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Abstract 13 
More frequent global warming events, biological disasters, and anthropogenic activities have 14 
caused extensive damage to coral reefs around the world. Coral reefs in the Xisha Islands have 15 
been damaged following rounds of heatwaves and crown-of-thorns starfish (CoTS) outbreaks 16 
over recent decades. Based on a comprehensive community survey in 2020, we determined a 17 
diagnosis for the present state of six coral regions in the Xisha Islands. The findings suggested 18 
that these regions had a total of 213 species of scleractinian corals belonging to 43 genera and 16 19 
families. Living coral coverage across sites was widely divergent and ranged from 0.40% (IQR: 20 
7.74%-0.27%) in Panshi Yu to 38.20% (IQR: 43.00%-35.90%) in Bei Jiao. Coral bleaching 21 
prevalence was 23.90% (IQR: 41.60%-13.30%) overall and topped out at 49.30% (IQR: 50.60%-22 
48.10%) in Bei Jiao. Five of the coral regions (all but Yongxing Dao) were under threat of CoTS 23 
outbreaks. High mortality combined with excellent recruitment rates suggested potential 24 
rehabilitation after recent deterioration. We employed a quantifiable Deterioration Index (DI) to 25 
evaluate the intensity of deterioration of coral reefs in the Xisha Islands. The results showed that 26 
Yongxing Dao and Langhua Jiao had low recent deterioration (DIrecent = 0.05, IQR: 0.07-0.02 27 
and 0.04, IQR: 0.11-0.01, respectively), while Bei Jiao, Yongle Atoll, Yuzhuo Jiao, and Panshi 28 
Yu had high recent deterioration (DIrecent > 0.16). Different monitoring sites within the same 29 
coral region were heterogeneous with regards to all above indexes. Moreover, we review and 30 
discuss potential disturbances that threaten the health of the Xisha Islands’ corals. It is crucial to 31 
identify severely afflicted areas and find successful methods to better manage coral reef health in 32 
this region. 33 
 34 
Introduction 35 
Coral reefs worldwide are suffering extensive deterioration as a result of synergic factors 36 
including natural catastrophes and anthropogenic disturbances (Halpern et al., 2008; Selig, 37 
Casey & Bruno, 2010). Reefs in the Caribbean Sea, Indian Ocean, and the Pacific region are 38 
threatened, and even remote reefs and atolls have not completely been spared (Burke et al., 39 
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2011). This deterioration can lead to the widespread collapse of healthy coral populations, losses 51 
of species richness and coral cover (REF), increases in macroalgae(REF), outbreaks of coral 52 
bleaching and disease(REF), and failure to recover from natural disturbances(REF). Coral reefs 53 
are losing their immense biodiversity and ecosystem functions, negatively affecting the 54 
livelihood and ecosystem services of millions of coastal people (Hughes et al., 2017). 55 

Numerous studies have explored the drivers of coral declines and the links between climate 56 
change, human activities, and coral reef ecosystems (Hughes et al., 2003; Alvarez-Filip et al., 57 
2011; Jackson et al., 2014; Hoegh-Guldberg et al., 2017). It is widely recognized that global 58 
threats such as ocean warming and acidification are more powerful and destructive than local 59 
threats (Gattuso, Hoegh-Guldberg & Pörtner, 2014). The prime factor, heatwaves caused by 60 
global warming, have bleached corals at increasing rates since the 1980s (Morrison et al., 2019). 61 
The State of the Global Climate (REF) announced that 2020 was one of the three warmest years 62 
on record, during which more than 80% of the ocean experienced marine heatwaves. This caused 63 
significant impacts to tropical reefs and even the subtropical fringe reefs. For example, One Tree 64 
Island, a potential refuge at the southern part of the Great Barrier Reef (GBR), had corals that 65 
were identified as severely bleached in 2020 (Nolan et al., 2021). Ocean acidification is also 66 
projected to impact all areas of the ocean with wide-ranging impacts on corals by reducing their 67 
growth rates and ability to maintain physical structure (Hoegh-Guldberg et al., 2007; Kroeker et 68 
al., 2013). A strong decrease in aragonite saturation state caused by ocean acidification was 69 
observed throughout the Greater Caribbean Region (GCR) from 1996 to 2006 (Gledhill et al., 70 
2008). Additionally, sea level rise, hurricanes, and tropical storms are all potentially deleterious 71 
to coral reefs (Yates & Moyer, 2010; Yang et al., 2015). Among a variety of local threats, 72 
Acanthaster crown-of-thorns starfish (CoTS) outbreaks are the major contributor to sustained 73 
coral loss and degradation in many Pacific regions (Kayal et al., 2012; Baird et al., 2013). On the 74 
remote Moorea Island of French Polynesia, for example, high densities of CoTS caused severe 75 
coral loss, with more than 96% of living corals killed between 2005 and 2010 (Kayal et al., 76 
2012). Moreover, there is a growing number of maladies that are threatening the health of corals 77 
(Woodley et al., 2016). More than 40 coral diseases have been reported, and more than 200 78 
species of reef-building corals are affected by these diseases (Bruckner, 2009). The Caribbean 79 
Sea is a hotspot for coral diseases, and over 66% of the world’s coral diseases occur within this 80 
region (Green & Bruckner, 2000). In the Anthropocene, diverse anthropic stresses including 81 
destructive fishing and overfishing, coastal engineering, tourism industry, marine pollution, and 82 
eutrophication have aggravated the deterioration (Hughes et al., 2017). Even remote coral reefs 83 
located in the Maldives, Chagos Archipelago, Seychelles, Micronesia, and Marshall Islands are 84 
threatened by human activities (Burke et al., 2011), and stressors are projected to intensify in 85 
coming decades. Due to the above threats as well as interactions among them, the world’s coral 86 
reefs are projected to be severely compromised by 2070 (Ateweberhan et al., 2013; Morrison et 87 
al., 2019). 88 

