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The Givetian Period witnessed the greatest expansion of stromatoporoid-coral reefs from
low to higher latitudes of the Phanerozoic. Multi-proxy seawater surface temperature
reconstruction contradicts establishment of super-greenhouse climate as a major reason
for reef expansion, yet many questions remain. This paper presents results of a rare earth
element and Y (REY; rare earth elements and yttrium) geochemical study of two well-
documented Middle Givetian reefal carbonate sections (Jiwozhai and Buzhai) of the
Jiwozhai Formation of South China. The nearshore Jiwozhai patch reef succession displays
greater biodiversity and more abundant coral than the marginal platform Upper Buzhai
reef. Reef and micritic carbonate of the Jiwozhai section is characterized by shale-type
post-Archean Australian Shale ( PAAS)-normalized REY patterns, by very weak negative Ce
anomaly values (Ce/Ce* 0.80 to 0.93; average = 0.89), slightly elevated Y/Ho values (28.9
to 39.1; average = 34.1), and near-unity values of (Pr/Yb)N (average = 0.87), (Pr/Tb)N

(average = 0.80), and (Tb/Yb)N (average = 1.09). Moreover, REY patterns of deposits of the
Jiwozhai section differ markedly from those of modern seawater. The described
geochemical aspects of the Jiwozhai section and the positive correlation of REY and Th
contents displayed by the section point to a terrestrial siliciclastic contribution
contemporaneous with reef building. In contrast, REY patterns of the Upper Buzhai reef
section samples are similar to those of modern seawater characterized by light rare earth
element (LREE) depletion (average (Pr/Yb)N = 0.76), negative Ce anomalies (average
Ce/Ce* = 0.77), and average super-chondrite Y/Ho ratios (average = 45.4)). Slightly
positive Eu anomalies (Eu/Eu* = 1.15-1.73; average = 1.35) of the Upper Buzhai reef
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section samples are attributed to the negligible effect of hydrothermal fluids. Middle REE
(MREE) enrichment (average (Tb/Yb)N = 1.48) of Buzhai section carbonate samples and
positive correlation of REY and Th suggest a riverine input. Thus, we suggest that
terrestrial nutrients delivered by rivers far outweighed upwelling as a source of nutrients
supplied to the Givetian reef ecosystem of South China. Coral and stromatoporoid adaption
to turbid water containing abundant terrestrial sediment expanded reef-builder habitats
thereby increasing reef distribution areas in the Givetian ocean.
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15 Abstract

16 The Givetian Period witnessed the greatest expansion of stromatoporoid-coral reefs from low to 

17 higher latitudes of the Phanerozoic. Multi-proxy seawater surface temperature reconstruction 

18 contradicts establishment of super-greenhouse climate as a major reason for reef expansion, yet 

19 many questions remain. This paper presents results of a rare earth element and Y (REY; rare 

PeerJ reviewing PDF | (2021:12:68901:0:2:NEW 23 Dec 2021)

Manuscript to be reviewed

reviewer
Highlight
as above



20 earth elements and yttrium) geochemical study of two well-documented Middle Givetian reefal 

21 carbonate sections (Jiwozhai and Buzhai) of the Jiwozhai Formation of South China. The 

22 nearshore Jiwozhai patch reef succession displays greater biodiversity and more abundant coral 

23 than the marginal platform Upper Buzhai reef. Reef and micritic carbonate of the Jiwozhai 

24 section is characterized by shale-type post-Archean Australian Shale (PAAS)-normalized REY  

25 patterns, by very weak negative Ce anomaly values (Ce/Ce* 0.80 to 0.93; average = 0.89), 

26 slightly elevated Y/Ho values (28.9 to 39.1; average = 34.1), and near-unity values of (Pr/Yb)N 

27 (average = 0.87), (Pr/Tb)N (average = 0.80), and (Tb/Yb)N (average = 1.09). Moreover, REY 

28 patterns of deposits of the Jiwozhai section differ markedly from those of modern seawater. The 

29 described geochemical aspects of the Jiwozhai section and the positive correlation of REY and 

30 Th contents displayed by the section point to a terrestrial siliciclastic contribution 

31 contemporaneous with reef building. In contrast, REY patterns of the Upper Buzhai reef section 

32 samples are similar to those of modern seawater characterized by light rare earth element (LREE) 

33 depletion (average (Pr/Yb)N = 0.76), negative Ce anomalies (average Ce/Ce* = 0.77), and 

34 average super-chondrite Y/Ho ratios (average = 45.4)). Slightly positive Eu anomalies (Eu/Eu* = 

35 1.15-1.73; average = 1.35) of the Upper Buzhai reef section samples are attributed to the 

36 negligible effect of hydrothermal fluids. Middle REE (MREE) enrichment (average (Tb/Yb)N = 

37 1.48) of Buzhai section carbonate samples and positive correlation of REY and Th suggest  a 

38 riverine input. Thus, we suggest that terrestrial nutrients delivered by rivers far outweighed 

39 upwelling as a source of nutrients supplied to the Givetian reef ecosystem of South China. Coral 

40 and stromatoporoid adaption to turbid water containing abundant terrestrial sediment expanded 
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41 reef-builder habitats thereby increasing reef distribution areas in the Givetian ocean.

42 Keywords: Givetian Period; turbid water; REEs; Jiwozhai Formation; nutrients

43

44 1. Introduction

45 The Devonian Period experienced the greatest expansion of reefs of the Phanerozoic Eon, 

46 especially stromatoporoid-coral reefs during Givetian time (Copper, 2001). Reef development 

47 during the Devonian extended to latitudes higher than those attained by reefs during the 

48 Holocene climatic optimum (Copper, 2001; Jakubowicz et al., 2019).  Indeed, the Devonian 

49 Laurentian, Russia-Siberia-Kazakhstan, and eastern Gondwana, Sino-Australo-centered reefs  

50 have been documented as extending for distances of 400 km to 3100 km (Copper and Scotese, 

51 2003). Low latitude Middle Devonian reef-building metazoan was dominated by rugose and 

52 tabulate corals and stromatoporoids (Copper and Scotese, 2003). However, the cause(s) of global 

53 reef expansion during Middle Devonian time remains ambiguous. 

