0.02 −2.15 −20.40 0.04 58.92 0.034

Labuan (SLB) 23.10.2019 4◦32′42′′N 118◦36′14′′E 12 10 14 0.97 0.004 4.1 0.05 −0.95* −5.00 0.00 33.55 0.042

Kota Kinabalu (SKK) 6.1.2018 5◦59′13′′N 116◦1′58′′E 15 15 46 1.00 0.008 4.0 0.03 −1.73 −8.42 5.50 3415.00 0.085

Taiwan (STN)

SCS

8.2.2018 22◦53′24′′N 122◦20′59′′E 2 2 2 – – – – – – – – –

Kudat (SKD) SS 11.5.2015 6◦53′13′′N 116◦49′30′′E 35 21 24 0.91 0.002 2.0 0.05 −2.08 −18.85 0.45 59.06 0.039

Semporna (SSP) CS 6.1.2018 5◦22′8′′N 115◦11′2′′E 9 9 21 1 0.005 4.0 0.04 −1.26* −4.40 1.9 3415.00 0.093

TOTAL 179 3.8 0.046a −0.152a −9.84a 2.255 2775.26 0.077

Notes.
SCS, South China Sea; AS, Andaman Sea; SS, Sulu Sea; CS, Celebes Sea; N, number of individuals; h, number of haplotypes; PS, polymorphic sites; Hd, Haplotype diver-
sity; π , nucleotide diversity; Hri, Harpending’s raggedness index; θ0/ θ1, before/after expansion; R 2, Ramos- Onsins and Rozas.
*Significant value after False Discovery Rate Procedure (FDR) procedure at p <0.05.
Totals are indicated in bold.

sustainable development goals (SDG). The SDG was introduced by the United Nations
in 2015 and comprises 17 goals (starting from SDG 1 to SDG 17) designed for a more
sustainable future. The specific target for this study is SDG14 (life belowwater). In addition,
the output from this study would be valuable for the conservation and management of A.
sirm in Malaysian waters.

MATERIALS AND METHODS
Ethical statement
Since only dead specimens were sampled, no permit was required, and no ethical
consideration were required for this study. In addition, A. sirm is not listed under the
International Union for Conservation of Nature (IUCN) list of endangered or protected
species.

Sample collection
A total of 179 specimens of A. sirm were collected from ten landing sites from vessels that
used purse seine fishing gears in Peninsular Malaysia, Sabah, and Sarawak from 2015 to
2019. These sampling locations cover the southern region of the SCS, SS, CS, and AS. The
species were morphologically identified by of 10 to 20 series of black spots down the flank,
according toWhitehead (1985) (Table 1; Fig. 1).

In addition, a small clipping of A. sirm pectoral fin was collected during the sampling
activity. Each clipping was fixed in a separate vial containing 95% ethanol and stored at
−20 ◦C until further use.

The sampling locations were divided into four regions following Kasim et al. (2020). The
details of each landing port were obtained via interviews with fishermens/boatmen and
confirmed by consulting with the Department of Fisheries staff stationed at the landing
sites. Notably, no samples were obtained from the Strait of Malacca (a waterway that links
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Figure 1 Map of sampling sites, targeted species and haplotype networks.Map of sampling sites and
specimen of A. sirm (Walbaum, 1792). The shaded areas indicate the distribution according toWhitehead
(1985). The collection localities are indicated with red stars.

Full-size DOI: 10.7717/peerj.13706/fig-1

the AS and the SCS), as A. sirm is absent from this location (Whitehead, 1985). Meanwhile,
sample collections in Ranong, Thailand, were facilitated by the Andaman Coastal Research
Station for Development, Kasetsart University of Thailand. Two samples from Taiwan were
contributed by collaborators from the National University of Taiwan and the National
Museum of Marine Biology, Taiwan (see Fig. 1). Due to the low number of samples
(N = 2), the data was only used in the phylogenetic analysis.