The Xisha Islands (also known as the Paracel Islands), one of the four groups of islands in 89 
the South China Sea, have abundant oceanic coral reefs (Huang et al., 2011). The Status of Coral 90 
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Reefs of China, 2019 reported a totally of 251 species of scleractinian corals in the Xisha Islands 101 
(Huang, Chen & Huang, 2021). These islands support an immeasurable amount of marine 102 
biological resources and ecological services. However, continual disturbances have caused heavy 103 
losses to coral reef coverage and structural diversity in the Xisha Islands over past decades. In 104 
Bei Jiao, the illegal excavation of giant clams by WHO caused a loss of 13.3% in coral coverage 105 
across two years (Li et al., 2015). Li et al. (2018) analyzed data from 2007 to 2016 that indicated 106 
dramatic decreases in both species number and coverage due to construction activities, CoTS 107 
outbreaks, and coral diseases in Yongxing Dao and Qilian Yu. Coral communities in the Yongle 108 
Atoll were in relatively healthy conditions despite destructive fishing and overfishing practices 109 
(Zhao et al., 2016). Using survey data of 2006, Huang et al. (2011) determined that Huaguang 110 
Jiao had the highest biodiversity. By contrast, reefs affected by human activities had lower 111 
species richness, and independent reefs, such as Zhongjian Dao and Panshi Yu, were moderately 112 
biodiverse (Huang et al., 2011). Corals in Dong Dao suffered from atramentous necrosis disease 113 
in 2015 (Huang, Chen & Huang, 2021). In addition to the disturbances described above, high 114 
temperature stress and CoTS outbreaks have led to an increase in coral bleaching and mortality 115 
events in the Xisha Islands over recent years. For example, heavy ocean warming in the Xisha 116 
Islands during the summers of 2014 and 2019 caused mass coral bleaching in Bei Jiao and 117 
Yagong Dao (Li et al., 2016; Huang, Chen & Huang, 2021). Meanwhile, CoTS outbreaks 118 
relapsed in 2018 in Panshi Yu, Yuzhuo Jiao, and Langhua Jiao, when the density of CoTS 119 
reached 400 individuals per hectare. In 2019, the density reached over 1,000 individuals per 120 
hectare (Li et al., 2019). Many remote coral reefs have already been degraded despite the local 121 
anthropogenic pressures were low or even absent. Evaluating the current health conditions and 122 
deteriorative intensity of coral communities in the Xisha Islands has been an urgent task. 123 

There have been many studies assessing the health of coral reefs, and various ecological 124 
parameters have proliferated (Díaz-Pérez et al., 2016). Specific parameters such as live coral 125 
coverage, coral recruitment, coral bleaching, species richness, and diversity index provide a 126 
fundamental diagnostic methodology when exploring the current state of corals (Risk et al., 127 
2001; Brito-Millán et al., 2019). The Deterioration Index (DI) proposed by Ben-Tzvi, Loya & 128 
Abelson (2004) takes mortality and recruitment rates into account simultaneously. It can indicate 129 
the development trend of the health status in each coral community, not just the current 130 
ecological state. DI is different from other complex parameters such as Healthy Reefs Initiative 131 
(HRI) and Coral Health Index (CHI), and it is effective for most coral reefs, especially those with 132 
insufficient data (Ben-Tzvi et al., 2011). This quantifiable indicator evaluates the intensity of 133 
deterioration in order to assess the health of different coral communities. 134 

