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Roots assist plants in absorbing water and nutrients from soil. Thus, they are vital to the
survival of nearly all land plants, considering that plants cannot move to seek optimal
environmental conditions. Crop species with optimal root system are essential for future
food security and key to improving agricultural productivity and sustainability. Root
systems can be improved and bred to acquire soil resources efficiently and effectively.
This can also reduce adverse environmental impacts by decreasing the need for
fertilization and fresh water. Therefore, there is a need to improve and breed crop cultivars
with favorable root system. However, the lack of high-throughput root phenotyping tools
for characterizing root traits in situ is a barrier to breeding for root system improvement. In
recent years, many breakthroughs in the measurement and analysis of roots in a root
system have been made. Here, we describe the major advances in root image acquisition
and analysis technologies and summarize the advantages and disadvantages of each
method. Furthermore, we look forward to the future development direction and trend of
root phenotyping methods. This review aims to aid researchers in choosing a more
appropriate method for improving the root system.
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12 ABSTRACT
13 Roots assist plants in absorbing water and nutrients from soil. Thus, they are vital to the survival 

14 of nearly all land plants, considering that plants cannot move to seek optimal environmental 

15 conditions. Crop species with optimal root system are essential for future food security and key 

16 to improving agricultural productivity and sustainability. Root systems can be improved and bred 

17 to acquire soil resources efficiently and effectively. This can also reduce adverse environmental 

18 impacts by decreasing the need for fertilization and fresh water. Therefore, there is a need to 

19 improve and breed crop cultivars with favorable root system. However, the lack of high-

20 throughput root phenotyping tools for characterizing root traits in situ is a barrier to breeding for 

21 root system improvement. In recent years, many breakthroughs in the measurement and analysis 

22 of roots in a root system have been made. Here, we describe the major advances in root image 

23 acquisition and analysis technologies and summarize the advantages and disadvantages of each 

24 method. Furthermore, we look forward to the future development direction and trend of root 

25 phenotyping methods. This review aims to aid researchers in choosing a more appropriate 

26 method for improving the root system.

27 Keywords: Root; root phenotyping; image analysis; in situ; high-throughput

28

29 INTRODUCTION
30 Grain yield in developing countries increased by 208% between 1960 and 2000, attributed to the 

31 first Green Revolution, which led to the development of semi-dwarf wheat and rice varieties 

32 (Pingali, 2012). However, the green revolution has been associated with many adverse effects, 

33 including the overuse of fertilizers and pesticides and soil degradation. Furthermore, mineral-

34 based fertilizers like phosphorus are non-renewable resources that take between 80 to 100 years 

35 to deplete (Isherwood, 2000). Meanwhile, the efficiencies of nitrogen, phosphorus, and 

36 potassium fertilizer are ≤50%, ≤10%, and 20–40%, respectively (Baligar & Bennett, 1986). 

37 Notably, current crop yield must be doubled by 2050 to keep pace with the rising global 

38 population. This is even more challenging given the impact of climate change on water 

39 availability and efforts to reduce fertilizer inputs to ensure environmentally friendly and 

40 sustainable agriculture (Atkinson et al., 2018). Therefore, there is a need to develop crops with 
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41 improved water and nutrient uptake efficiency, which is the main aim of the second Green 

42 Revolution (Lynch, 2007; Lynch, 2022).

43 Roots absorb water and nutrients from soil and are vital to the survival of nearly all land plants, 

44 especially because plants are anchored and cannot move to find more favorable growing 

45 conditions. Root phenotype has an important relationship with crop water and nutrient uptake 

46 and greatly affects shoot development and yield formation. Therefore, improving root traits is a 

47 key target for the second Green Revolution. Root phenotype is controlled by the coordination 

48 between intrinsic genetic factors and external environmental conditions (Lynch, 1995; Malamy, 

49 2010) and is a key element of yield improvement. The root system facilitates a series of adaptive 

50 responses at the cellular and organ level under unfavorable external environment (Miroslaw et al., 

51 2016) and ensures a high level of plasticity (Gruber et al., 2013). Root plasticity is the 

52 prerequisite for genetic improvement of root traits and a key element of yield improvement. The 

53 development of root phenotyping techniques, especially in situ root phenotyping has lagged 

54 behind due to hidden nature of the root structure in the soil and the high complexity of the root 

55 system (Lynch, 2021; Delory et al., 2022). There is an urgent need to establish accurate and 

56 efficient root phenotyping technologies for measuring root properties, including root system 

57 architecture and morphology under various stresses (McCormack et al., 2017).

58 Traditional root phenotyping methods, such as soil core, trench, mesh bag, shovelomics, and 

59 monolith, are all destructive, since they involve isolating the root system from the soil to obtain 

60 the root topology and phenotype. The soil core method, which is the most common technique for 

61 assessing the root system, entails obtaining rooted soil blocks from the field, washing, and 

62 selecting the root system components (Kücke, Schmid & Spiess, 1995). Thus, this method only 

63 obtains partial data of the root system due to limited sample collection and difficulty in obtaining 

64 the root system of a single plant (Takahashi & Pradal, 2021). The trench method is one of the 

65 earliest and most used root research methods, involving excavating the soil at a certain distance 

66 and depth from the plant and then washing out the roots (Livingston, 1922). However, the trench 

67 method is time-consuming and labor-intensive (Takahashi & Pradal, 2021). The mesh bag 

68 method involves digging a hole of a certain diameter in the field, putting a mesh bag into the 

69 hole, and backfilling the soil; the mesh bag is then taken out with the roots which are then 

70 washed (Steen, 1991). The main disadvantage of this method is that the operation is too 

71 cumbersome. The shovelomics has enabled high-throughput root phenotyping of field grown 

72 crops, where 20 cm of root material immediately below the surface is excavated, washed, and 

73 imaged (Trachsel et al., 2011). The above-mentioned root sampling methods have been 

74 gradually improved to facilitate the research in root phenotyping; However, their destructive 

75 sampling techniques often result in finer-scale root features being lost (e.g., finer lateral roots 

76 and root hair) and only a snapshot of development being measured (Bucksch et al., 2014). More 

77 importantly, destructive sampling methods are time-consuming and labor-intensive, with a high 

78 root loss rate. Also, these methods cannot be used to examine the dynamic changes in the root 

79 system. Thus, there has been a need to develop faster and more accurate methods for in-situ 

80 observation of root phenotype.