54 The great expansion of metazoan reefs during Devonian time was initially attributed to the 

55 establishment of super-greenhouse climatic conditions during this period of Earth history (Berner, 

56 1997; Copper and Scotese, 2003). However, later conodont apatite oxygen isotope studies of 

57 Devonian reef successions suggested that coral–stromatoporoid reefs flourished during cooler 

58 time intervals (Joachimski et al., 2003; Scotese et al., 2021). Climate and water quality affect 

59 coral reef growth and reef ecology in modern oceans (Pandolfi, 2015). Regardless of water 

60 temperature, nutrient and sediment abundances of sea water impact modern coral reef systems 
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61 (Erftemeijer et al., 2012; McCulloch et al., 2003; Rogers, 1990; Zaneveld et al., 2016). 

62 Modern reef-building corals are known to flourish in oligotrophic waters. Moreover, the 

63 combination of increasing nutrient levels and rising seawater temperature is known to be 

64 responsible for the decline of coral ecology in recent years (Hughes et al., 2015; Rädecker et al., 

65 2021; Wiedenmann et al., 2013). Some workers speculate that changing nutrient types and 

66 availabilities in Phanerozoic oceans exerted some degree of control on reef distribution (Wood, 

67 1993; Kiessling, 2001). However, this concept suffered from a lack of robust evidence of 

68 nutrient levels (Copper and Scotese, 2003).

69 Rare earth elements and yttrium (REY), nitrate, phosphate, and silica abundances of modern 

70 seawater display similar vertical distribution profiles (Byrne and King, 1992; Shijft, 2015). 

71 Furthermore, REY, because of the similar ionic radii of REY3+ and Ca2+, is quantitatively 

72 incorporated into inorganic and biogenic carbonate minerals (Swart, 2015). The large 

73 distribution coefficient of REY between carbonate minerals (e.g., calcite and aragonite) and 

74 seawater make REY concentration and distribution in carbonate rocks resistant to the effects of 

75 diagenesis and dolomitization (Banner and Hanson.1990; Liu et al.,2019; Webb et al.,2009). 

76 Consequently, REY is commonly applied to the analysis of trace marine nutrient levels and 

77 water mass transport in modern ocean and reef coral ecosystems (Hara et al.,2009; Grenier et 

78 al.,2018; Leonard et al., 2019; Pham et al.,2019; Saha et al., 2021). The fact that ancient 

79 limestone and modern coral can serve as seawater chemistry proxies (Northdurft et al., 2004) 

80 validates the use of carbonate REY geochemistry as a means of reconstructing changes in 

81 nutrient type and abundance in carbonate deposits.

PeerJ reviewing PDF | (2021:12:68901:0:2:NEW 23 Dec 2021)

Manuscript to be reviewed

reviewer
Highlight
obviously true, but stromatoporoids were filter feeders, so their requirements were quite different. Must consider the differing ecology before modern analogues are useful. Sponges are filter feeders, but did they have photoautotrophic symbionts? Rugosa may have, but probably not all of them - how about these? 

reviewer
Highlight
possibly irrelevant for Devonian reef builders!!

reviewer
Highlight
are

reviewer
Highlight
That is a bit simplistic, as they do not share the same charge!! Exactly how they are incorporated is still poorly understood, but they have a very high affinity in any case.

reviewer
Highlight
coral reef

reviewer
Highlight
note that Nothdurft et al. also studied Devonian (although younger) reefs and that they specifically identified the difference between coastally affected fringing reefs and more offshore reefs in cleaner water. It is the study that really provides a good basis for your new study in theGivetian. 



82 The Middle Devonian Givetian reef tract of the Dianqiangui Basin of South China extends 

83 from slope to near-shore environments for more than 1700 km (Wu et al., 2010). The 

84 sedimentary succession, details of reef facies, and biodiversity of reef deposits of South China 

85 have been thoroughly studied in past decades (e.g., Wang et al., 1979; Liu et al., 2004; Wang 

86 2001, Huang et al., 2020). The present paper considers REY geochemistry of Middle Devonian 

87 Givetian reefal carbonates of the Jiwozhai patch reef and Buzhai platform margin reef in Dushan 

88 County, South China. This study aims to decipher the sources of nutrients delivered to the 

89 Givetian reef complex of South China as well as the role that terrestrial nutrients played in the 

90 maintenance of reefs during Givetian reef expansion.

91 2. Geological Setting

92 The Dianqiangui Basin of the South China Block was located near the equator in the eastern 

93 part of the Palaeo-Tethys Ocean during the Givetian Period (Huang et al., 2020; Fig.1A. The 

94 Palaeo-Tethys, bordering the northern margin of Gondwana, formed ~400-385 Ma following 

95 Kwangsian Orogeny (Xian et al. 2019; Qiu et al. 2020). Marine transgression was associated 

96 with rift-related movement of the South China Block in Early Devonian time (Qie et al. 2019). 

97 The palaeo-geography of South China experienced significant change during Givetian time in 

98 association with syn-depositional rift faulting. The Givetian also was the acme of reef 

99 development during the Phanerozoic Era during which small multi-cycle reefs formed on the 

100 inner platform of South China (Wu et al., 2010). 