In this study, we used large-scale stratified surveys to diagnose coral reefs in the Xisha 135 
Islands. We hope to provide a new comprehensive baseline for the remote reefs in the Xisha 136 
Islands. Moreover, we introduced DI as a snapshot assessment of deteriorative intensity across 137 
different regions. Our results provide evidence to help determine management actions 138 
concerning potential stressors. 139 
 140 
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Materials & Methods 143 
Study areas 144 
The Xisha Islands are in the northwest of the South China Sea and southeast of Hainan Island 145 
within a marine area of 15°46′N – 17°08′N and 111°11′E – 112°54′E (Fig. 1). They consist of 146 
Yongle and Xuande Islands, which are comprised of a total of 39 islands, seven reefs exposed at 147 
low tides, and more than eight other submerged reefs. In this study, a total of 44 coral reef 148 
monitoring sites were established around six regions (Bei Jiao, Yongxing Dao, Yongle Atoll, 149 
Yuzhuo Jiao, Panshi Yu, and Langhua Jiao; GPS coordinates in Table S1). For the accurate and 150 
comprehensive view of the health state of these coral reefs, monitoring sites were uniformly 151 
scattered in each region to represent the different habitats of the coral communities as much as 152 
possible. 153 
Field activities 154 
Field surveys took place from 31 August to 30 September, 2020. We performed three transects 155 
of different depths (5, 10, and 15 m) at each site while SCUBA diving. Transects were 156 
demarcated using tapelines and deployed parallelly to each other. Each transect (tapeline) was 50 157 
m in length. If the actual distribution depth of corals was less than 15 m, the deepest transect was 158 
adjusted appropriately. Point Intercept Transect (PIT) video sampling was conducted following 159 
standard procedures (Hill & Wilkinson, 2004), using a 24-megapixel Canon PowerShot G1X 160 
Mark III digital camera. In brief, a SCUBA diver held the camera with the lens 0.2 m - 0.3 m 161 
away from the tapeline at each site, and swam slowly and uniformly along the tapeline from the 162 
starting point. The camera aimed vertically downward and shot the tapeline to record the 163 
organisms and substrate below the tapeline. The recording time was at least 10 min until the end 164 
of the tapeline. Another diver then took close-up photographs of various corals under the 165 
tapeline, and collected some specimens for species identification. Ten 50 cm × 50 cm quadrats 166 
were systematically deployed within a range of 2.5 m on both sides of the transects to take 167 
pictures using a 20-megapixel Canon PowerShot G7X Mark II digital camera. 168 
Coral health assessment 169 
Video transects were analyzed in laboratory using point sampling techniques, i.e., freezing the 170 
video at every 10 cm interval (scale point) to quantify the substrate and organism composition 171 
(Sample data in Data S1). Starting from the "0 m" scale point, all scleractinian corals, other 172 
sessile organisms (including soft corals, sponges, and sea anemones), dead corals, bleaching 173 
corals and substrate (reef-rock, rubble, sand, or mud) at the scale points were assessed until the 174 
"50 m" scale point. There was a total of 500 scale points in a transect. The assessment elements 175 
including: 176 

a) Species identification. The scleractinian coral species (more than 2 cm) at each 10 cm 177 
scale point were interpreted. If it was difficult to identify the species in the video, the coral close-178 
up photographs and the coral specimens were used to assist identification. Corals were identified 179 
to their lowest tractable taxonomic level (species) following taxonomic criteria (Huang, 2018; 180 
Shi, 2019; Dai & Zheng, 2020). 181 
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b) Living coral coverage. The number of all living scleractinian corals (more than 2 cm) at 192 
scale points were counted. The number divided by 500 was the living coral coverage rate (%). 193 

c) Coral mortality. The proportion of dead scleractinian corals to the total number of living 194 
and dead scleractinian corals at the scale points (%). Recent dead corals (dead within a year) 195 
were separated out to confirm the values of recent coral mortality. More specifically, recent dead 196 
corals are those that the corallite structures are either white and still intact, or slightly eroded, but 197 
identifiable to species. Recently dead skeletons may be covered by sediment or a thin layer of 198 
turf algae. Old dead corals are those that the corallite structures are either gone or are covered 199 
over by organisms that are not easily removed (McField & Kramer, 2007; sample data in Data 200 
S1). 201 

d) Coral bleaching. The proportion of all bleaching scleractinian corals (not dead) to the 202 
number of living scleractinian corals at the scale points (%). 203 

e) Coral recruitment. The number of scleractinian coral recruits (less than 2 cm in diameter 204 
or height) in quadrats were counted. The number divided by the area of quadrats was the 205 
supplement of hard coral, and the unit was ind. m-2. 206 