81 Non-invasive and high-throughput root phenotype analysis methods are essential for studying 

PeerJ reviewing PDF | (2022:04:73150:0:1:NEW 28 Apr 2022)

Manuscript to be reviewed



82 root phenotype and its change dynamics. Novel techniques are needed to automatically describe 

83 the complexity of the root system and identify root phenotype traits. At present, the acquisition 

84 and analysis methods of in situ root system are still in the development stage. However, no 

85 comprehensive review is available on the in situ root phenotyping methods and image processing 

86 software. Hence, we summarize the advances in research methods of in-situ root system analysis 

87 from two aspects: in-situ root cultivation and imaging system and image processing software. In 

88 addition, the cutting-edge technology of in-situ root system observation is summarized and 

89 analyzed to provide reference for plant root system research. This article should be of particular 

90 interest to readers in the areas of plant morphology, especially root morphology, and related 

91 platform and software development.

92

93 SURVEY METHODOLOGY
94 Primary and secondary literature relevant to this review was accessed using Web of Science and 

95 Google scholar. Key words such as “root phenotyping”, “in situ”, “root morphology”, “platform” 

96 and “software” were searched between 22 February and 15 March, 2022. Relevant related 

97 literature including those dating as far back as the early 1920s and 1980s were reviewed but we 

98 mainly focused on works from the past 15 years. Literature was retrieved and sorted based on the

99 relevance of the topic. Together, the compiled information was processed by the authors to write 

100 the manuscript. Relevant methods and software were incorporated based on the author’s 

101 expertise in this field of research.

102 2D root phenotyping platform
103 The most widely used method for root phenotyping is the 2D root phenotyping platform (Delory 

104 et al., 2022). This method consists of a growth system, imaging device, and image processing 

105 software. Here we divide the 2D root phenotyping method into two categories based on the 

106 culture medium: soil and soil-less culture methods (Table 1).

107 Growing plants in soil-less medium allow clear visualization of roots from the background and 

108 high-throughput control of environment for treatment evaluation (Ana, 2015). Soil-free methods 

109 include aeroponics, hydroponics, pouch-and-wick system, and agar (gel)-based phenotyping 

110 systems (Kuijken et al., 2015). Aeroponic was proposed by Cater (1942). The aeroponic system 

111 consists of air compressor, water pump, and incubator. Notably, the composition of air, nutrient 

112 solution, and ejection pressure in the aeroponics system can be adjusted as required (Soto, 1982). 

113 Aeroponic is mainly used to study the root structure of vegetables (Tiwari et al., 2020). 

114 Hydroponics is a high-throughput phenotype screening and identification method which involves 

115 culturing plants in a solid support device containing a nutrient solution with essential nutrients 

116 for plant growth. Hydroponic phenotyping system has been used to characterize root 

117 morphological traits at the early growth stage of various crop species, including soybean (Chen, 

118 2021; Salim, 2021), barley (Wang et al., 2021), wheat (Jeudy et al., 2016; Chen, 2020), and 

119 maize (Qiao et al., 2019). Jeudy et al. (2016) developed a new tool for high throughput imaging 

120 of root features based on a form of hydroponic called RhizoTubes. The platform allows growing 

121 six plants simultaneously, and consists of an imaging cabin (Rhizo-Cab) that can automatically 

122 and non-destructively image both shoot and root compartments. However, this method has two 
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123 drawbacks: first, hydroponics is not suitable for studying root hairs traits because it is uncertain 

124 whether root hairs can be formed in hydroponics environment. Second, hydroponics is only 

125 suitable for short-term root observation. As such, Mathieu et al. (2015) developed Rhizoponics 

126 tailored to characterize the root system of Arabidopsis thaliana from the seedling to adult stage. 

127 The pouch-and-wick system is an in situ observation system for roots based on germination 

128 paper. The method is affordable and simple to operate, and can be used to evaluate root 

129 morphology with high efficiency. It can also perform many repetitions and involves selecting a 

130 custom-colored germination paper that creates high contrast with root color to facilitate root 

131 image analysis. Adu et al. (2014) developed a low-cost, high-resolution, and simple root 

132 phenotyping platform based on pouch-and-wick system adaptable to most laboratories and 

133 glasshouses. Rhizoslides (Mariéet al., 2014) and RhizoChamber-Monitor (Wu et al., 2018) are 

134 non-destructive and high-throughput root phenotyping platforms based on pouch-and-wick 

135 system. However, the main disadvantage of the pouch-and-wick system is that it can be only 

136 used to examine the root system of seedlings (Hund, Trachsel & Stamp, 2009). Bengough et al. 

137 (2004) proposed a root phenotyping method based on agar chamber to measure seedling root 

138 traits. The method involves growing seedlings between two closely spaced flat layers containing 

139 transparent gel. Subsequently, the root system traits are non-destructively recorded by a flatbed 

140 scanner. Root length, elongation rate, seminal root number, and other root traits can be easily 

141 obtained using this method. It is noteworthy that root growth in the gel chambers is very similar 

142 to that in the loosely packed soil, and is comparable to root growth of wild, landrace, and 

143 cultivated barleys in loosely packed soil. Yazdanbakhsh & Fisahn (2009) developed a high 

144 throughput platform for root hair monitoring called PlaRom. This platform is effective in 

145 phenotyping root growth dynamics, lateral root formation, and root architecture. It consists of an 

146 imaging platform and root development profiling software. Gaggion et al. (2021) developed a 

147 high temporal resolution for phenotyping root system called ChronoRoot, allowing a 

148 comprehensive characterization of root growth dynamics. However, like the agar (gel)-based 

149 phenotyping systems, ChronoRoot is only suitable for studying the roots of seedlings due to the 

150 influence of gel system nutrient supply and support capacity. Notably, root traits of seedlings are 

151 not always representative of mature plants but may be a good predictor of later developmental 

152 stage morphometry (Tuberosa et al., 2002; Mcphee, 2005). The inherent disadvantage of soil-

153 less systems is their limited representation of actual root characteristics of plants grown in soils 

154 (Cai et al., 2015; Kuijken et al., 2015).