Extraction and polymerase chain reaction (PCR) amplification
Genomic DNA extraction of 179 samples was performed using the DNeasy Blood & Tissue
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The quality of
extracted DNA was assessed using UV spectrophotometer Q3000 (Quawell, San Jose, CA)
and diluted to a final concentration of 50 ng/µL. The mtDNA Cyt b was targeted using
the following primers; F: WMA15-F (5′ACC GTT GTA ATT CAA CTA TAG AAA C 3′)
and R: TruCytb-R (5′ CCG ACT TCC GGA TTA CAA GAC CG 3′) (Jérôme et al., 2003).
The PCR amplification was conducted in a Thermal Cycler (Techgene, Irving, TX, USA)
at a final volume of 25 µL, composed of 12.5 µL of 2x EasyTaq R© SuperMix (TransGen
Biotech, Beijing, China), 0.2 µL of each primer, 2.0 µL of genomic DNA (50 ng/mL),
followed by nuclease-free water to achieve the final reaction volume. The thermal cycling
conditions were as follows: initial denaturation at 95 ◦C for 2 min, followed by 35 cycles
of denaturation at 94 ◦C for 10 s, annealing at 56.8 ◦C for 10 s, and extension at 72 ◦C
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for 15 s. The quality of PCR products was visualised on 1.5% agarose gels stained with
1 to 3 µL of GelRedTM Nucleic Acid Gel Stain (Biotium Inc., Fremont, CA, USA). The
unpurified PCR amplicons were sent to Repfon Technologies Sdn Bhd for purification
and sequencing in forward and reverse directions in an automated sequencer (ABI3730xl,
Applied Biosystems, Bedford, MA, USA).

Data analysis
The raw sequences for both forward and reverse sequences were edited and assembled
after removing the primer sites.The final assembled sequences were aligned with ClustalW
implemented inMEGA v7.0 with default setting (Kumar et al., 2018). The complete aligned
data set was inspected for nucleotide variable sites, parsimony informative sites, number
of haplotypes, haplotype distributions, transitions and transversions, and nucleotide
frequencies in DnaSP v6.0 (Rozas et al., 2017). A simple linear regression analysis (Pearson
correlation test) was conducted to assess whether sample size (N) would affect the
downstream analyses to ensure the statistical validity of further investigations. All the
statistical analysis were performed using the IBM SPSS Statistics for Windows software,
version 23.0 (IBM Corp. Armonk, NY, USA). Since the initial analysis demonstrated
that the sample sizes did not affect the haplotype diversity (Hd) and nucleotide diversity
(π) (p > 0.05) therefore, further analysis could be proceeded (Castillo-Páez et al., 2014;
Delrieu-Trottin, Maynard & Planes, 2014).

Phylogenetic and genetic diversity analyses
The RAxML (Stamatakis, Hoover & Rougemont, 2008) and maximum likelihood (ML)
trees, with 1,000 bootstrap replicates, were constructed in raxmlGUI v1.5b1 (Silvestro &
Michalak, 2012) using a general time-reversible model of nucleotide substitution with
a heterogeneity rate following a discrete gamma distribution (GTR+G) as the default
selection. Bayesian inference (BI)was carried out inMrBayes v.3.2 (Ronquist & Huelsenbeck,
2003) with 1,000,000 Markov Chain Monte Carlo (MCMC) run generations; posterior
distribution was sampled every 1,000 generations, and a 25% burn-in. GenBank sequences
of S. hualensis (Acc No: KC951523), S. lemuru (NC039553), and S. gibbosa (NC037131)
were employed as outgroups in the analysis for both trees. A phylogenetic network of all
haplotypes was constructed to view haplotype relationships based on the median-joining
calculation in a minimum spanning network (MSN) implemented in the population
analysis with reticulate trees (POPART) v1.7 (Bandelt, Forster & Röhl, 1999; Leigh &
Bryant, 2015).

Genetic distances within and among populations based on the best nucleotide
substitution model of Kimura 2P (K2P), which depicts the lowest Bayesian information
criterion (BIC) score, were estimated using MEGA v7.0. These values also assessed the
possibility of sub-species or cryptic species occurrence if intra-species variation within
marine species exceeds the threshold (2%) (Chanthran et al., 2020; Hebert et al., 2003;
Jamaludin et al., 2020; Ward, 2009).
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Population structure
Population pairwise comparisons (FST ) were calculated using ARLEQUIN v3.5 (Excoffier
& Lischer, 2010). Values were adjusted for Type 1 errors as a result of multiple comparisons
using the false discovery rate procedure (FDR) at p < 0.05 (Benjamini & Hochberg, 1995).
The genetic distance and significance of each pairwise comparison were further analysed
with a nonparametric permutation procedure with 1,000 replicates (Hudson, Boos &
Kaplan, 1992) in DnaSP v6.0 (Rozas et al., 2017). Estimation of gene flow (Nm) based on
both haplotype and sequence statistics was derived according to Nei (1973) and Hudson,
Boos & Kaplan (1992) using the same programme.