Moreover, the Shannon–Wiener diversity index (Shannon, 1948) and Pielou’s evenness 207 
index (Pielou, 1966) were also used to compare the assessment results of coral health among 208 
different regions. 209 
Disruptive factors 210 
Natural and anthropogenic disturbances were counted and analyzed. Daily Sea Surface 211 
Temperature (SST) and Degree Heating Week (DHW) data were downloaded from Unidata 212 
(UCAR Community Programs, https://www.unidata.ucar.edu) and processed in MATLAB 213 
R2019a (MathWorks Inc., Natick, MA, USA). Daily 5km Regional Virtual Stations Product 214 
from Coral Reef Watch (NOAA, https://coralreefwatch.noaa.gov) for the Xisha Islands was also 215 
utilized. The number of all CoTS within 1 m of each side of the transects was counted to assess 216 
their damaging effects. Moreover, diverse anthropic activities at the monitoring sites were also 217 
recorded. 218 
Recent deterioration analysis 219 
We used the Deterioration Index (DI) to quantify the intensity of deterioration of coral 220 
communities among different monitoring sites and regions. The cardinal principle is that when a 221 
coral community state is stable, the DI value is expected to be low, and when a community is in 222 
decline, the DI will be high (Ben-Tzvi, Loya & Abelson, 2004). In this study, we made some 223 
adjustments that differed from the original definition under the same formula: 224 

𝐷𝐼 =
𝐷𝐶

𝐷𝐶 + 𝐿𝐶
𝑆𝐶
𝐿𝐶(  225 

where DC is the number of dead scleractinian corals at scale points, LC is the number of 226 
living scleractinian corals at scale points, and SC is the number of small detectable living 227 
scleractinian corals (up to 2 cm) in 10 quadrats. We calculated a DIrecent value using the 228 
number of recently dead scleractinian corals to reflect the recent development of coral reefs. 229 
Statistical analyses 230 Deleted: analysis231 