101 The two studied reef sections expose the Jiwozhai Formation of Dushan County of the 
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102 Guizhou Province, China (Fig.1B, C). The Jiwozhai is overlain conformably by silty shale of the 

103 Hejiazhai Member of the Upper Devonian Wangchengpo Formation and is in conformable 

104 contact with underlying sandstone of the Songjiaqiao Member of the Middle Devonian Dushan 

105 Formation (Fig.2). The Brachiopod assemblage Stringocephalus burtini-Undispirifer undiderus 

106 and rugose coral assemblage Endophyllum guizhouense-Sunophyllum elegantum confirm a 

107 Givetian age of the Jiwozhai Formation (Liu et al.,2004, Qie et al.,2019; Huang et al.,2020).

108 Gray to dark-gray medium- to thick-bedded interlayered micritic limestone and marl 

109 comprise the primary lithology of the Jiwozhai Formation with occasional reef limestone 

110 deposits in the lower part of the unit. Variations in thickness and lithology of the Jiwozhai 

111 Formation between the studied sections likely reflect differences in paleo-geographic locations 

112 of deposition. Patch reefs (e.g., Jiwozhai patch reef) in the nearshore and abundant fringing reefs 

113 (e.g., Buzhai reef) on the platform margin comprise the dominant reef types of the Jiwozhai 

114 Formation. The enhanced biodiversity displayed by the Jiwozhai reef has been thoroughly 

115 described by Huang et al. (2020) and includes laminar stromatoporoids and tabulate corals as the 

116 prevailing reef builders. The upper reef deposits of the Jiwozhai Formation (hereafter referred to 

117 as the Upper Buzhai reef) and lower reef strata of the overlying Jipao Member of Dushan 

118 Formation comprise the Buzhai reef. The well- documented Buzhai reef is dominated by laminar 

119 stromatoporoids. 

120 The Upper Buzhai reef section (GPS 25°50′56.12″N, 107°34′32.74″E) is located in 

121 Dongyao village along a country road (Fig.3a). The reef section comprises three alternating reef 

122 limestones and bioclastic limestones; the stratigraphically lowest bioclastic limestone separates 
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123 the Jiwozhai Formation from the underlying Dushan Formation (Fig. 2). The lower reef interval 

124 of the Upper Buzhai reef section is about 2.9 m thick and made up largely of laminar 

125 stromatoporoids (Fig.3b) and subordinate sponge (Fig.3c), and tabulate and rugose corals 

126 (Fig.3d-e). Brachiopods (e.g., Stringocephalus, Fig.3f) appear to have been present as reef 

127 dwellers. The middle reef interval is about 6.1 m thick and dominated by laminar 

128 stromatoporoids, and is separated from the lower reef interval by about 2.0 m of bioclastic 

129 limestone. The upper part of the studied Jiwozhai Formation succession exposes approximately 

130 8.7 m of reef limestone and 3.7 m of medium- to thick-bedded bioclastic limestone (Fig. 2), 

131 which is overlain by silty shale of the Wangchengpo Formation.

132 The Jiwozhai patch reef section (GPS 25°50′56.12″N, 107°34′32.74″E) is located in 

133 Dahekou Geopark in Dushan County and comprises three reef and bioclastic limestone intervals 

134 (Figs. 2). The Upper Buzhai reef section contains more reef limestone than is present in the 

135 Jiwozhai section whereas the latter contains more muddy limestone (Fig.4A) and a greater 

136 benthic fauna. Also, laminar stromatoporoids (Fig.4B-E), tabulate corals (Fig.4C,4F), and 

137 chaetetids (Fig.4G) appear to have been the dominate reef builders at the depositional location of 

138 the Jiwozhai section.  Rugose corals (Fig.4B-4D) and brachiopods (Fig.4h) were also present 

139 but were present in subordinate numbers 

140 3. Materials and methods

141 We measured the Upper Buzhai reef and Jiwozhai patch reef sections of the Jiwozhai 

142 Formation and collected 34 fresh rock samples for lithology and trace element analyses. One part 
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143 of each specimen was used for preparation of thin sections for petrographic observation.  The 

144 other part was micro-drilled for trace element analyses. Samples are numbered in order from 

145 bottom to top as BZ-1 to BZ-20 for Buzhai section and JWZ-1 to JWZ-14 for Jiwozhai section 

146 (Fig. 2). Powders of each sandstone, bioclastic limestone, and reef limestone sample were 

147 analyzed for rare earth and other trace elements. Thirty-four thin sections were produced for 

148 visual inspection under the polarized light microscope in Key Laboratory of Geological 

149 Resources and Environments, Guizhou University, Ministry of Education, China. 

150 Approximately 50 mg of powder of each sample to be analyzed for trace element 

151 abundances were cleaned in ultra-pure water before acid dissolution. Samples were then 

152 dissolved in ultra-pure HNO3 in a Teflon flask after which the solution was dried to remove the 

153 acid. The acid solution addition and solution drying procedure was repeated once again. A 4 ml 

154 50% ultra-pure HNO3 was used to dissolve the dried residue followed by spiking with Rh, In, Re, 

155 and Bi and dilution for analysis on a Thermal Fisher ICP-MS at Guizhou Tongwei Analytical 

156 Technology Co., Ltd. Details of the analytical procedures have been described by Liang et al. 

157 (2000). Two USGS standards (W-2a and BHVO-2) were used to monitor analytical error, 

158 instrument calibration, and drift. The analytical error for REE and other trace elements is less 

159 than 5%.

160 4. Results

161 Measured concentrations of rare earth and other trace elements of the Jiwozhai Formation 

162 samples are presented in Tables 1 and 2. Post-Archean Australian Shale (PAAS)- normalized 
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163 element ratios (Pr/Yb)N, (Pr/Tb)N, and (Tb/Yb)N were calculated to define the degree of 

164 fractionation between light REE (LREE) and heavy REE (HREE), light REE and middle REE 

165 (MREE), and middle REE and heavy REE, respectively. Y/Ho ratios were calculated without 

166 normalization. Some rare earth element anomalies were calculated on a linear scale as per the 

167 following:

168                 Ce/Ce*=Ce/(0.5La+0.5Pr)

169                 Eu/Eu*=Eu/(0.5Sm+0.5Gd)

170 4.1. Jiwozhai reef section

171 Carbonates of Jiwozhai reef section have total REY (TREY) concentrations ranging from 

172 2.31 to 82.38 ppm (average = 32.65 ppm). The average concentration of REY of analyzed reefal 

173 limestone samples is 37.28 ppm, greater than the 16.22 ppm average of analyzed bioclastic 

174 limestone samples. One sandstone sample (JWZ-1) contains the greatest TREY concentration of 

175 155.2 ppm whereas the muddy limestone sample (JWZ-2) is characterized by a slightly greater 