Hierarchical analysis of molecular variance (AMOVA) was performed to estimate
molecular variance among populations at different hierarchical levels using ARLEQUIN
v3.5 (Excoffier & Lischer, 2010). The relative contribution of varianceswas estimated at three
different levels; FST , FSC , and FCT (Excoffier & Lischer, 2010). The spatial structure was
further examined using spatial analysis of molecular variance (SAMOVA) v2.0 (Dupanloup,
Schneider & Excoffier, 2002) to identify groups of populations that were geographically
homogeneous and maximally differentiated from each other. The isolation by distance
(IBD) or Mantel test (Mantel, 1967) was conducted to confirm the relationship between
genetic distance and geographical distance.

Demographic history
The historical demography of each population was tested using Tajima’s D (Tajima,
1989) and Fu’s F (Fu, 1997) statistics in ARLEQUIN v3.5 (Excoffier & Lischer, 2010)
Ramos-Onsins and Rozas’ R2 in DnaSP v6.0 (Rozas et al., 2017) to analyse deviation from
neutrality. The significant R2 was calculated using coalescent simulations of 5,000 replicate
runs for each simulation. R2 is a powerful tool for quantifying population growth with
a limited sample size (Ramos-Onsins & Rozas, 2002). Harpending’s raggedness index, Hri
(Harpending, 1994), was calculated in ARLEQUIN v3.5 (Excoffier & Lischer, 2010) and
mismatch distributions (Rogers & Harpending, 1992; Schneider & Excoffier, 1999; Slatkin
& Hudson, 1991) were calculated in DnaSP v6.0 (Rozas et al., 2017). Both analyses could
differentiate whether populations are demographically stable, expanding, or decreasing
over time. A sudden population expansion model in Hri will be rejected if p < 0.05
(Schneider & Excoffier, 1999).

The precise time of expansion was manually calculated using the equation τ = 2 µt, (µ=
mutation rate of the sequence analysed, t = time since expansion) with a given mutation
rate of 1–2% per million years for Cyt b (Rousset, 1997; Johns & Avise, 1998; Cárdenas et
al., 2005). The Bayesian skyline plot (Drummond et al., 2012) was implemented in BEAST
v1.8.2 (Drummond et al., 2012) to estimate past population dynamics, employing a relaxed
uncorrelated lognormal molecular clock, GTR + G as the best evolutionary model selected
from PartitionFinder v1.1.0 (Lanfear et al., 2017). The analysis was run for 300 million
generations with parameters sampled every 10,000 generations. The results were visualised
using Tracer v1.7 (Rambaut et al., 2018) which summaries the posterior distribution of
population size over time.
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Figure 2 Maximum likelihood (ML) tree and Bayesian inference (BI). The ML tree and BI analysis from
the partial mtDNA Cyt b gene of A. sirm (the singletons and population-specific haplotypes are excluded
in the tree for better illustration).

Full-size DOI: 10.7717/peerj.13706/fig-2

RESULTS
Data analysis
The 1,016 bp segment of mtDNA Cyt b was successfully amplified from all 179 samples.
A detailed evaluation revealed 42 non-synonymous mutations resulting in 37 amino acid
substitutions. The ratio of transversion to transition substitutions for the entire data set
was 1:1. Haplotype diversity (Hd) was high ranging from 0.91 to 1.00, while nucleotide
diversity (π) was low, ranging from 0.002 to 0.009 (see Table 1). A total of 203 variable
sites were identified from the 1,016 bp segment, where 111 (10.9%) parsimony informative
sites defined 122 haplotypes. These haplotype sequences have been deposited in GenBank
under accession numbers MZ040756 to MZ040877. Furthermore, 111/122 (90.98%) were
detected as singletons (haplotypes found in a single gene copy), where 11/122 (9.02%) were
shared haplotypes or found in more than a single population. The Pearson correlation test
(r2= 0.66, p= 0.06) confirmed that sample sizes did not significantly affect the nucleotide
diversity and haplotype diversity (Hd) therefore, further analyses could be performed.

Phylogenetic relationships
The ML tree and BI analysis revealed a similar topology of two geographically separate
mtDNA lineages (see Fig. 2); (1) AS lineage (Lineage 1) composed of two populations
(Ranong and Kuala Perlis), and (2) SCS lineage (Lineage 2) encompasses populations from
the SCS, CS, and the SS. No geographical pattern was observed within Lineage 2.