We summarized the assessment elements using the median (with InterQuartile Range, IQR: Q3-232 
Q1) as opposed to the mean, by reason of the nonnormal data in the present study. Considering 233 
the small sample size in the present study, nonparametric bootstrap F-test with a pooled 234 
resampling method were applied (Dwivedi, Mallawaarachchi & Alvarado, 2017). The bootstrap 235 
sample was the same size as the original dataset and was built using sampling with replacement. 236 
This process was repeated with 1,000 replicates. Statistical analyses were performed in R 4.0.3 237 
(R Core Team, 2020) using the “Nonparametric bootstrap F-test for comparison of three means” 238 
appendix toolbox (Dwivedi, Mallawaarachchi & Alvarado, 2017), combined with self-written 239 
scripts (R-codes in Data S2). 240 
 241 
Results 242 
Community health 243 
A total of 213 scleractinian coral species (belonging to 43 genera and 16 families) were 244 
identified in the Xisha Islands. However, species richness was extremely uneven across different 245 
monitoring sites and regions (Fig. 2, Table 1). Bei Jiao presented the largest number of coral 246 
species, followed by Yongle Atoll, and Panshi Yu contributed the least. The Shannon–Wiener 247 
diversity index showed similar results: Bei Jiao had high species diversity, whereas Panshi Yu 248 
had low species diversity. Pielou’s evenness index results were generally high, ranging from 0.79 249 
(IQR: 0.85-0.78 at Bei Jiao and IQR: 0.85-0.74 at Panshi Yu) to 0.86 (IQR: 0.86-0.82 at 250 
Yongxing Dao, Table 1). Living coral coverage differed greatly across 42 study sites, ranging 251 
from 0.2% to 49.73% (Fig. 2). No live coral was recorded at the survey site SY2 in the Yongle 252 
Atoll and the survey site PS7 in Panshi Yu. There were significant differences in coral cover 253 
across the six regions (nonparametric bootstrap F-test, p = 0.001). The characteristics of species 254 
richness and living coral coverage were approximately identical. Species richness and living 255 
coral coverage rates of monitoring sites at Bei Jiao, Yongxing Dao and Yongle Atoll (excepting 256 
the survey site SY2) were distributed more evenly than other regions, and northeast was higher 257 
than southwest area at Yuzhuo Jiao and Langhua Jiao. The species richness and living coral 258 
coverage of eastern Panshi Yu were higher than those of other parts of Panshi Yu (Fig. 2). Coral 259 
mortalities were very high, especially in Yuzhuo Jiao (42.00%, IQR: 57.80%-5.85%), Panshi Yu 260 
(34.90%, IQR: 60.10%-25.70%), and Yongle Atoll (15.80%, IQR: 20.90%-11.50%). Recent 261 
coral mortality ranged from 0 to 33.61% (Fig. 2) with a large regional difference (nonparametric 262 
bootstrap F-test, p = 0.015). In detail, coral mortalities of monitoring sites at Yongle Atoll 263 
(excepting the survey site SY2) and PanshiYu (excepting the survey site PS7) were distributed 264 
evenly, and the south was higher than north at Yongxing Dao, Yuzhuo Jiao and Langhua Jiao. 265 
The coral mortality of northeastern Bei Jiao was higher than that of other parts of Bei Jiao. 266 
Recent coral mortalities of monitoring sites at Yongxing Dao, Yongle Atoll, PanshiYu and 267 
Langhua Jiao were more even than those of Bei Jiao and Yuzhuo Jiao. Recent coral mortalities 268 
of monitoring sites at Bei Jiao and Yuzhuo Jiao showed the same trends as coral mortalities (Fig. 269 
2). According to our survey, corals in the Xisha Islands suffered severe bleaching in 2020. The 270 
bleaching rate was 23.90% (IQR: 41.60%-13.30%) overall and topped out at 49.30% (IQR: 271 
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50.60%-48.10%) in Bei Jiao (Table 1). The six regions had very different coral bleaching rates 282 
(nonparametric bootstrap F-test, p = 0.000). Coral bleaching prevalences had no obvious variety 283 
regulation among different monitoring sites within a specific region (Fig. 2). Coral recruitment in 284 
the Xisha Islands was abundant (median 6.67 ind. m-2, IQR: 8.60 ind. m-2-4.27 ind. m-2, Table 1), 285 
and significant differences existed across different regions (nonparametric bootstrap F-test, p = 286 
0.012). Coral recruitment was distributed evenly among different monitoring sites within a 287 
specific region (Fig. 2). 288 
Recent deterioration 289 
The recent deterioration of coral communities in the Xisha Islands was estimated using DIrecent 290 
values. We found noticeable differences across different monitoring sites and regions (Fig. 3, 291 
Table 1). DIrecent values ranged from 0 to 6.60 across 43 survey sites (the survey site SY2 in the 292 
Yongle Atoll was not included because there were no living corals or coral recruits). There were 293 
only six survey sites with DIrecent values greater than 1: two in Bei Jiao, two in the Yongle 294 
Atoll, one in Yuzhuo Jiao and Panshi Yu, respectively. The survey site BJ8 had the largest 295 
DIrecent value (6.60). Our results showed that Yongxing Dao and Langhua Jiao had low recent 296 
deterioration (DIrecent = 0.05, IQR: 0.07-0.02 and 0.04, IQR: 0.11-0.01, respectively), while Bei 297 
Jiao, Yongle Atoll, Yuzhuo Jiao, and Panshi Yu had high recent deterioration (Table 1). 298 
Multiple disturbances 299 
Multiple external disturbances, including natural and anthropogenic triggers, were detected in the 300 
Xisha Islands in 2020, the most severe of these being rapidly increasing sea temperature. Mean 301 
SST indicated that coral reefs in the Xisha Islands suffered serious heat stress from June to 302 
September, reaching an average of 30℃ (Fig. 4A). The DHW curve showed that coral reefs in 303 
the Xisha Islands fell into Bleaching Alert Level 1 & 2 phases from the end of July to mid-304 
October, with an aggregated duration of more than 80 days (Fig. 4B). Corals at 93% of the sites 305 
were estimated to have died by bleaching (Fig. 2). CoTS outbreak was another important cause 306 
of the wide-ranging demise of corals and structural destruction of reefs in the Xisha Islands. 307 
During our study in 2020, a total of 163 CoTS were found across 23 monitoring sites (Fig. 5A). 308 
The survey site YY in the Yongle Atoll had the highest population density at 29.33 ind. per 100 309 
m-2. Five coral regions (all but Yongxing Dao) were under threat of CoTS outbreaks. The 310 
attacked coral tissues showed signs of bleaching or death (Fig. 5B, C). 311 