176 TREY concentration of 82.38 ppm. All analyzed samples regardless of lithology display flat 

177 (shale-like) PAAS-normalized REY patterns  defined by minor negative Ce anomalies and 

178 weak fractionation among LREE, MREE, and HREE (Fig. 5). Ce anomalies of carbonate 

179 samples vary from 0.80 to 0.93 (average = 0.89). Eu anomalies for all analyzed samples fall 

180 between 0.88 and 1.11 (average = 1.02) (Fig. 5). Average (Pr/Yb)N, (Pr/Tb)N, and (Tb/Yb)N 

181 ratios of analyzed carbonate samples is 0.87, 0.80, and 1.09, respectively, are similar to those of 

182 the siliciclastic rock sample (0.93, 0.87, and 1.07, respectively). Carbonate samples are 

183 characterized by Y/Ho ratios of 28.9 to 39.1 (average = 34.1), slightly greater than the 29.9 Y/Ho 
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184 value of the siliciclastic rock sample. Mn/Sr values of analyzed carbonate samples range from 

185 0.23 to 3.76 (average = 0.80).

186 Contents of Th and Zr of the analyzed siltstone sample are 12 ppm and 134 ppm, 

187 respectively. Thorium and Zr concentrations of carbonate samples are one to three orders 

188 magnitude less than those of the sandstone sample and display a significant positive correlation 

189 (r2=0.964, N=13; Fig. 6a). TREY and Th also display a strong positive co-variance (Fig. 6b).

190 4.2. The Upper Buzhai reef section

191 PAAS-normalized REY patterns for the Upper Buzhai reef section sample suite is presented 

192 in Fig. 7. Four samples of sandstone and shale (BZ-1, BZ-2, BZ-19, and BZ-20) and one sample 

193 of muddy bioclastic limestone (BZ-3) display a typical shale-type REY pattern. Carbonate 

194 samples display an REY pattern similar to that of modern seawater characterized by LREE 

195 depletion (average (Pr/Yb)N = 0.76), negative Ce anomalies (average Ce/Ce* = 0.77), and super-

196 chondrite Y/Ho ratios (average = 45.4). However, unlike the modern seawater REY pattern, 13 

197 of 15 analyzed carbonate samples of the Upper Buzhai reef section display positive Eu anomalies 

198 (Eu/Eu* = 1.15-1.73; average = 1.35) and MREE enrichment ((Tb/Yb)N = 1.26-2.42; average = 

199 1.48). 

200 Four analyzed clastic sedimentary samples are characterized by Th and Zr concentrations 

201 (average = 6.63 ppm and 120 ppm, respectively) greater those of carbonate samples (average = 

202 0.788 ppm and 8.20 ppm, respectively). Among carbonate samples, reefal limestone samples are 

203 characterized by less Zr, Th, REY and greater Y/Ho than are micritic limestone samples. Like 

204 the Jiwozhai reef section, samples of the Buzhai reef section display positive correlations of Th 
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205 and Zr and TREY and Th (Fig. 8a,b). Total TREY of analyzed carbonate samples ranges from 

206 2.96 ppm to 57.05 ppm (average = 10.89 ppm) compared with an average TREY value of detrital 

207 sedimentary samples of 78.80 ppm.

208 4.3. Comparison of the Upper Buzhai and Jiwozhai reef sections

209 The Upper Buzhai section carbonate sample suite is characterized by low immobile element 

210 (e.g., Th and Zr) and TREY concentrations and elevated Y/Ho ratios relative to the Jiwozhai 

211 section. Carbonate deposits of the Buzhai section display seawater-like PAAS-normalized REY 

212 patterns whereas carbonate samples of the Jiwozhai section are characterized by shale-type 

213 PAAS-normalized REY patterns. Reefal limestone samples of the Upper Buzhai and Jiwozhai 

214 sections are variably dissimilar to the PAAS-normalized modern seawater REY pattern.

215 5. Discussion

216 5.1. Assessment of diagenetic alteration

217 Given the very high partition coefficients of REY between calcite and seawater (Della Porta 

218 et al., 2015; Webb and Kamber, 2000; Zhao and Zheng, 2014; Zhong and Mucci, 1995), 

219 diagenetic models suggest that an unrealistically large water- carbonate ratio would be required 

220 to reset the REY pattern of carbonate deposits (Banner and Hanson, 1990). The Mn/Sr ratio has 

221 been widely used to identify the effects of meteoric diagenesis on primary carbonate. In general, 

222 Mn/Sr values > 1 suggest that carbonate has been affected by meteoric diagenesis (Derry et al., 

223 2010). Mn/Sr of the Upper Buzhai section samples range from 0.27 to 1.15 and those of the 

224 Jiwozhai section range from 0.27 to 3.76 suggesting that carbonates of the studied sections 
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225 experienced little meteoric alteration. Moreover, although aragonite is characterized by low 

226 partition coefficients of REY compared to calcite, it is likely that REY compositions and patterns 

227 are retained during aragonite transformation to calcite (Webb et al., 2009). Studies of modern 

228 marine limestones subjected to variable degrees of diagenesis support the survivability of REY 

229 distribution patterns in limestone deposits subjected to meteoric processes, marine burial 

230 diagenesis, and dolomitization (Della Porta et al.,2015; Liu et al.,2019; Luo et al.,2021; Webb et 

231 al.,2009). Therefore, it is likely that REY compositions and patterns of analyzed carbonate 

232 samples of the studied sections were minimally affected by diagenesis.