The minimum spanning network (MSN) showed two distinct lineages similar to the
phylogenetic trees, separated by 63 genetic mutations (see Fig. 3). Lineage 2 (all populations
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Figure 3 Minimum spanning network (MSN). The MSN inferred from mtDNA Cyt b gene of A. sirm.
The node size corresponds to haplotype frequencies; the minimum node size is one individual. The dashed
line represents a genetic mutation.

Full-size DOI: 10.7717/peerj.13706/fig-3

excluding AS populations) exhibited a star-like pattern with the dominant haplotype
(Hap05) centred in it (Ferreri, Qu & Han, 2011;Woolley, Posada & Crandall, 2008).

Genetic diversity
The genetic diversity or distance was converted to percentages and revealed intrapopulation
genetic diversity ranging from 0.2% to 0.9%, the lowest being in Kudat and the highest in
Kuala Perlis (Table 2). Meanwhile, the interpopulation genetic diversity ranged between
0.2% and 7.6%, with Kuala Perlis and Ranong from the AS being the most divergent of all
(7.2% to 7.6%), with a 1.0% difference from each other. In contrast, the genetic diversity
ranged from 0.2% to 0.7%, when Kuala Perlis and Ranong populations were excluded
from the analysis, providing strong evidence that AS populations are highly structured
than other seas.

Population structure
Most FST values in the AS (Kuala Perlis and Ranong) populations were significantly
different (p < 0.05) (Table 2), which aligned with earlier studies. However, non-significant
(p > 0.05) values were also detected in cases where high genetic distance in some between
Lineage 1 and Lineage 2 populations, such as AS vs Semporna Kuantan vs Kuching (both
in SCS), Labuan (SCS) vs Kudat (SS), and Semporna (CS) vs Kuantan (SCS).
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Table 2 Population pairwise, FST (below diagonal) and genetic diversity (distance) (upper diagonal) of A. sirm inferred by mtDNA Cyt b.

Andaman Sea South China Sea Celebes Sea Sulu Sea

SKP SRG SKC SKT SPK SKK SLB SKD SSP

0.009 0.001 0.073 0.073 0.075 0.076 0.073 0.073 0.076 SKP
0.007 0.072 0.072 0.074 0.076 0.072 0.072 0.075 SRG

SKP 0.003 0.005 0.005 0.006 0.004 0.003 0.005 SKCAndaman
Sea SRG 0.0114 0.003 0.003 0.006 0.003 0.002 0.005 SKT

SKC 0.0293 0.0358 0.005 0.007 0.005 0.005 0.005 SPK
SKT 0.0600 0.0662 −0.0038 0.008 0.006 0.006 0.007 SKK
SPK 0.0386 0.0450 0.0456 0.0545 0.004 0.003 0.006 SLB
SKK 0.0404 0.0471 0.0165 0.0273 0.0286 0.002 0.005 SKD

South
China
Sea

SLB 0.0107 0.0177 −0.0004 0.0088 0.0444 0.0148 0.006 SSP
Celebes Sea SKD 0.0263 0.0333 −0.0024 −0.0031 0.0751 0.0480 0.0080
Sulu Sea SSP 0.0112 0.0186 0.0193 0.0287 0.0301 −0.0075 0.0156 0.0504

Notes.
SKP, Kuala Perlis; SRG, Ranong; SKC, Kuching; SKT, Kuantan; SPK, Pulau Kambing; SLB, FT Labuan; SKD, Kudat; SSP, Semporna.
Bold number indicates significant value after False Discovery Rate Procedure (FDR) procedure at p< 0.05.
The genetic diversity (distance) values were presented in percentage (%) in the text.

Table 3 Hierarchical AMOVA analysis of A. sirm inferred by Cyt b based on nine populations.

Source of variation Variation (%) F statistics p value

Among populations 0.66 FCT =−0.0066 0.257
Among populations within groups 2.00 FSC = 0.0202 0.003
Among populations within total 97.34 FST = 0.0265 0.0009

Notes.
The populations were grouped into seas:
Group 1-AS, Kuala Perlis (SKP) and Ranong (SRG); Group 2-SCS, Kuching (SKC), Kuantan (SKT), Kota Kinabalu (SKK),
Pulau Kambing (SPK) and Labuan (SLB); Group 3-SS, Kudat (SKD); Group 4- CS, Semporna (SSP).

The AMOVA indicated no significant differences among populations (between seas)
even for the highest variance (FCT = 0.0066, p = 0.257; Table 3). However, the dataset
demonstrated significant differences within each sea (FST = 0.0265, p = 0.0009), with
97.34% of the total genetic variation of A. sirm contributed by genetic differences among
the total populations. This result indicated a subdivision or structuring within the tested
populations. Notably, populations may be contribute the non-significant (p > 0.05)
observation within the SCS, represented by more than two populations compared to
other seas. Genetic differentiation among populations within groups/seas was significant
(FSC = 0.0202, p = 0.03).