Among several types of human activities, dynamite fishing caused the most damage to coral 312 
reefs. In this study, we discovered dynamite fishing activities in Yuzhuo Jiao and Panshi Yu that 313 
may have increased mortality at these two regions (Table 1). Moreover, diving tourists hunted in 314 
Bei Jiao, Yongle Atoll, Yuzhuo Jiao, and Panshi Yu during our surveys. Marine litter appeared 315 
occasionally on the seabed at some of the monitoring sites. 316 
 317 
Discussion 318 
Given their roles in supporting marine ecosystems, biological diversity, and value to human 319 
society, coral reef ecosystems are often a center of attention. In the past 10 years, there have been 320 
many studies on the biodiversity and health conditions of the remote atolls in the Xisha Islands 321 
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(Huang et al., 2011; Yu, 2012; Zhao et al., 2016; Li et al., 2019). Based on historical data and 332 
field investigations, a total of 204 scleractinian coral species were reported in the Xisha Islands 333 
in 2006 (Huang et al., 2011). In this study, we identified a total of 213 species across 43 survey 334 
sites and six coral regions. A recent study by Huang, Chen & Huang (2021) determined that 335 
there were 251 species of scleractinian corals. This shows the great variety of species and 336 
abundant hermatypic coral resources in the Xisha Islands. The median living coral coverage of 337 
the Xisha Islands was 16.50% (IQR: 33.10%-5.74%) in 2020, which was much lower than the 338 
coral cover of a benchmark coral reef at the GBR in 2004 (22.00%, Sweatman, Delean & Syms, 339 
2011; Zhao et al., 2016). The living coral coverage rates in different coral reefs either increased 340 
or decreased slightly when compared to previously reported data. An investigation of only two 341 
survey sites found that the living coral coverage in Bei Jiao was 50.84% in 2014 (Li et al. 2015). 342 
In this study, the median living coral coverage of Bei Jiao was 38.20% (IQR: 43.00%-35.90%), 343 
and ranged from 7% to 49.73% across eight different sites (Fig. 2). The living coral coverage in 344 
Yongxing Dao declined sharply from 46.67% to 5.00% from 2007 to 2016 (Li et al., 2018). 345 
However, our data showed that the living coral coverage in Yongxing Dao was 19.00% (IQR: 346 
19.50%-18.00%) in 2020 (Table 1). The coral cover in the Yongle Atoll was 25.50% (IQR: 347 
32.50%-16.50%) in 2020, which was also better than the coverage in 2013 (18.00%, Zhao et al., 348 
2016). Moreover, a good level of coral recruitment (median 6.67 ind. m-2) also indicated the 349 
relative “health” of corals in the Xisha Islands (Healthy Reefs Initiative, 2008). In fact, coral 350 
recruitment in the Xisha Islands increased annually after 2015, reaching 3 ind. m-2 in 2019, and 351 
some islands such as Lingyang Jiao and Jinqing Dao in the Yongle Atoll reached 5 or 6 ind. m-2 352 
(Li et al., 2019). In 2020, Yongle Atoll’s coral recruitment was 8.53 ind. m-2 (IQR: 10.50 ind. m-2-353 
7.20 ind. m-2), and Langhua Jiao’s reached 7.80 ind. m-2 (IQR: 9.63 ind. m-2-6.87 ind. m-2) (Table 354 
1). These indicators mentioned above seem to indicate that the coral communities in the Xisha 355 
Islands were in a relatively healthy state, although the truth is that the coral reefs in the Xisha 356 
Islands have been suffering extensive deterioration over recent years when we take Deterioration 357 
Index (DI) values into account. 358 