155 Root phenotyping platforms based on soil culture mostly involve planting plants in containers 

156 containing one or more transparent planes and using image acquisition devices to obtain root 

157 images in situ. Many soil culture-based root phenotyping platforms have been developed. For 

158 example, Hammac et al. (2021) developed a novel and low-cost approach for observing root hair 

159 development of oilseed species in response to water availability. This platform can track the 

160 development of a single root or root hair over short time intervals (less than 10 min). Similarly, 

161 RhizoPot is an in-situ root observation platform with a resolution of up to 4800 dpi. In addition 

162 to obtaining some basic indicators of the root system status, the method can be used to study the 

163 morphology and lifespan of fine roots and root hairs (Xiao et al., 2020; Zhang et al., 2021; Zhu et 
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164 al., 2022). However, the above two platforms are disadvantaged by the limited depth of the 

165 culture vessel, which may affect the natural growth of the root system. To solve this problem, 

166 Bontpart et al. (2020) developed an affordable soil-based growth and imaging system which is 

167 large enough (approximately 6000 cm2) to allow vertical root growth. Although the above 

168 methods have high resolution, their throughput is relatively low. Therefore, Treurnicht, Pagel & 

169 Esler et al. (2015) developed a novel phenotyping system, GROWSCREENRhizo, that can 

170 image roots at a throughput of 60 rhizotrons per hour, as verified by analyzing the root system of 

171 two dicot and four monocot plant species. Other platforms based on soil culture include GLO-

172 Roots (Rubén et al., 2015), GLO-Bot (LaRue et al., 2021), PhenoRoots (Martins et al., 2020), 

173 and WinRoots (Zhang et al., 2021). These methods can be used to obtain pictures of naturally 

174 growing roots. However, analyzing datasets from pictures can be time consuming and labor 

175 intensive. Therefore, transparent soil was proposed (Helen et al., 2012). Transparent soil consists 

176 of a matrix of solid particles and a pore network containing liquid and air. Ma et al. (2019) 

177 created a transparent soil formed by the spherification of hydrogels of biopolymers that can 

178 support root growth and allow root phenotyping in vivo via photography and microscopy. 

179 Soybean roots grown in transparent soil medium have been shown to exhibit striking 

180 resemblance to those developed in the real soil. Admittedly, transparent soil still has many 

181 shortcomings; for example, the size of the root volume (20 cm×20 cm ×20 cm) is limited due 

182 to the transparency and the mechanical properties of its components. Also, the surface chemistry 

183 of the transparent soil is significantly different from that of the real soil. However, the use of 

184 transparent soil still has a great potential in promoting quantitative root characterization in situ 

185 using high-resolution imaging if its shortcoming can be solved.

186 3D root phenotyping platform
187 Although 2D root phenotyping methods provide a great convenience for root studies, these 2D 

188 methods are inherently limited by the information available from a single point of view, which 

189 only provided a limited set of easily measurable root traits. Therefore, there has been increased 

190 interest in developing capacity towards 3D root phenotyping technologies, driven by technical 

191 advances and interdisciplinary approaches that allow digital reconstruction in 3D and high-

192 throughput feature extraction.

193 X-ray computed tomography (CT) allows for the 3D reconstruction of root architecture in the 

194 soil (Heeraman, Hopmans & Clausnitzer, 1997). CT employs an X-ray beam from a source 

195 passing through the sample, which absorbs part of these beams via a process known as 

196 attenuation. The absorbed beams are recorded by a detector in series of 2D projections, which 

197 are further reconstructed into a 3D dataset. Material properties and electron density are the main 

198 factors influencing attenuation. The inner structure of samples becomes visible due to different 

199 densities and atomic numbers of the elements (Plews, Atkinson & Mcgrane, 2009; Flavel et al., 

200 2012; Metzner et al., 2015). CT technology was first used in medicine and later applied in plant 

201 research 30 years ago (Tollner, Verma & Cheshire, 1987). However, resolution, scan time, and 

202 image segmentation have limited the large-scale application of CT in root phenotyping. 

203 Fortunately, recent advances in CT continue to facilitate its application in root phenotyping 
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204 (Mooney et al., 2012). For example, Teramoto et al. (Teramoto et al., 2020) visualized rice root 

205 architecture in 12 min (10 min for CT scanning and reconstruction and 2 min for image 

206 processing) using CT by applying higher tube voltage and current and high-performance 

207 computing technology. This approach reduces the X-ray dosage to avoid adversely affecting rice 

208 growth (< 0.09 Gy). In addition, it allows quantification of root architecture over time and in 

209 response to environmental stress by analyzing root 3D models derived from CT images. Shao et 

210 al. (2021) generated highly precise 3D models of maize root crowns via CT and created 

211 computations pipelines that could measure 71 features from each sample. Herrero et al. (2021) 

212 developed a spatial-temporal root architecture modeling method based on CT, enabling the 

213 extraction of key root traits, including root number, length, angle, diameter, and volume of 

214 lateral roots. However, the application of CT technology is limited because it requires expensive 

215 equipment, and there are limits on the soil volume that can be scanned (Morris et al., 2017).

216 Magnetic resonance imaging (MRI) is another commonly used non-destructive 3D root 

217 phenotyping method. Living tissues have abundant magnetic moment of atomic nuclei, which 

218 can be manipulated using strong magnetic and radio-frequency fields to produce 3D datasets 

219 (Van et al., 2016). MRI has been used to conduct root phenotyping in maize, bean, and barley 

220 (Jahnke et al., 2009; Metzner et al., 2014). The type of substrate and water content influences the 

221 MRI image quality (Rogers & Bottomley, 1962). For example, Pflugfelder et al. (2017) revealed 

222 that the thinner lateral roots (diameter< 0.3 mm) of barely could still be resolved in five of the 

223 eight tested substrates, while, only the thicker roots were detectable in other substrates. Moisture 

224 above 70% of the maximal water holding capacity impedes MRI root for artificially composed 

225 substrates, however, for natural soil substrates, moisture in the range of 50%-80% of the 

226 maximal water holding capacity does not affect MRI root image quality. Daniel et al. (2021) 

227 recently analyzed the 3D root architecture of 288 winter wheat seedlings using a new workflow 

228 based on MRI, which can be categorized as medium-throughput phenotyping. Compared to X-

229 ray CT, MRI has minor effects on plant growth because it does not utilize ionizing radiation. 

230 Metzner & Eggert (2015) compared CT and MRI by imaging roots growing in pots of three 

231 different sizes (the inner diameter were 34 mm, 56 mm, and 81 mm). CT showed more root 

232 details than MRI for the 34 mm diameter pot. In contrast, MRI detected more roots than CT in 

233 the 56 mm pot, suggesting that the effect of high water content is significantly greater on CT 

234 than on MRI. The hardware and software costs of installing MRI and CT are very high, and the 

235 equipment is difficult to relocate due to their large size (Zappala et al., 2013). In addition, MRI 

236 and CT technologies have been shown to restrict plant growth and development in a given 

237 container (Poorter et al., 2012). Collectively, these shortcomings limit the large-scale application 

238 of MRI and CT on root phenotyping.