233 5.2. Evaluation of fresh water contribution

234 5.2.1. Jiwozhai section

235 The shale-like REY patterns illustrated by Jiwozhai carbonates deviate from those of 

236 modern oxic seawater characterized by HREE enrichment, super-chondrite Y/Ho ratios > 40, and 

237 negative Ce anomalies (Fig. 5). In contrast, these REY distributions are similar to those 

238 documented from continental or estuarine water characterized by Ce anomalies, weak HREE 

239 enrichment, variable MREE enrichment, and equal to or slightly greater than the chondrite Y/Ho 

240 ratio (Elderfield et al. 1990; Zhao et al. 2021). Such REY patterns could also have been produced 

241 by terrestrial contamination due to the elevated REY contents in shale relative to those of pure 

242 carbonate rocks. Indeed, approximately 2% siliciclastic contamination, which is enough to 

243 modify the REY composition and pattern of carbonate (Frimmel, 2009), corresponds to an upper 

244 threshold Th value of 0.28 ppm. Accordingly, carbonate samples containing < 0.28 ppm Th 

245 should display REY patterns similar to that of modern seawater. It is noteworthy, however, that 
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246 the two samples (JWZ-8 and JWZ-13) having the lowest Th contents of 0.194 ppm and 0.059 

247 ppm also display flat REY patterns (Fig.5) and equal Y/Ho ratios (34.4 and 35.3), neither of 

248 which cant be attributed to silicate contamination. However, a non-marine origin of the analyzed 

249 carbonate samples is at odds with the presence of coral, stromatopora, and Brachiopoda (Figs. 

250 4B-H) as described in section 2. Therefore, riverine water input to coastal waters appears to have 

251 impacted the geochemistry of Jiwozhai section carbonates deposited during Givetian time.

252 5.2.2. The Upper Buzhai reef section

253 REY patterns of most reefal limestone samples of the Upper Buzhai reef section are similar 

254 to normal seawater, including LREE depletion, negative Ce anomalies, and elevated Y/Ho ratios 

255 (> 40).  Three bioclastic limestone samples present slightly lower Y/Ho values (35.3 to 39.1; 

256 average = 35.6). Although terrestrial contamination cannot be ruled out, a Y/Ho ratio of 40 and 

257 Th content of 0.024 ppm of one reefal limestone sample (BZ-12) suggests some degree of 

258 freshwater contamination. Moreover, four samples (BZ-9, BZ-11, BZ-12, and BZ-18) contain < 

259 0.1 ppm Th, low (Pr/Tb)N ratios (0.45 to 0.52; average = 0.49) and elevated (Tb/Yb)N ratios 

260 ranging from 1.26 to 1.72 (average = 1.47). Low Y/Ho ratios and MREE enrichment displayed 

261 by samples characterized by low Th content are attributed to mixing of riverine water with 

262 seawater.

263 5.3. Terrestrial contamination

264 The greater content of REY in shale than carbonate necessitates consideration of the 

265 possible role of terrestrial contamination of the studied Jiwozhai Formation carbonate samples. 

266 High field strength elements such as Th and Zr are rarely susceptible to chemical weathering and 
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267 diagenesis (Frimmel, 2009). This supposition is supported by the positive correlation of Th and 

268 Zr concentrations of the studied samples (Figs. 6a and 8a). These elements are widely utilized to 

269 evaluate the extent of terrestrial sediment contamination of carbonate deposits (Frimmel, 2009; 

270 Zhao and Zheng, 2014; Zhao et al., 2021). Elevated contents of REY should be expected in 

271 carbonate samples that experienced greater degrees of terrestrial contamination as suggested by 

272 the positive correlation of TREY and Th (Figs. 6b and 8b). Terrestrial sediment contamination 

273 appears to have affected Jiwozhai carbonate samples as suggested by their shale-like REY 

274 patterns (Fig. 5). Therefore, both Jiwozhai and Buzhai reefs appear to have experienced 

275 terrestrial input during Givetian time. 

276 Elevated Th contents (average = 1.97 ppm) and shale-like REY patterns of Jiwozhai section 

277 samples compared to those of the Buzhai section suggest that the depositional site of the 

278 Jiwozhai section experienced a greater terrestrial input than did the depositional site of the Upper 

279 Buzhai section, an argument supported by the paleo-geographic location and fossil assemblages 

280 of the Jiwozhai and the Upper Buzhai sections. That is, the Jiwozhai patch reef was located much 

281 closer to the Givetian shoreline than was the Buzhai platform margin reef (Figure 1). As 

282 described earlier (section 2), stromatoporoids appear to have been more abundant in the Upper 

283 Buzhai reef than in the Jiwozhai reef. Stromatopora is a calcified sponge (Kershaw, 1998) that 

284 favors clear seawater that received minimal terrestrial input (Kershaw, 1998; Konigshof and 

285 Kershaw, 2006). In contrast to stromatoporoid, coral can survive or even flourish in nearshore 

286 seawaters as evidenced by the Great Barrier Reef of Australia (Anthony, 1999; Saha et al., 2021). 

287 The 3.6 m to 6.8 m reef thickness of the Jiwozhai section is consistent with the view that coral 
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288 reefs are restricted to the upper 4 m to 10 m of a turbid water column whereas these reefs can 

289 extend to depths in excess of 40 m depth in clear seawater (Yentsch et al.,2002).

290 5.4. Ce anomalies

291 Modern oxic seawater is characterized by negative Ce anomalies in PAAS- normalized 

292 REY patterns that reflect the lower solubility of tetravalent Ce than its neighboring La and Pr in 

293 seawater (Elderfield et al., 1990). However, negative Ce anomalies are absent from anoxic 

294 waters (Planavsky et al., 2010). Thus, the history of Ce anomalies recorded by carbonate rock 

295 successions can be used to trace ocean oxygenation histories (Wallace et al., 2017). Ce 

296 anomalies of carbonate samples of the Jiwozhai section average 0.89 and 0.77 in the Upper 

297 Buzhai carbonate sample suite, both values markedly greater than the 0.18 to 0.45 range of 

298 modern seawater values (Sholkovitz et al., 1994). The common presence of coral, stromatopora, 

299 and brachiopoda fossils in both studied sections excludes the possibility of sampling limestones 

300 deposited in a non-marine or anoxic environment.  However, the nature of Ce anomalies in 

301 samples from both sections can be attributed to freshwater runoff. Terrestrial silicate detritus and 

302 freshwater lack Ce anomalies and are characterized by REY contents of one to several orders of 

303 magnitude greater than seawater (Tepe and Bau, 2016). Therefore, the introduction of a small 

304 amount of terrestrial detritus and freshwater into normal seawater will mask the latter's original 

305 negative Ce anomaly.