The result from the SAMOVA paralleled other analyses, with k = 2 displaying the
highest FCT value (FCT = 0.9277, p = 0.02) signifying two genetically distinct A. sirm
stocks among sampled populations: Lineage 1 (Kuala Perlis and Ranong) and Lineage
2 (Kuching, Kota Kinabalu, Kuantan, Labuan, Pulau Kambing, Kudat and Semporna)
(Supplemental Information 1). The Mantel test showed no significant correlation between
genetic differentiation (FST value) and geographical distance (r = 0.127, p= 0.173) among
tested populations.
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Demographic history
The Tajima D’s and Fu’s F generated negative and significant (p < 0.05) values for all
populations (Table 1) suggesting a recent historical directional selection (selective sweep)
or recent population growth (Tajima, 1989). Furthermore, the Harpending raggedness
index, Hri = 0.042, SSD = 0.01, (p = 0.3) supported the recent population growth
hypothesis. Meanwhile, the mismatch distributions of combined populations detected
two highly divergent peaks, representing the two lineages (see Fig. 4A). Additional
independent analyses of the two lineages (Lineage 1 and Lineage 2) were conducted,
and a bimodal mismatch distribution was discovered in Lineage 1 (Fig. 4B). Nevertheless,
further comprehensive studies are required to confirm these preliminary finding due to the
small sample size in this study. On the other hand, Lineage 2 shows a unimodal distribution
providing strong evidence for sudden population expansion (Harpending, 1994; Slatkin &
Hudson, 1991) (see Fig. 4C).

The Bayesian skyline plot analyses revealed a recent expansion in the overall effective
population size (see Fig. 4D), which can be explained by growth in Lineage 2 occurred
approximately around 150 thousand years ago (KYA) (see Fig. 4F). Conversely, Lineage 1
showed a gradual population increase over the last 500 KYA (see Fig. 4E). Notwithstanding,
the finding was based on only two populations from the same sea and may not represent
other similar sites. The estimated time of population expansion for Lineage 1 and Lineage
2 using the formula τ = 2 µt, generations and a mutation rate for Cyt b of 1–2% per
million years for perciform (Cárdenas et al., 2005; Johns & Avise, 1998) are estimated to
occur 442,913 to 221,456 years ago and 354,330 to 177,165 years ago respectively. These
findings are almost in parallel with the results from the Bayesian Skyline plot suggesting a
demographic expansion in the A. sirm population during the Pleistocene era.

DISCUSSION
In the absence of any form of barriers, genetic homogeneity or absence of spatial patterns
in allele or haplotype distributions is expected in the marine fish population (Baker et al.,
1993; Scoles & Graves, 1993; Akib et al., 2015). However, this theory become obsolete when
barriers impede the free movement of a particular species (Tudela, García-Marín & Pla,
1999; Zardoya et al., 2004; Gaggiotti et al., 2009; Sukumaran, Sebastian & Gopalakrishnan,
2017; Swart et al., 2016, Domingues et al., 2018; Jamaludin et al., 2020). In this study, two
genetically different groups, Lineage 1 (AS populations) and Lineage 2 (SCS and the
neighboring waters populations) were identified based on various statistical analyses.
However, the exact position of this boundary was not identified since no sample was
obtained from the Strait of Malacca that connects the Indian Ocean and the SCS. Several
studies have reported the phenomena in broad spectrum of marine organisms (Ninwichian
& Klinbunga, 2020; Klangnurak, Phinchongsakuldit & True, 2012; Mandal et al., 2012) in
the AS or even in the SCS (Rohfritsch & Borsa, 2005; Dudgeon, Broderick & Ovenden,
2009; Dohna et al., 2015; Swart et al., 2016; Jamaludin et al., 2020). Examples of other
marine organisms include Tenualosa macrura (Longtail shad), Scarus ghonnan (Blue-
barred parrotfish), and Sepioteuths lessoniana (Bigfin reef squid) (Department of Fisheries
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Figure 4 Mismatch distribution and Bayesian Skyline Plot (BSP). (A) Mismatch distribution (pairwise
number of differences) for AS and SCS. (B) Mismatch distribution (pairwise number of differences) for
AS lineage (Lineage 1). (C) Mismatch distribution (pairwise number of differences) for SCS lineage (Lin-
eage 2). (D) The BSP (right) of the effective population size for mtDNA Cyt b for A. sirm combining the
nine populations. (E) The BSP (right) for AS lineage (Lineage 1). (F) The BSP (right) for SCS lineage (Lin-
eage 2). The shaded area indicates 95% confidence intervals surrounding the median.