239 Ground penetrating radar (GPR) is an emerging and rapidly evolving high throughput 3D root 

240 imaging method that is applicable in the field. GPR is a geophysical approach that detects 

241 shallow underground objects by emitting electromagnetic pulses. A portion of the pulses is 

242 reflected when it encounters a reflective surface. This progress is recorded as a function of travel 

243 time. Ultimately, these reflections can be quantified and generated into a 3D field, allowing for 

244 root visualization (Alnuaimy et al., 2000; Jol, 2009; Liu et al., 2018). GPR has been widely used 
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245 to measure the coarse root (diameter> 2 mm) of trees and shrub species, such as cassava 

246 (Delgado et al., 2017), loblolly pine (Butnor et al., 2001), elm (Li et al., 2013), willow (Li et al., 

247 2015), and citrus (Zhang et al., 2019). Liu et al. (2018) scanned winter and cane roots using GPR 

248 (1600 MHz) and found significant relations between GPR indices and root parameters, implying 

249 that GPR can be applied to phenotype crop roots. However, GPR has certain limitations: (1) 

250 Expensive equipment of GPR limits its application in detecting crop roots, and it needs to reduce 

251 equipment coast in the future. (2) GPR signal can be affected by soil conditions which reduce the 

252 energy returned to the receiving antenna, resulting in inaccurate estimations of root (Villordon, 

253 Ginzberg & Firon et al., 2014). Future studies should address the problem by using newer 

254 antennas and incorporating data like soil pre-planting analysis.

255 Electrical Capacitance (EC) is another 3D root imaging method applicable in the field. It uses 

256 a low-frequency alternating current (mostly less than 1 kHz) between the base of plant stem and 

257 the surrounding soil and then measures the resulting dielectric properties to re-establish the root 

258 system (Chloupek, 1972; Dalton, 1995). EC has been applied to phenotype roots of various crops, 

259 including soybean (Cseresnyés et al., 2017), maize (Imre et al., 2018), and wheat (Cseresnyés et 

260 al., 2021). However, the feasibility of the capacitance method has not been verified. Notably, 

261 some studies have reported that EC can be used to obtain reliable data on root phenotype. For 

262 example, Cseresnyes et al. (2021) found high correlation between root electrical capacitance and 

263 root dry mass of surface area by plant harvest method. Nevertheless, some studies have revealed 

264 inconsistencies in the results obtained using EC, casting doubt on the feasibility of the method. 

265 Dalton (1995) found that capacitance does not change significantly when the root system is cut 

266 off. Indeed, the EC method has many limitations. Specifically, EC requires the roots to be in 

267 contact with the soil solution to avoid underestimating the root traits (Aulen & Shipley, 2012). 

268 Also, the influence of other factors such as root density and physiological maturity on EC is still 

269 poorly understood.

270 In addition to the commonly used 3D root phenotyping methods, other 3D based methods, 

271 including electrical resistivity tomography (ERT), electrical impedance tomography (EIT), 

272 neutron radiography (NR), positron emission tomography (PET), thermoacoustic tomography 

273 (TT), electrical current source density (ECSD), and neutron tomography (NT) have been 

274 developed. The theory behind ERT contradicts that of EC. ERT generates high-resolution 

275 measurements by determining resistivity and further converts the measurement into a 3D model 

276 (Pinheiro, Loh & Dickin, 1998; Atkinson et al., 2018). Like GPR, ERT is mainly used for plants 

277 with large diameters like trees (Rossi et al., 2011; Paglis & Mauricio, 2013). However, EIT has 

278 also been applied to characterize the root phenotypes of corn and sorghum (Srayeddin & 

279 Doussan, 2009). EIT is based on the same theory as ERT, except it injects an alternating current 

280 rather than a direct current, which is superior in discriminating between roots and soil, thus can 

281 be used to depict plant-soil interaction (Mairhofer et al., 2017; Mary et al., 2017). Corona et al. 

282 (1995) visualized the root development of oilseed rape using EIT and demonstrated that EIT has 

283 the potential of becoming a low-cost tool for root phenotyping. NR is an imaging method that 

284 complements X-ray CT. Like X-ray CT, NR requires a beam; however, NR interacts with the 

285 nuclei instead of the electron shell. A primary advantage of NR method is the capacity to 
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286 simultaneously monitor water distribution and root characteristics (Menon et al., 2007; Oswald et 

287 al., 2008; Leitner et al., 2014). PET reconstructs a 3D image by detecting the distribution of γ 

288 (gamma) rays from short half-life radioactive tracers (Atkinson et al., 2018). 14C is the most used 

289 tracer (Garbout et al., 2012). However, the resolution of PET does not go beyond 1.4 mm, 

290 although it has a high sensitivity for tracers. Therefore, PET is usually combined with other 

291 tomographic techniques like MRI and X-ray CT to improve detection. Garbout et al. (2012) 

292 demonstrated the simultaneous use of PET and X-ray CT to image fodder radish root in sand. 

293 Jannke et al. (2009) investigated root/shoot systems of sugar beet, radish, and maize growing in 

294 soil or sand by combining PET and MRI. TT is a safe, low-power, and cost-effective imaging 

295 technique with 300 μm resolution based on applying specific design of near field radio frequency 

296 applicators (Aliroteh & Arbabian, 2017). The ECSD approach was developed by Peruzzo et al. 

297 (2020). The method involves applying a current from the plant to the soil and imaging the 

298 distribution and intensity of the electric current in the root-soil system. ECSD was further 

299 validated using rhizotron laboratory experiments on cotton and maize. NT can record root traits 

300 in soil filled growth container using a nuclear reactor or a high-energy particle accelerator 

301 (Moradi et al., 2011). The NT method has been applied to root phenotyping of maize (Ali et al., 

302 2018) and grapevine (Krzyzaniak et al., 2021). Compared with the above-motioned complex 3D 

303 root imaging methods, Clark et al. (2011) developed the most simple and high-throughput 3D 

304 root phenotyping method. They grew two rice genotypes seedlings in a transparent gellan gum 

305 system attached to a digital camera for imaging and reconstructed and analyzed 3D root images 

306 using RootReader3D.

307 Root image processing software
308 Recent improvements in root phenotyping methods and platforms have made it comparatively 

309 easy to obtain various large and high-quality images detailing the dynamics of the root system. 

310 Therefore, developing convenient and high-throughput software tools that can conduct objective, 

311 quantitative analyses of the root images is crucial. Hundreds of root image analysis software 

312 have been reported so far. The software can be divided into 2D and 3D root image processing 

313 software (Table 2).