306 5.5. Eu anomalies

307 Positive Eu anomalies (denoted as Eu/Eu*) are commonly cited as evidence of 

308 hydrothermal input (Bau, 1991). However, enhanced plagioclase weathering induced by 
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309 greenhouse conditions may also yield positive Eu anomalies (Verdel et al., 2018). Moreover, 

310 enriched Ba content is known to produce positive Eu anomalies because of Ba interference 

311 during ICP-MS analysis though this analytical artifact can be resolved by plotting Eu/Eu* vs. 

312 Ba/Eu (Jiang et al., 2007). The latter scenario is excluded as no significant linear correlation 

313 exists between Eu/Eu* and Ba/Eu (Figure 9a). The argument of plagioclase weathering is 

314 incompatible with the absence of an Eu anomaly in carbonate samples of the nearshore Jiwozhai 

315 reef section (0.88 - 1.11; average = 1.05) and the platform margin Upper Buzhai reef section 

316 (0.90 - 1.74; average = 1.25). Therefore, the introduction of high-temperature hydrothermal 

317 water into seawater the favored explanation of the positive Eu anomalies displayed by the 

318 carbonate sample suite of the Buzhai reefal section. This interpretation is buttressed by the 

319 occurrence of basalt layers in the Luofu Formation of Guangxi (Liu et al., 2012), an inferred 

320 deep-water (Nandan-type) equivalent of the Jiwozhai Formation (Qie et al., 2019).

321 The impact of hydrothermal fluids on ambient seawater can be estimated quantitatively by a 

322 simple two-member mixing model (Alexander et al., 2008). One member is modern seawater 

323 characterized by low Eu/Sm and Sm/Yb ratios and the other member is high-temperature 

324 hydrothermal fluids of much greater Eu/Sm and Sm/Yb ratios. The Sm/Yb versus Eu/Sm cross-

325 plot (Fig. 9b) demonstrates that both ratios of Sm/Yb and Eu/Sm in the Buzhai carbonates can be 

326 explained by mixing small (less than 1%)  fractions of high-temperature hydrothermal fluid 

327 with the seawater. It is likely that high-temperature fluid accounted for less than 1% of the 

328 seawater during accumulation of carbonates of the Upper Buzhai reef section.
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329 5.6. Insights into nutrient sources and expansion of reef ecosystem

330 Coral is sensitive to the input of nutrients and sediment (Schlager, 1981; Hallock and 

331 Schlager, 1986). Indeed, the impact of increased nutrient supply on the coral reef ecosystem has 

332 become a focus of research in recent years. Upwelling nutrient (e.g., phosphorus and nitrogen)-

333 laden modern deep seawater is known to be an important source of nutrients for some reef 

334 ecosystems (Andrews et al., 1982; Eidens et al., 2015; DeCarlo et al.2021). High-temperature 

335 hydrothermal fluids from the basalt altering in deep water of Dianqiangui Basin were 

336 characterized by remarkably positive Eu anomaly, which could be recorded in the chemical 

337 precipitates affected by upwelling deep water. However, the presence of weak positive Eu 

338 anomalies of carbonate samples of the Upper Buzhai reef section suggest that upwelling was not 

339 the dominant source of nutrients for the Buzhai and Jiwozhai reef ecosystems during the 

340 Givetian Stage. Indeed, as described above,  the elevated content of Th in the analyzed Jiwozhai 

341 Formation samples point to runoff being the primary source of nutrients for both the Buzhai and 

342 Jiwozhai reef ecosystems.  Moreover, the fact that the Jiwozhai reef deposits contain a 

343 considerable amount of marly limestone and a greater biodiversity than the Buzhai reef (Huang 

344 et al., 2020; Liu et al., 2004) suggests that reef building was sustained by continental runoff. It is 

345 noteworthy that a coral community dominated by tabulate and rugose coral described from the 

346 Fanning River area of Queensland, Australia, appears to have thrived in shallow turbid water 

347 during Givetian time (Zapalski et al., 2021). It appears that turbid-water reefs were not unusual 

348 during the Givetian. 

349 Modern coral assemblages are tolerant of particulate organic matter (Sanders et al., 2005), 
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350 yet dissolved nutrient loading exerts a critical impact on coral ecosystems as it appears to impede 

351 coral reproduction (Cox and Ward, 2002). Continental chemical weathering is the primary source 

352 of nutrients (e.g., phosphorus) of the marine ecosystem. The intensity of chemical weathering 

353 (and, therefore, the amount of dissolved nutrients  delivered to the ocean) is recorded by the 

354 strontium isotopic composition of carbonate rocks. The strontium isotopic composition of the 

355 global ocean is homogenous over the residence time of Sr (~2.4 Ma) relative to the mixing time 

356 of the oceans (1.5 ka) (Krabbenhoft et al., 2010). Low 87Sr/86Sr values of Givetian carbonate 

357 relative to deposits of other Devonian time intervals implies weakened continental chemical 

358 weathering during this time (Qie et al., 2019). Therefore, the terrestrial nutrient supply that 

359 sustained the Givetian reefs and allowed them to flourish did not require enhanced chemical 

360 weathering.

361 6. Conclusions

362 (1) REE geochemistry of limestones of two Devonian reef sections of South China suggest 

363 that shale-type PAAS normalized REY patterns of near shore water in which the Givetian 

364 Jiwozhai Formation accumulated differed significantly different from marine water masses on 

365 the marginal platform of the Dianqiangui Basin. It reinforces the use of REE geochemistry of 

366 carbonate rocks to elucidate paleoceanography and paleogeography over geological time.

367 (2) The nutrient source that sustained the reef ecosystem that encompassed the studied 

368 Jiwozhai and Buzhai sections appears to have been dominated by terrestrial runoff.  Upwelling 

369 of nutrient-rich deep water played a minimal role in maintaining the Givetian reef ecosystem. 
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370 Enhanced terrestrial sediment input associated with Givetian Jiwozhai coral-stromatoporoid reef 

371 development demonstrates that the coral ecosystem thrived in turbid waters.