Full-size DOI: 10.7717/peerj.13706/fig-4

Malaysia, 2019), although they are common in the surrounding seas. Further investigation
is warranted to determine the underlying factor(s) if this species is absent from the area.

In addition to the two disparate lineages, significant divergences (FST ) were also observed
for several pairwise comparisons within Lineage 2 involving Kuching, Kudat, Kuantan, Kota
Kinabalu, and Pulau Kambing. In contrast, non-significance was observed between Lineage
1 and Semporna (Lineage 2). Upon weighing other evidence, such as the phylogenetic tree
andMSN, it was predicted that the statistical sensitivity of FST was contributed by the small
sample sizes rather than genetic isolation or other biological factors.

Many studies have refuted the universality of free gene flow in marine species (Zhang et
al., 2016; Li et al., 2016; Niu et al., 2019; Akbar, Irfan & Aris, 2019; Kasim et al., 2020; Mat
Jaafar et al., 2020). Alternatively, several general factors have been proposed to explain the
population structure pattern of marine fish, including random genetic drift, demographic
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history, and life histories such as feeding and migratory behaviour (Gaggiotti et al., 2009;
Sun, Tang & Yin, 2018). In addition the limited dispersal and geomorphologic barriers
could be possible reasons for the restricted gene flow in A. sirm, as observed in other
species (Betancur et al., 2010). Dispersal ability and feeding behaviour are hypothesised to
be driven by oceanic currents that could lead to allopatric speciation, as documented in
the Mapalé sea catfish, Cathorops mapale in Southern Caribbean waters (Betancur et al.,
2010). Thus, extrinsic factors (circulation patterns) and intrinsic factors (limited dispersal
ability) are potent drivers of genetic differentiation.

In the absence of (historical and contemporary factors) movement barriers, the adult
and larval pelagic movement characteristics are sufficient for homogenising populations,
as observed in the panmictic A. sirm populations within the SCS and neighboring seas
(Lineage 2). The non-significant FST values among Lineage 2 populations indicated low
genetic divergence and high gene flow. This condition results from the active exchange
of genetic material between populations through unrestricted breeding, concordant
with this migratory species’ pelagic migratory behavior. High genetic affinity was also
observed between the AS populations in Kuala Perlis and Ranong. Similar findings have
been recorded in other pelagic fishes in the region, such as ornate threadfin bream,
Nemipterus hexodon (Supmee et al., 2021); crescent perch, Terapon jarbua (Chanthran
et al., 2020), Japanese scad, Decapterus maruadsi (Jamaludin et al., 2020), Russell’s
snapper, Lutjanus russelli (Klangnurak, Phinchongsakuldit & True, 2012); lesser spotted-
leatherjacket, Thamnaconus hypargyreus (Li et al., 2016) and crimson snapper, Lutjanus
erythropterus (Zhang, Cai & Huang, 2006). Furthermore, the drifting planktonic larva
could further enhance the genetic connectivity of A. sirm in SCS, a factor attributed to the
panmixia observed in the ornate threadfin bream, Nemipterus hexodon along the Gulf of
Thailand coastline (Supmee et al., 2021). Larval transport due to oceanic water movement
during monsoons is suggested to strongly influence the population’s geographical structure
(Palumbi, 1994). Nonetheless, this hypothesis warrants future investigations for the A. sirm
population.

Climatic history may be pivotal in shaping the demographic history of A. sirm. Hou & Li
(2018) suggested that a break in the Tethyan ocean due to geological changes affected the
aquatic diversification, including in the Indo-West Pacific region. The demographic history
of high haplotype diversity, Hd coupled with low nucleotide diversity π for A. sirm propose
a recent population expansion from a low effective size, a probable consequence of rapid
population growth after a bottleneck event resulting in a high occurrence of newmutations
(Avise, Neigel & Arnold, 1984). This finding aligned with previous studies on pelagic species
in this region; Indian mackerel, Rastrelliger kanagurta (Akib et al., 2015); Japanese scad,
Decapterus maruadsi (Jamaludin et al., 2020), yellowfin tuna, Thunnus albacares; skipjack,
Katsuwonus pelamis (Ely et al., 2005) and spotted mackerel, Scomber australasicus (Tzeng,
2007).