314 2D root image processing software can be further divided into manual, semi-automated, and 

315 automated software based on its level of automation. Manual software is relatively rare because 

316 they are time consuming, subjective, and error-prone. WinRHIZOTM is one of the most widely 

317 used manual root analysis software. It can be used to analyze images coming from minirhizotron 

318 underground video camera systems or other sources that do not always offer a good contrast 

319 between roots and their background (Arsenault et al., 1995). Taking measurements using 

320 WinRHIZOTM involves manual tracing of the roots over the image using the mouse. In the 

321 process of tracing the roots to indicate their presence, WinRHIZOTM measures them and displays 

322 their complete morphological information on the screen. Any root segment or node can be 

323 modified (moved, re-sized, deleted, or added) by clicking the mouse or pressing keyboard keys. 

324 Also, morphological measurements and data in files are automatically updated as you modify the 

325 roots. DART is a manual freeware based on human vision written in JAVA (Bot et al., 2010). 

326 DART can study root architecture and produce structure and flexible datasets of individual root 
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327 dynamic parameters. It relies on manual manipulation to minimize the probability of mistakes 

328 and biases in datasets. The advantage of manual software is that it can be used to analyze the 

329 lifespan of roots by keeping track of root color manually.

330 Currently, there are many semi-automated root analysis software, including EZ-Rhizo 

331 (Armengaud et al., 2009), GrowScreen-Root (Nagel et al., 2009), GiA Roots (Galkovskyi et al., 

332 2012), GLO-RIA (Rubén et al., 2015), KineRoot (Basu et al., 2007), MyROOT (Betegón-Putze 

333 et al., 2018), Multi-ADAPT (Ishikawa & Evans, 2010), RootNav (Pound et al., 2013), 

334 RootReader2D (Clark et al., 2013), RootScape (Ristova et al., 2013), RootTipTrace (Geng et al., 

335 2013), and SmartRoot (Lobet, Pagès & Draye, 2011). EZ-Rhizo is a Windows-integrated and 

336 semi-automated computer program that can be employed to quantify multiple root parameters of 

337 plants growing on agar medium. The software entails following four pre-defined operations after 

338 opening an image, i.e., make the image black and white, remove box, remove noise, and dilate. 

339 After that, the following five operations are used to quantitatively analyze root traits, i.e., 

340 skeletonize, re-touch, find roots, confirm roots, and save experiment (Armengaud et al., 2009). 

341 RootNav is a widely used free and open source root image analysis software that allows semi-

342 automated quantification of complex root traits in various plant species and images (Pound et al., 

343 2013). RootNav takes a top-down approach and utilizes the expectation-maximization (EM) 

344 clustering algorithm (Dempster, 1977) to calculate the likelihood that a given pixel corresponds 

345 to roots. Then these likelihood values are used to estimate each pixel that effectively fits a model 

346 of individual root. Regarding accuracy, RootNav has been evaluated on winter wheat, Brassica 

347 napus, and rice. The root length measured by RootNav has been found to be 2% shorter than 

348 those measured by manual methods; however, RootNav is faster and easier to use than manual 

349 methods. Notably, RootNav was recently upgraded to RootNav 2.0 based on extremely deep 

350 multi-task Convolutional Neural Network architecture (Robail et al., 2019). KineRoot is an 

351 earlier application of automated root analysis software developed by Matlab 7.0 (Basu & Pal, 

352 2007). KineRoot analyzes root image by following two basic steps. First, the marker pointers on 

353 the root image are tracked using three search algorithms, and then, the root edges are identified 

354 automatically by an edge detection algorithm. KineRoot can analyze many images to generate 

355 local root growth and root curvature data quickly, allowing kinematic analysis of root growth 

356 and gravitropic responses for various root types. The main advantage of the KineRoot software is 

357 that it can detect root edges and measure curvature and elongation rates of roots. However, 

358 KineRoot can only be used to analyze microscope scale images. Also, only a limited, number of 

359 roots can be analyzed at each step. SmartRoot is an operating system-independent freeware 

360 based on ImageJ, which combines a powerful tracing algorithm and a root vectorial 

361 representation (Lobet, Pagès & Draye, 2011). The advantage of SmartRoot is that it can be used 

362 to analyze low quality images as long as the roots reach two to four pixels wide. However, 

363 SmartRoot is not suited for high-throughput analysis because its design allows substantial 

364 amount of user interference (Mariéet al., 2014). RootReader2D is a semi-automated analysis 

365 software based on Java programming language (Clark et al., 2013). RootReader2D is free and 

366 publicly available. The program integrates user-guided features and batch processing functionality, 

367 increasing flexibility and enhancing efficiency when measuring root growth traits from specific 
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368 roots or entire root systems during large-scale phenotyping studies. RootReader2D can be used 

369 to analyze root images in various culture environments, such as hydroponics, gels, paper pouches, 

370 and soil bases.

371 Similar to semi-automated software, several automated root analysis software have been 

372 developed, including ARIA (Pace et al., 2014), EZ-Root-VIS (Shahzad et al., 2018), 

373 HYPOTrace (Wang et al., 2009), RhizoVision Explorer (Seethepalli et al., 2021), Root System 

374 Analyzer (Leitner et al., 2014), RootGraph (Cai et al., 2015), and RootTrace (French et al., 

375 2009). RootTrace is a high-throughput tool previously used to analyze the roots of Arabidopsis 

376 seedling grown on agarose plates. It is based on top-down approach (French et al., 2009) and 

377 employs automatic tracking techniques to track roots from a user-defined start location. It also 

378 uses a condensation method (Isard & Blake, 1998) to track down the root until the root tips are 

379 detected. The top-down approach is robust to all kinds of noise effects and is quite flexible 

380 across different image sets. RootTrace requires minimal interaction from the user, permitting 

381 long time-lapse sequences processing. However, it still needs a user interaction on the first frame. 