372 (3) Results of the present study suggest that coral and stromatoporoid adaptation to turbid 

373 water played an important role in Middle Devonian (Givetian) expansion of coral-

374 stromatoporoid reef complexes.
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Figure 1
Fig.1. (A) Givetian paleogeography (B) palaeogeography of Dianqiangui Basin (C) map
of the study area and its location in China.

(A) Givetian paleogeography (modified from Huang et al., 2020) showing the location of the
Dianqiangui Basin (DB); (B) palaeogeography of Dianqiangui Basin during the Givetian Stage
(modified from Huang et al., 2020); red stars indicate the locations of the studied Buzhai (BZ)
and Jiwozhai (JWZ) reef sections; white rectangle shows the location of Fig. C; (C) map of the
study area and its location in China; red stars show the locations of the Jiwozhai (JWZ) and
Buzhai (BZ) reefs.
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Figure 2
Stratigraphic columns of the Upper Buzhai and Jiwozhai reef sections.
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Figure 3
Field photos and photomicrographs taken under polarized-light of Buzhai reef outcrops
and samples

a. view of the Buzhai reef section; b. close-up of the reef-builder stromatopora; c. sponge
fossil (center of photo); d. photomicrograph of tabulate coral ; e. photomicrograph of rugose
coral f. close-up view of Stringocephalus sp;
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Figure 4
Field photos and photomicrographs taken under polarized-light of Jiwozhai reef section
and outcrop samples

a. general view of the Jiwozhai patch reef; b. close-up of rugose coral (Ru) and stromatopora
(St); c. close-up of rugose (Ru) and tabulate (Ta) corals; d. photomicrograph of rugose coral ;
e. photomicrograph of laminar stromatopor ; f. photomicrograph of tabulate coral ; g.
Chaetetid (Ch) encrusting tabulate (Ta) coral; h. photomicrograph of brachiopod
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Figure 5
PAAS-normalized REY patterns for Jiwozhai reef section samples.

Modern seawater and river water REY patterns are from Wang et al.(2018). Refer to Fig. 2 for
sample locations.
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Figure 6
(a) Th vs. Zr cross-plot for Jiwozhai reef section samples; (b) Th vs. TREY cross- plot for
Jiwozhai section samples
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Figure 7
PAAS-normalized REY patterns for Buzhai reef section samples

Modern seawater and river water REY patterns are from Wang et al.(2018). Refer to Fig. 2 for
sample locations

PeerJ reviewing PDF | (2021:12:68901:0:2:NEW 23 Dec 2021)

Manuscript to be reviewed



Figure 8
(a) Th vs. Zr cross-plot for Buzhai reef section samples; (b) Th vs. TREY cross-plot for
Buzhai reef section samples.
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Figure 9
(a) Eu/Eu* vs. Ba/Eu cross-plot in for Buzhai reef section samples; (b) Eu/Sm vs. Sm/Yb
cros- plot for Buzhai reef section samples.

Composition of two end members and the mixing line are from Alexander et al. (2008)
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Table 1(on next page)

Rare earth and other trace element concentrations of samples of the Jiwozhai reef
section (mg/kg).

Sample JWZ-1 is sandstone from Dushan Formation; sample JWZ-2 is muddy limestone from
the bottom of the Jiwozhai Formation; Samples from JWZ-3 to JWZ-9 are reefal limestone and
the other samples are bioclastic limestone from Jiwozhai Formation.
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1 Table 1. Rare earth and other trace element concentrations of samples of the Jiwozhai reef section (mg/kg).

JWZ-1 JWZ-2 JWZ-3 JWZ-4 JWZ-5 JWZ-6 JWZ-7 JWZ-8 JWZ-9 JWZ-10 JWZ-11 JWZ-12 JWZ-13 JWZ-14

La 26.6 16.5 6.45 10.4 4.96 1.86 12.1 0.797 11.2 6.21 3.46 3.43 0.414 1.06

Ce 55.8 29.4 12.5 16.9 8.88 2.99 22.7 1.64 19.9 10.4 6.42 6.55 0.771 1.86

Pr 6.46 3.40 1.59 1.99 1.10 0.385 2.71 0.214 2.31 1.19 0.787 0.93 0.087 0.223

Nd 23.7 12.3 6.03 7.15 4.16 1.50 10.2 0.873 8.35 4.28 2.96 3.66 0.330 0.835

Sm 4.33 2.19 1.18 1.35 0.815 0.306 1.93 0.171 1.53 0.789 0.570 0.785 0.071 0.164

Eu 0.847 0.406 0.26 0.276 0.180 0.068 0.396 0.043 0.321 0.171 0.122 0.162 0.013 0.035

Gd 3.91 1.91 1.09 1.23 0.762 0.322 1.75 0.193 1.36 0.742 0.525 0.706 0.063 0.157

Tb 0.648 0.289 0.176 0.198 0.123 0.053 0.275 0.031 0.222 0.120 0.082 0.111 0.010 0.024

Dy 3.82 1.68 1.02 1.17 0.711 0.324 1.57 0.176 1.290 0.710 0.496 0.635 0.057 0.138

Ho 0.776 0.361 0.212 0.252 0.164 0.079 0.332 0.042 0.278 0.155 0.102 0.138 0.012 0.030

Er 2.22 1.05 0.593 0.768 0.439 0.215 0.968 0.097 0.850 0.470 0.307 0.376 0.030 0.086

Tm 0.353 0.165 0.092 0.122 0.068 0.033 0.147 0.013 0.134 0.072 0.047 0.059 0.004 0.012

Yb 2.21 1.06 0.56 0.771 0.409 0.206 0.939 0.077 0.876 0.473 0.297 0.363 0.026 0.078

Lu 0.341 0.167 0.087 0.125 0.063 0.031 0.148 0.0112 0.136 0.076 0.045 0.056 0.004 0.0119

Y 23.2 11.5 7.42 8.56 5.72 3.09 10.8 1.49 8.84 5.43 3.59 3.990 0.420 1.060

Ba 272 194 88.1 208 76.6 30.7 203 33.4 242 115 50.6 58.8 14.1 28.1

Mn 913 761 343 275 266 104 363 198 215 197 114 154 131 358

Sr 57.6 63.9 549 478 543 445 421 668 326 331 428 278 187 95.1

Zr 134 69.6 25.4 46.1 17.3 6.88 58.6 2.41 59.5 29.8 15.2 19.0 0.686 2.68

Th 12.0 6.97 2.23 4.29 1.86 0.729 4.68 0.194 4.45 2.31 1.17 1.35 0.0587 0.287

2 Note: Sample JWZ-1 is sandstone from Dushan Formation; sample JWZ-2 is muddy limestone from the bottom of the Jiwozhai 

3 Formation; Samples from JWZ-3 to JWZ-9 are reefal limestone and the other samples are bioclastic limestone from Jiwozhai Formation.
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Table 2(on next page)

Rare earth and other trace element concentrations of samples of the Buzhai reef section
(mg/kg).