Coral reefs in the Xisha Islands have been under pressure due to complex reasons but 359 
currently, the most urgent challenges are rising temperatures and coral predators (Wu et al., 360 
2011; Li et al., 2016; Li et al., 2019). Since 1998, the frequency, intensity, and duration of heat 361 
stress events have worsened as global warming increased, thereby increasing the impact of these 362 
events on coral reefs and other marine systems around the world (Heron, Eakin & Douvere, 363 
2017; Hughes et al., 2018; Eakin, Sweatman & Brainard, 2019; Morrison et al., 2019). The most 364 
recent mass coral bleaching event from 2016 to 2017 caused unprecedented damage to nearly all 365 
coral reefs. In Australia, studies have shown that about 93% of the GBR was bleached (Heron, 366 
Eakin & Douvere, 2017). Reefs in the Chagos Archipelago, central Indian Ocean, suffered 367 
severe bleaching and mortality, and their coral cover decreased from 30% to 12% in 2016 (Head 368 
et al., 2019). The Maldives experienced major bleaching, with 73% of corals bleached across 71 369 
survey sites (Ibrahim et al., 2017). The Pacific Island nations of Palau and the Federated States 370 
of Micronesia were also ravaged by this mass coral bleaching event (NOAA, 2016). Even Sesoko 371 
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Island, Okinawa, a high latitude region, saw the bleaching of 99.2% of its colonies in 2016 375 
(Sakai, Singh & Iguchi, 2019). Coral bleaching events have also been recorded in the Xisha 376 
Islands in 2014 and 2019 (Li et al., 2016; Huang, Chen & Huang, 2021). 2020 was announced as 377 
one of the three warmest years on record, signifying a new round of mass coral bleaching. 378 
Anomalous temperatures at the beginning of 2020 caused widespread bleaching across the GBR, 379 
extending to those previously less-affected reefs such as in One Tree Island, and almost half of 380 
the surveyed live hard coral cover was bleached (Nolan et al., 2021). Similarly, in 2020, the 381 
worst known coral bleaching affected the Xisha Islands, with an median of 23.90% bleaching 382 
prevalence (Table 1). The mean SST of the Xisha Islands from June to September 2020 was 383 
30.12℃, which was 1.05℃ above the mean value of the region’s previous record for the same 384 
period from 1990 to 2020. Moreover, IPCC-RCP4.5 forecasted that the global-mean temperature 385 
will increase 2.4°C by 2100, which exceeds the level of warming (1.5°C) that can induce severe 386 
degradation of a great majority of coral reefs (Frieler et al., 2013; Schleussner et al., 2016). 387 
Against the backdrop of global warming, coral bleaching in the Xisha Islands may become a 388 
normal occurrence in the future. 389 

Additionally, the Xisha Islands are now in the middle of their second CoTS outbreak. 390 
During the first outbreak of 2007 – 2009, the mean density of CoTS reached 255 ind. 100 m-2 in 391 
the ecological monitoring area (Wu et al., 2011). Since 2018, a new CoTS outbreak has 392 
developed. In Panshi Yu, Yuzhuo Jiao and Langhua Jiao, the mean density of CoTS was 4 ind. 393 
per 100 m-2 in 2018 and increased to 10 ind. per 100 m-2 in 2019 (Li et al., 2019). In 2020, 394 
although the density of CoTS was 0.33 ind. per 100 m-2 (IQR: 0.67 ind. per 100 m-2-0 ind. per 100 395 
m-2) across 43 survey sites, the survey site YY in the Yongle Atoll reached a staggering density of 396 
29.33 ind. per 100 m-2 (Fig. 5A). This was far beyond the tolerable limit for a healthy coral reef 397 
(0.15 ind. per 100 m-2, Moran & De'ath, 1992). Li et al. (2019) showed that the cycle of CoTS 398 
outbreaks in the Xisha Islands was about 15 years, consisting of a 5-years outbreak period and a 399 
10-years recovery period. Therefore, CoTS in the Xisha Islands will be still in a high-density 400 
status over the next two years. Climate change and the decline of natural enemies have 401 
accelerated the cycle, and CoTS have become a time bomb threatening the health of Xisha 402 
Islands’ corals. CoTS, the largest and most destructive predator of scleractinian corals, have 403 
broken out four times since the 1960s (Pratchett et al., 2017). They are the main contributor to 404 
sustained declines in coral cover and the degradation of coral reefs at many locations throughout 405 
the Indo-West Pacific, such as Australia, Japan, Philippines, French Polynesia, and some island 406 
nations in the Indian Ocean (Trapon, Pratchett & Penin, 2011; De’ath et al., 2012). In the GBR, 407 
one-third of coral reef damage has been attributed to CoTS predation (Timmers et al., 2012), and 408 
in the Ryukyu Archipelago, at least two rounds of CoTS outbreaks have decimated corals 409 
(Nakamura et al., 2014). Unfortunately, despite more than 30 years of effort, there is neither a 410 
clear understanding of the initiation and spread of outbreaks, nor an effective means of 411 
intervention (Pratchett et al., 2017). 412 