382 ARIA captures multiple root traits from images of seedling roots by converting the images into 

383 an equivalent graph (Pace et al., 2014). This process is done by labeling each root image pixel 

384 into a vertex and linking nearest neighbor pixels with edges. ARIA can rapidly extract data 

385 (within approximately 20 seconds) profits from a friendly user GUI interface. In addition, ARIA 

386 can be used to analyze most standard image formats and has been demonstrated to support 

387 accurate measurements by comparing 27 traits measured results with WinRhizo Pro 9.0. ARIA 

388 (ARIA 2.0) was recently applied to study soybean root phenotype and achieved good results 

389 (Falk et al., 2020). RootGraph is the first tool to use a weighted graph optimization process to 

390 produce a fully automatic and robust method for detailed description of root traits (Cai et al., 

391 2015). RootGraph begins by distinguishing primary roots from lateral roots, then 

392 comprehensively quantifying root traits for each identified primary and lateral root, and finally 

393 combining lateral root features with the specific primary root traits from which the laterals 

394 emerge. RootGraph has been verified to be accurate, robust, and high-throughput by comparing 

395 it with other automated and semi-automated software, and manual measurements. Furthermore, 

396 RootGraph utilizes image adaptation and graph optimization instead of statistical learning. It can 

397 also remove any noise caused by soil particulates remaining after cleaning roots. GLO-RIA is an 

398 Image J plugin consisting of two modules that allow automated measurement of numerous root 

399 traits using a combination of existing tools (Rubén et al., 2015). GLO-RIA can also relate root 

400 trait parameters to local root-associated variables such as reporter expression intensity and water 

401 content in soil. The first module performs four different types of root system analysis, which are 

402 fully automated by default, but can be adjusted manually if needed. The second module analyzes 

403 multi-layered images, including combinations of reporter gene, root structure, and soil moisture 

404 through five different types of analysis. Seethepalli et al. (2021) developed an open-source, fast 

405 image processing, and reliable measurement software called RhizoVision Explorer. RhizoVision 

406 Explorer is mainly used to analyze root images obtained by a flatbed scanner from pots or soil 

407 cores after washing. RhizoVision Explorer was successfully validated by comparing its analysis 

408 results with those of WinRhizo™ and IJ_Rhizo using a simulated root image set, which 
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409 generally showed consistent results. RhizoVision Explorer facilitates the standardization of root 

410 traits and morphological measures by a user-friendly, fast, generalist, collectively improvable 

411 design. Future improvements of RhizoVision Explorer should include incorporating powerful 

412 topology analysis to predict root order, diameter, and angle.

413 Automatic analysis methods based on convolutional neural networks (CNNs) have also 

414 developed rapidly in recent years. CNNs can directly extract target traits from an input image by 

415 combining deep learning and computer vision technology (Lecun, Bengio & Hinton, 2015). Tao 

416 et al. (2019) developed a fully automated tool based on CNNs called SegRoot which can extract 

417 roots from complex soil backgrounds. Meanwhile, a quantified metric (the dice score) was used 

418 to assess the qualitative segmentation performance. A high degree of correlation was achieved 

419 (R2 = 0.9791) by comparing the root length obtained by SegRoot versus human traced. However, 

420 SegRoot has been shown to underestimate root length because it can miss fine roots and the 

421 existence of blurred areas. Similarly, Shen et al. (2020) developed an automated image 

422 segmentation software based on the DeepLabv3+ CNNs and achieved excellent results. 

423 Nevertheless, getting researchers without an in-depth knowledge of machine learning to use this 

424 method proficiently remains a challenge. To address this limitation, Han et al. (2021) developed 

425 an AI-based software called RootPainter, which uses a modified U-Net architecture 

426 (Ronneberger, Fischer & Brox, 2015) equipped with an interface for corrective annotation for 

427 easy use. The automated segmentation method based on CNNs will revolutionize the 

428 measurement of plant roots in soil.

429 Although 3D root phenotyping methods have continued to advance rapidly, the development 

430 of corresponding image analysis tools has lagged. The main reason is that extracting 3D root 

431 system parameters entails interpreting the number of image pixels, color grade and size. It also 

432 involves constructing a spatial distribution function, which greatly increases the difficulty of the 

433 software design. iRoCS Toolbox (Schmidt et al., 2014), RootReader3D (Clark et al., 2011), 

434 RooTrak (Mairhofer et al., 2012), and NMRooting (Van Dusschoten et al., 2016) are the most 

435 used 3D root phenotyping analysis software. iRoCS Toolbox is an open-source software package 

436 that enables direct and quantitative analysis of the root tips at cellular resolution (Schmidt et al., 

437 2014). iRoCS Toolbox groups the nuclei/cells into root tissue layers by detecting nuclei or 

438 segment cells and automatically fits the coordinate system. All processes are performed 

439 automatically except for marking the quiescent center. iRoCS Toolbox enables researchers to 

440 rapidly standardize their data within a single framework and quantitatively compare root cohorts. 

441 iRoCS Toolbox drastically reduces the time required to fully annotate a single root by 

442 associating algorithmic pipelines to automatically recognize cell boundaries and nuclei. The time 

443 saved increases the number of roots that can be annotated, ensuring impartial evaluation of 

444 previously hidden and mild developmental phenotypes and making statistical analyses possible. 

445 RootReader3D (Clark et al., 2011) is a custom-designed software that utilizes a silhouette-based 

446 back-projection algorithm combined with cross-sectional volume segmentation to generate 3D 

447 root models (Mulayim, Yilmaz & Atalay, 2003; Zhu et al., 2006). RootReader3D integrates 

448 multifarious viewing interfaces and mouse and keyboard commands to support visualizing and 

449 interacting with the 3D roots reconstructions. RootReader3D measurements are validated by 
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450 comparing them with 2D measurements. However, this software is only suitable for analyzing 

451 root images with a single background because it cannot eliminate the influence of non-root 

452 substances in the images. RooTrak is an automatic software used to analyze images generated by 

453 X-ray CT using the top-down approach (Mairhofer et al., 2012). RooTrak views three-dimension 

454 CT data as a series of x-y cross-sectional images aligned along the z-axis. Root cross sections 

455 move around the image following the image stack traversed, reflecting the shape of the scanned 

456 root. RooTrak can obtain a range of root traits from various plant species grown in multifarious 

457 contrasting soil with minimal user intervention, a feature that will facilitate future root 

458 phenotyping efforts. NMRooting is an automated analysis software for analyzing MRI datasets 

459 written in Python (Van Dusschoten et al., 2016). NMRooting achieves 3D visualization through 

460 Mayavi (Ramachandran & Varoquaux, 2011). Teramoto, Tanabata & Uga (2021) recently 

461 developed RSAtrace3D, a robust 3D root architecture vectorization software for monocot root 

462 phenotyping. RSAtrace3D implements graphical user interface by Python and can be applied to 

463 analyze rice X-ray CT images and various 3D images of other monocots.

464 SUMMARY AND PERSPECTIVES
465 The current review focuses on recent advances in in-situ root phenotyping tools. The next 

466 challenge is to apply these phenotyping platforms in large-scale quantitative genetic analysis. 