BZ-1 and BZ-2 are sandstone samples from Dushan Formation; samples BZ-4, BZ-5, BZ-8,
BZ-9, from BZ-11 to BZ-16 are reefal limestone, and the other samples are Bioclastic
limestone from Jiwozhai Formation; BZ-19 and BZ-20 are siltstone samples from
Wangchengpo Formation.
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1 Table 2.  Rare earth and other trace element concentrations of samples of the Buzhai reef section (mg/kg). 

BZ-1 BZ-2 BZ-3 BZ-4 BZ-5 BZ-6 BZ-7 BZ-8 JBZ-

9

BZ-

10

BZ-

11

BZ-

12

BZ-

13

BZ-

14

BZ-

15

BZ-

16

BZ-

17

BZ-

18

BZ-

19

BZ-

20

La 14.7 16.5 8.77 2.38 2.82 5.18 7.57 2.54 0.463 2.74 0.459 0.359 2.73 7.68 4.18 1.79 1.21 0.444 12.8 13.2

Ce 31.2 32.9 16.9 3.38 4.49 9.54 14.6 2.64 0.908 4.11 0.616 0.635 4.01 12.6 6.88 2.44 1.99 0.575 29.8 28.4

Pr 3.46 3.75 2.16 0.479 0.589 1.40 1.72 0.472 0.139 0.600 0.093 0.093 0.540 1.55 0.917 0.298 0.267 0.093 3.08 3.26

Nd 13.1 14.4 8.65 1.94 2.43 6.45 6.87 1.94 0.634 2.54 0.414 0.439 2.19 5.79 3.71 1.11 1.10 0.408 11.9 12.8

Sm 2.55 2.78 1.77 0.441 0.704 1.85 1.49 0.400 0.142 0.649 0.087 0.099 0.472 1.06 0.816 0.207 0.235 0.082 2.46 2.66

Eu 0.413 0.484 0.372 0.195 0.317 0.459 0.297 0.126 0.050 0.178 0.019 0.026 0.128 0.266 0.208 0.069 0.064 0.028 0.431 0.465

Gd 1.81 2.36 1.89 0.609 0.983 2.09 1.61 0.498 0.183 0.716 0.104 0.110 0.481 1.10 0.875 0.251 0.255 0.104 1.92 2.18

Tb 0.241 0.329 0.303 0.100 0.155 0.281 0.270 0.083 0.027 0.110 0.017 0.016 0.073 0.169 0.134 0.039 0.038 0.016 0.260 0.311

Dy 1.31 1.82 1.74 0.596 0.907 1.43 1.52 0.551 0.173 0.647 0.108 0.092 0.416 0.964 0.784 0.230 0.228 0.102 1.29 1.61

Ho 0.259 0.361 0.346 0.128 0.187 0.261 0.305 0.137 0.037 0.134 0.025 0.024 0.088 0.199 0.161 0.050 0.048 0.022 0.253 0.312

Er 0.769 1.03 0.918 0.338 0.481 0.624 0.843 0.394 0.098 0.359 0.066 0.047 0.243 0.563 0.419 0.139 0.130 0.061 0.725 0.877

Tm 0.128 0.168 0.135 0.046 0.066 0.080 0.124 0.056 0.012 0.052 0.008 0.006 0.035 0.082 0.061 0.019 0.017 0.008 0.123 0.143

Yb 0.847 1.07 0.777 0.250 0.368 0.425 0.740 0.343 0.057 0.300 0.048 0.036 0.195 0.476 0.361 0.109 0.095 0.046 0.816 0.946

Lu 0.133 0.170 0.115 0.037 0.052 0.061 0.110 0.047 0.008 0.043 0.006 0.004 0.029 0.069 0.051 0.015 0.015 0.006 0.128 0.144

Y 7.09 10.9 12.2 6.19 8.13 10.2 9.86 7.18 1.99 6.22 1.29 0.976 4.12 8.17 6.45 2.64 2.09 1.11 6.64 8.26

Ba 75.5 60.5 55.8 70.4 18.6 28.5 46.7 19.5 5.85 14.9 2.89 15.3 34.2 215 34.1 9.28 8.60 5.60 90.2 96.9

Mn 62.7 192 137 395 148 149 181 155 122 98.3 78.5 69.0 116 126 105 81.8 62.7 106 32.6 104

Sr 164 149 259 344 200 286 347 214 117 257 174 139 241 358 296 290 232 177 232 206

Zr 141 136 53.1 6.83 4.35 13.3 14.3 3.15 0.296 3.54 0.541 0.488 4.10 15.7 7.46 2.33 1.41 0.373 107 96.0

Th 6.95 6.44 2.91 0.293 0.425 1.37 2.21 0.335 0.018 0.458 0.020 0.024 0.573 2.24 1.16 0.259 0.251 0.055 6.65 6.50

2 Note: BZ-1 and BZ-2 are sandstone samples from Dushan Formation; samples BZ-4, BZ-5, BZ-8, BZ-9, from BZ-11 to BZ-16 are reefal 

3 limestone, and the other samples are Bioclastic limestone from Jiwozhai Formation; BZ-19 and BZ-20 are siltstone samples from 

4 Wangchengpo Formation.
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