The ocean level fluctuations during the Pleistocene significantly impacted the dispersal
of marine and global species (Voris, 2000), including A. sirm. Morevoer, this occurence
could have reshaped the geographical landscape of the AS. When ocean levels increased,
populations within the SCS and the neighboring waters were homogenised. This genetic
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structuring pattern has been highlighted in the Japanese scad, Decapterus maruadsi
(Jamaludin et al., 2020), redlipmullet,Chelon haematocheilus (Liu et al., 2007) and crimson
snapper, Lutjanus erythropterus, (Zhang, Cai & Huang, 2006) and various other marine
species (Carpenter et al., 2011). When the sea level contracted, mainland Southeast Asia
was exposed during the Quaternary period (Nelson et al., 2000), leading to the high genetic
divergence between the AS and the SCS. Chanthran et al. (2020) attributed the genetic
separation between the Kuala Selangor (Peninsular Malaysia) and Sandakan (Borneo)
populations of crescent perch, Terapon jarbua to this factor. The same factor underlies
the separation of the ornate threadfin bream, Nemipterus hexodon (Supmee et al., 2021),
and Russell’s snapper (Klangnurak, Phinchongsakuldit & True, 2012) between the AS and
the Gulf of Thailand. Similarly, A. sirm may experience this phenomenon due to the high
genetic distance between the SCS and the AS.

The small sample size (in Semporna) and number of populations (only two populations
in the AS vs eight in the SCS and the neighboring waters) in the present may have
influenced the statistical strength of the observed population structuring. Nevertheless,
MSN, AMOVA and SAMOVA analysis validated this hypothesis. Furthermore, there
was no haplotype sharing between the two lineages. Future studies should consider
larger sample sizes and populations from the AS to verify the present findings since this
research had limited geographical coverage. Furthermore, sampling could be extended
to include other areas, such as the Bay of Bengal, where close genetic relatedness with
the AS had been identified in several species. This observation was exemplified in the
widely distributed Central Indo-Pacific surgeonfishes, Naso brevirostris and N. unicornis
(Horne et al., 2008), Indian mackerel, Rastrelliger kanagurta in Indian Peninsular waters
(Sukumaran, Sebastian & Gopalakrishnan, 2017) and Spanish mackerel, Scomberomorus
commerson in the Northern Indian ocean (Radhakrishnan et al., 2018). The high genetic
affinity of these species populations was documented in the Indian Ocean—the AS and
Bay of Bengal are part of this vast ocean. The was also evident in other Sardinella spp.
in other regions. For instance, the low genetic differentiation of white sardine, S. albella,
between the Persian Gulf and Sea of Oman was attributed to the free dispersal of currents
in the Indian Ocean seas (Rahimi et al., 2016). On the other hand, Bowen & Grant (1997)
observed that the Sardinops spp. experienced a long and stable evolutionary history and
has a wide phylogeographic distribution in temperate upwelling zones in the coastal region
of the Indian Ocean and Pacific Oceans, such as Japan, California, Chile, Australia, and
South Africa. Therefore, the inclusion of A. sirm populations from the Bay of Bengal
area (India and Sri Lanka) in future studies should be explored. However, the current
findings are based solely on a maternally inherited gene. Thus, co-dominant markers such
as microsatellites, single nucleotide polymorphisms (SNPs), or whole genome sequencing
should be integrated into future studies.

The present of cryptic species or sub-species due to high genetic differentiation is not
uncommon among Sardinella species, indicated by the high genetic differentiation between
the two lineages in this study. The genetic distance between Lineage 1 and Lineage 2 (∼7%)
exceeded the threshold (2%) of intra-species variation within marine species (Chanthran et
al., 2020;Hebert et al., 2003; Jamaludin et al., 2020;Ward, 2009). Furthermore, high genetic
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differentiation in the waters of the Philippines was attributed to the cryptic diversity of
freshwater sardinella, S. tawillis (>3%) Taiwan sardinella, S. hualensis (>4%) (Chan et al.,
2019) and the Goldstripe sardinella, S. gibbosa (no specific genetic percentage was reported
but the genetic differences were supported by morphological examination) (Thomas et al.,
2014). Nonetheless, cryptic diversity can only be verified through a more comprehensive
and holistic approach utilising complementary tools (Jamaludin et al., 2020; Jayasankar et
al., 2004; Thomas et al., 2014) and morphological re-examining of fresh type specimens.