467 The challenges require interdisciplinary efforts, from mathematics to computer science to root 

468 biology, and applied fields, including crop breeding and agronomy. Root biology and root-soil 

469 interaction, including the soil microbiome, spans multiple spatiotemporal scales and disciplines 

470 and is extremely complex. Therefore, root phenotyping should be extended to the rhizosphere 

471 phenotype, defined as root and root-influenced soil describing ‘the manifestation of a plant’s 

472 genetics’ in the soil (York et al., 2016). Rhizosphere phenotyping greatly increases the 

473 opportunity of discovering new phenotypes related to root function, such as the rhizosheath traits 

474 and their association with root hairs. Mobile, easy-to-build cross-lab reproducible test systems 

475 will be new frontiers for future root and rhizosphere phenotyping studies. These innovative 

476 technologies and platforms are collectively driving the selection of the next generation of crops 

477 to address existing global food security challenges.
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Table 1 Overview of currently available root image analysis software
Advantages/limitations of root phenotyping methods and technologies.
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1 Table 1. Overview of currently available root image analysis software Advantages/limitations of root phenotyping methods and 

2 technologies.

Dimensio

n
Medium Advantages Limitations Examples References

Aeroponics/Yy

droponic/Pouc

h-and-wick 

system/agar

Providing a strong  contrast between the 

root and background/Short period/High-

throughput /Allow-ing accurate extraction 

of root system architecture

Limited representation of actual root 

characteristics/Usually used in seedling 

stage/Not suitable for studying root hairs

RhizoTubes/Rhizoponics/Rhizosl

ides/RhizoChamber-

Monitor/PlaRom/ChronoRoot

Jeudy et al. (2016) 

Mathieu et al. 

(2015) Mariéet al. 

2014 

Wu et al. 2018 

Yazdanbakhsh & 

Fisahn (2009) 

Gaggion et al. 

(2021)
2D

Soil
Allowing long-term observation/Close to 

the field conditions

Soil heterogeneity augments

environmental noise/Root segmentation 

is relatively difficult/ Relatively low 

resolution

RhizoPot/GROWSCREENRhizo

/GLO-Roots/GLO-

Bot/PhenoRoots/WinRoots

Xiao et al. (2020) 

Treurnicht, Pagel & 

Esler et al. (2015)    

Rubén et al. (2015) 

LaRue et al. (2021) 

Martins et al. (2020) 

Zhang et al. (2021)

3D Soil

Visualizing the dynamic development of 

complete root systems in natural 

soils/Generating spatial and time resolved 

data

Low-throughput/High startup 

cost/Difficulty resolving fine roots duo 

to relatively Low-throughput

X-ray computed 

tomography/Magnetic resonance 

imaging/Ground penetrating 

radar/Electrical resistivity 

tomography

Heeraman, 

Hopmans & 

Clausnitzer (1997) 

Van et al. (2016) 

Alnuaimy et al. 

(2000) Rossi et al. 

(2011)

3

4
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Table 2(on next page)

Table 2. Overview of currently available root image analysis software.
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1 Table 2. Overview of currently available root image analysis software.

Automatio

n level
Software

Backgroun

d
Dimension Root trait Advantege

Throughpu

t
Species Release time

Availabilit

y
Download Reference

DART Acetate 

sheet

2D Length/Branching 

order/Densities

Analysis of entire and 

complex root 

systems/Keep track of 

root colour

Medium Quercus 

pubescens 

L./Solanum 

lycopersicum

2010 Free http://www.avignon.in

ra.fr/psh/outils/dart

Bot et al.  

(2010)

Manual

WinRHI

ZOTM

Soil 2D More than 20 traits Root lifespan analysis Low Unlimited 1995 Fee

　

Arsenault et 

al. (1995)

EZ-

Rhizo

Agar 2D 15 traits Suitable for 

investigating a wide 

range of biological 

questions

High Arabidopsis 

thaliana

2009 Free http://www.ez-

rhizo.psrg.org.uk

Armengaud 

et al. (2009)

GiA 

Roots

Water 2D 19 traits Add on new 

algorithms and trait 

estimation steps using 

plugins

High Oryza sativa 2012 Free http://www.giaroots.o

rg

Galkovskyi 

et al. (2012)

GLO-

RIA

Soil 2D More than 10 traits Relate root system 

parameters to local 

root-associated 

variables

Medium Arabidopsis 

thaliana

2015 Free https://github.com/rr-

lab/GLO-

Roots/tree/master/glor

ia

Rubén et al. 

(2015) 

Semi-

automated

GrowScr

een-Root

Agar 2D Length of main and 

lateral 

roots/Number of 

lateral 

roots/Branching 

angle

Quantify complex 

root systems at a high 

throughput

High Zea mays 2009 On-

demand

Nagel et al. 

(2009)
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Growth 

Explorer

Paper 2D Velocity-profile Addresses both 

overall growth and 

local growth zones of 

roots

High Cicer 

arietinum 

L./Phaseolus 

vulgaris L.

2012 Free http://home.iitk.ac.in/

~apal/growthexplorer.

html

Basu et al. 

(2007)

KineRoo

t

Paper 2D Spatio-temporal 

patterns/Curvature/

Gravitropic

Generate reliable root 

growth data even in 

regions where there 

are very low contrast 

patterns

Medium Phaseolus 

vulgaris/Arab

idopsis 

thaliana

2007 On-

demand

Basu et al. 

(2007)

MyROO

T

Agar 2D Length Recognize hypocotyls 

of different ages and 

morphologies

High Arabidopsis 

thaliana

2018 Free https://www.crageno

mica.es/research90 

groups/brassinosteroid

-signaling-in-plant-

development

Betegón-

Putze et al. 

(2018)

rhizoTra

k

Soil 2D More than 20 traits Time-series 

annotation

Medium Unlimited 2019 Free https://github.com/prb

io-hub/rhizoTrak.

Möller et 

al. (2019)

RootNav Paper/Agar

/Water

2D More than 10 traits  Reconstruction and 

quantification of 

complex root 

architectures

High Triticum 

aestivum/Ara

bidopsis 

thaliana/Bras

sica 

napus/Oryza 

sativa

2013 Open 

source

https://sourceforge.net

/projects/rootnav/

Pound et al. 

(2013)

RootRea

der2D

Paper/Agar

/Water

2D More than 10 traits Measure individual 

roots from older or 

more highly 

overlapped root 

systems

High Oryza 

sativa/Zea 

mays/Arabid

opsis 

thaliana

2013 Free http://www.plantmine

ralnutrition.net/

Clark et al. 