An improved DI method was employed for the first time to quantify the deteriorative 413 
intensity of coral reefs across different regions in the Xisha Islands. Our results showed that DIs 414 
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in Bei Jiao were extra high (DIrecent = 0.48, IQR: 1.75-0.13) (Table 1). Li et al. (2015) found 423 
that a giant clam excavation in 2012 caused destruction and loss of corals in Bei Jiao. Living 424 
coral coverage fell by 13.3% and coral mortality rose over two years. China’s government has 425 
banned the excavation and transaction of giant clams and their processed products since January 426 
1, 2017. According to our survey results, the coral mortality within the period of one year in Bei 427 
Jiao was clearly still too high (3.57%, IQR: 10.90%-1.26%), and we believe global warming to 428 
be largely accountable for this, along with CoTS and dynamite fishing. Yongxing Dao, the 429 
location of Xisha administrative region, showed low deteriorative intensity of coral reefs in this 430 
study (DIrecent = 0.05, IQR: 0.07-0.02). As previously mentioned, complex factors have 431 
degraded the living coral coverage and coral recruitment in Yongxing Dao over the past decade 432 
(Li et al., 2018). However, our results indicated that coral reefs in Yongxing Dao may undergo 433 
rehabilitation following a major disturbance. The DIs in this study indicated that Yongle Atoll’s 434 
coral reefs were suffering deterioration (DIrecent = 0.50, IQR: 0.71-0.37), which is a different 435 
conclusion compared to that of Zhao et al. (2016). The coverage of dead coral was very different 436 
(0.80% in Zhao et al. (2016) vs. 10.20% in the present study). One possible cause of this could 437 
be the high-density of CoTS at some survey sites in the Yongle Atoll. The recent deterioration in 438 
Yuzhuo Jiao and Panshi Yu should also be noted (DIrecent = 0.32, IQR: 0.55-0.21 and 0.17, 439 
IQR: 0.71-0.04, respectively), which may be caused by dynamite fishing activities. 440 

It is important to highlight the absence of long-term continuous coral reef health reports for 441 
the Xisha Islands. A single survey is laborious to estimate the trend of deterioration. A lack of 442 
baseline data is unfavorable for grading the heath states of coral reefs. The Healthy Reefs 443 
Initiative published a series of benchmarks and red flags for the Mesoamerican Reef Region 444 
(Mcfield & Kramer, 2007). Based on this, an expected DIrecent value of the Mesoamerican Reef 445 
Region is 0.12 – 0.16. Using the DIrecent values, we can get a snapshot assessment of 446 
deteriorative intensity across different regions in the Xisha Islands. In any case, the long-term 447 
data collected systematically over the appropriate geographic scales is crucial to estimate the 448 
health status of coral communities in the Xisha Islands using DI. There are, of course, some 449 
disadvantages in this method, which one should be aware of prior to any attempt of applying it. 450 
DI cannot reveal changes in the community structure and sometimes the results obtained can be 451 
biased. In summary, it should be stressed that we have no pretension to present the DI as an 452 
alternative to all other reef health indices. We propose the DI as a fast and easy index, which can 453 
be applicable across diverse coral reefs. 454 

Helping coral reefs to keep their health is a profound challenge for managers and scientists. 455 
In this context, reef governance generally includes scientific actions on ecology, economy and 456 
human society (Hughes et al., 2017). In Australia, zoning of the GBR marine reserve network 457 
appears to be making major contributions to the protection of coral biodiversity, ecosystem 458 
resilience, and social and economic values (McCook et al., 2010). In Caribbean, hundreds of 459 
marine protected area (MPAs) and long-time continuous monitoring have helped managers to 460 
make the right decisions including fisheries management strategies, simplify and standardize 461 
coral monitoring, adaptive legislation and regulations (Jackson et al., 2014). In China, at present, 462 
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both the governance and management of coral reefs are typically focused at the local level and 476 
on the regulation of proximal drivers (for example, pressure from fishing or nearby coastal 477 
development). Learning from the experience of other regions is quite necessary to improve the 478 
ability to protect and manage Xisha Islands’ coral reefs. For example, it is important to raise 479 
citizens’ marine environmental consciousness and strengthen marine environment protection, 480 
reduce discharging pollutants directly into the sea, establish coral protected areas, enact strict 481 
fishing policies, and restore coral reefs. For the start of these processes, scientific assessments of  482 
coral health as in the current study are crucial for decision-making in the Xisha Islands. 483 
 484 
Conclusions 485 
In this study, our large-scale stratified survey revealed comprehensive diagnoses of six coral 486 
regions in the Xisha Islands. DIs showed that coral reefs in the Xisha Islands are suffering 487 
extensive deterioration as a result of natural and anthropogenic disturbances. Coral reefs of 488 
Yongxing Dao and Langhua Jiao showed low recent deterioration, while Bei Jiao, Yongle Atoll, 489 
Yuzhuo Jiao, and Panshi Yu reefs had high recent deterioration. These results highlight the need 490 
for comprehensive management actions of the coral reefs in the Xisha Islands. Moreover, 491 
continuous monitoring using DI is one component to estimate the long-term trends of coral 492 
communities. 493 
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