Implications to fishery management
This study has provided novel insights into the population structure and proposed several
processes that could define the stock boundaries and evolutionary units of A. sirm in
waters. It is recommended that separate management systems be implemented for the
waters fringing the western coasts, Lineage 1 (AS) and eastern coasts, Lineage 2 (the SCS
and the neighboring waters). Despite focusing on only one country, it is worth notingy
that all the major seas in Southeast Asia are represented in this study.

Genetic data should be an important component for fishery managers to make informed
decisions on a target species (von der Heyden et al., 2014). Furthermore, advanced genetic
techniques (eDNA for ecological monitoring) could provide crucial information to the
scientific advisory process for fisheries management. Despite that, the integration of
genetic data into fishery policy modeling is yet to gain traction in most parts of the world
where genetic facilities are still lacking (Reiss et al., 2009;Waples & Naish, 2009), including
Malaysia.

Regional cooperation can benefit from utilising genetic evidence, particularly for
migratory species like A. sirm. A fine example of how regional bodies co-operate in
regional fishery management strategies is the ZoNéCo (Programme d’évaluation des
ressources marines de la zone économique de Nouvelle-Calédonie) in New Caledonia
that integrated genetic and complementary non-genetic data to manage the Spanish
mackerel, Scomberomorus commerson stocks in Bélep, North Province of New Caledonia
(von der Heyden et al., 2014). This project demonstrated that the area might host distinct
reproductive stocks based on solid evidence of genetic structuring. Resultantly, a sound
policy was introduced to ensure sustainable exploitation of the Spanish mackerel in New
Caledonia. In another study, high genetic structuring attributed to limited ecological
population connectivity of the shorefish, Eleutheronema tetradactylus, in four regions of
northern Australia (Horne et al., 2011) recommended separate management of these four
populations.

The presence of two discrete A. sirm stocks, the AS and the SCS, reinforces the need
for regional cooperation among the maritime nations. This effort could be realized by
referring to the management models applied in other regions through the facilitation of
the Southeast Asian Fisheries Development Center (SEAFDEC). The genetic variability
data could be used as an indicator to control the harvesting activities between participating
countries, besides regulating the number of fish landing at a particular time and the fishing
capacity of fishing vessels (Md Saleh et al., 2019).
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Determining the population stock structure within the region (Malaysia with the
neighboring waters) is also crucial for the sustainable fishery management of highly
economically important species. This information could guide the fishery managers
in determining potential fishing or spawning areas and planning a sustainable fishery
policy strategy. For example, the population stock structure determination of spawning
areas through DNA metabarcoding could be a way forward in sustaining broodstock
management. In addition, the information could facilitate site recommendations for
implementing closed areas during the critical life cycle, including spawning and nursery
seasons, as suggested by Radhakrishnan et al. (2018) in their study on the Spanish mackerel,
Scomberomorus commerson. The concept of genetic-based management is slowly gaining
recognition in this region. For instance, SEAFDEC identifies potential closed areas under
the ‘‘The South China Sea Fisheries Refugia Initiative’’ whereby genetic and non-genetic
information is used to develop refugia of selected species such as the tiger prawn refugia in
Sarawak, Malaysia (SEAFDEC, 2006). Despite that, there is an immense gap and challenges
in incorporating genetic data for the development of fishery management strategies due
to the lack of interest and knowledge among fishery managers (Benestan, 2019; von der
Heyden et al., 2014). Furthermore, non-specialist may face difficulties understanding the
genetic approaches in fishery management (Bowen et al., 2014), therefore, it is critical to
address these challenges by maintaining and strengthening joint efforts between scientists
and fishery managers. For instance, the integration of A. sirm genetic data along with
life-history traits, tagging returns, parasitic loads, and microchemical variation of the hard
skeletal structure in the fishery management policy (Ward, 2000; von der Heyden et al.,
2014) would permit a holistic approach in sustainably managing A. sirm in this region.
Such efforts will help achieve the SustainableDevelopmentGoals (SDGs) specifically SDG14
to combat the global adverse effects of overfishing by 2030 (United Nations Sustainable
Development, 2021) and effective conservation and sustainable fishery management.

CONCLUSIONS
The mtDNA Cyt bmarker revealed two highly differentiated A. sirm in the AS and the SCS
and the neighboring waters. Demographic history and contemporary factors are identified
as possible underlying reasons for the structuring observed. Meanwhile, cryptic diversity
could explain the genetic disparity in the A. sirm population. Since two discrete stocks have
been identified in this study, different management strategies would benefit the A. sirm
population in the Southeast Asia.
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