(2013)
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RootSca

pe

Agar 2D More than 10 traits Rapidly and 

accurately 

characterize RSA 

variation in different 

genetic backgrounds 

or treatments

High Arabidopsis 

thaliana

2013 Free http://cmpdartsvr1.cm

p.uea.ac.uk/wiki/Bang

hamLab/index.php/So

ftware

Ristova et 

al. (2013)

RootTip 

Trace

Agar 2D Length/Growth rate Identify root tip High Arabidopsis 

thaliana

2013 Free http://dinnenylab.dpb.

carnegiescience.edu

Geng et al. 

(2013)

RooTrak Soil 3D 3D-reconstruction  Minimal user 

interaction/Adapt to 

changing root density 

estimates

High Unlimited 2011 Free http://www.rootrak.ne

t

Mairhofer 

et al. (2012) 

SmartRo

ot

Transparen

t plate

2D More than 10 traits Time-series 

handlin/Sampling-

based analys/Vector-

based representation 

of root

Medium Lupinus 

albus/Zea 

mays

2011 Free https://smartroot.githu

b.io/

Lobet, 

Pagès & 

Draye 

(2011)

Aria Water 2D/3D 27 traits Fast/Batch 

analysis/Ability to 

analyze 3D images

High Zea mays 2014 Free http:// 

www3.me.iastate.edu/

bglab/pages/software.

html

Pace et al. 

(2014)

ARTT Paper/Gel 2D Root tip kinematics Kinematic analysis High Zea 

mays/Oryza 

sativa.

2013 On-

demand

Russino et 

al. (2013)Automated

BRAT Agar 2D 16 traits Robust toward various 

experimental 

conditions

High Arabidopsis 

thaliana

2014 Free http://www.gmi.oeaw.

ac.at/researchgroups/

wolfgang-

busch/resources/brat

Slovak et al. 

2014
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DIRT Black 

imaging 

board

2D More than 70 traits Automatic extraction 

of many root traits in 

a high-throughput 

fashion

High Zea 

mays/Vigna 

unguiculata

2014 Free http://dirt.iplantcollab

orative.org/

Bucksch et 

al. (2014)

ElonSim Agar 2D/3D Length Processing of 3D 

images

High Medicago 

truncatula/Ra

pe/Sugar 

beet/Wheat

2014 Free http://lisabiblio.univ-

angers.fr/PHENOTIC/

telechargements.

Benoit 

(2014)

EZ-Root-

VIS

Agar 2D 16 traits  Capture RSA 

features of many 

individual 

plants/Visualize 

averaged RSAs for 

different genotypes 

under various 

environments or at 

different time points

High Arabidopsis 

thaliana

2018 Free http://www.psrg.org.u

k/download/Rhizo-

64.msi/http://www.psr

g.org.uk/download/Rh

izo-32.msi

Shahzad et 

al., (2018)

faRIA Soil/Agar 2D More than 10 traits  Without manual 

interaction with data 

and/or parameter 

tuning

High Zea 

mays/Oryza 

sativa.

2021 Free https://ag-ba.ipk-

gatersleben.de/faria.ht

ml

Narisetti et 

al., (2021)

GROW 

Map-

Root

Black 

plastic

2D Root tip growth 

velocity

High spatial and 

temporal resolution

High Zea mays 2002 On-

demand

Walter et 

al. (2002)

IJ-Rhizo Water 2D Diameter/Length Carry out automated 

measurement of 

scanned images of 

root samples without 

Medium Grape 2013 Open-

source

www.plant-image-

analysis.org/software/

IJ_Rhizo

Pierret et 

al. (2013)
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sacrificing accuracy

RNQS Dark felt 2D Count/Length/Nodu

les

Standardized spatial 

analysis of nodulation 

patterns

Medium Pisum 

sativum

2014 Free http://hdl.handle.net/1

0393/30321

Remmler et 

al. (2014)

RootGra

ph

Water 2D Count/Length/Diam

eter

 Image adaptation 

and graph 

optimization/Does not 

rely on any statistical 

learning

High Hordeum 

vulgare/Tritic

um aestivum

2015 Free https://onedrive.live.c

om/redir?resid=D417

979EECAC63C4!253

7&authkey=!AHu7kQ

AVkcwff2c&ithint=fo

lder%2czip/www.plan

t-image-

analysis.org/software/

RootGraph

Cai et al. 

(2015)

Root 

System

Analyzer

Sandy soil 2D 18 traits Distinguish root 

overlaps from 

branches

High Lupinus 

albus

2014 Free http://www.csc.univie.

ac.at/rootbox/rsa.html

Leitner et 

al. (2014)

RootFlo

wRT

Petri dish 2D Growth/Velocity-

profile

Combination of 

optical flow methods

High Lycopersicon 

lycopersicum

/Lactuca 

sativa/Aurini

a 

saxatilis/Phle

um pratense

2003 Free http://www.bio.umass.

edu/biology/baskin/

van der 

Weele et al. 

(2003)

RootFly Soil 2D Color/Diameter/Len

gth

Time savings over 

traditional manual 

analysis

High Sweetbay 

magnolia/Fre

eman maple 

2008 Free http://www.ces.clems

on.edu/stb/rootfly/

Zeng , 

Birchfield 

& Wells 

(2008)
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RootRea

der3D

Gellan gum 3D 27 Ttraits Automated and 

interactive features

High Oryza sativa 2011 Open 

source

http://www.plantmine

ralnutrition.net

Clark et al. 

(2011)

RootTrac

e

Agar 2D Length/Curvature/S

timulus response 

parameters

Process long time-

lapse sequences

High Arabidopsis 

thaliana

2009 Open 

source

http://www.cpib.ac.uk French et 

al. (2009)

RhizoVis

ion 

Explorer

Transparen

t 

plate/Water

2D More than 20 traits Default broken roots 

mode

High Unlimited 2021 Open 

source

https://doi.org/10.528

1/zenodo.3747697

Seethepalli 

et al. (2021)

RSAtrac

e3D

Soil 3D Length/Root growth 

angle/Root 

distribution 

parameters 

High expandability of 

the vectorization and 

phenotyping 

algorithm

Medium Oryza sativa 2021 Open 

source

https://rootomics.dna.

affrc.go.jp/en/

Teramoto, 

Tanabata & 

Uga (2021)

2

PeerJ reviewing PDF | (2022:04:73150:0:1:NEW 28 Apr 2022)

Manuscript to be reviewed




