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ABSTRACT

Iron (Fe)is an essential micronutrient of the body. Low concentrations of bioavailable
Fe in staple food result in micronutrient malnutrition. Wheat (Triticum aestivum L.) is
the most important global food crop and thus has become_an important source of iron
for people. Breeding nutritious wheat with high grain-Fe content has become an
effective_means of alleviating malnutrition._Understanding the genetic basis of
micronutrient concentration in wheat grains may provide useful information for
breeding for high Fe varieties through marker-assisted selection (MAS). Hence, in the
present study, genome-wide association studies (GWAS) waswere conducted for grain
Fe. An association panel of 207 accessions was genotyped using a 660K SNP array;
and phenotyped for grain Fe content at three locations. The genotypic and phenotypic
data obtained thus was—utHizedwer eused for GWAS. A total of 911 SNPs were
significantly associated with grain Fe concentrations. These SNPs were distributed on
all 21 wheat chromosomes, and each SNP explained from-5.79%-t0—25.31% of the
phenotypic variations. Of —partictlar—noteNotably, the two significant SNPs
(AX-108912427 and AX-94729264) not only have a more significant effect on grain
Fe concentration but also have the reliability under the different environments.
Furthermore, candidate genes potentially associated with grain Fe concentration were
predicted, and 10 candidate genes were identified. These candidate genes were related
to transport, translocation, remobilization, and accumulation_of ironin wheat plants.
These findings will not only help in_better understanding the molecular basis of Fe
accumulation in grains; but also provide elite wheat germplasms to develop Fe-rich
wheat varieties through breeding.

Abbreviations GWAS, Genome-Wide Association Study; SNP, Single-Nucleotide
Polymorphism; LD, Linkage Disequilibrium; QTL, Quantitative Trait Loci; YY,
Yuanyang; KF, Kaifeng; SQ, Shangqiu; Fe, Iron.

INTRODUCTION

Micronutrient malnutrition is_caused by a lack of important micronutrients such
as iron (Fe:).Fe is a critical micronutrient; and has several important functions in the
body-sueh-as-ts; for example,it plays a central role inthe the transportation of blood
oxygen, and reduced Fe intake can lead to impaired growth and behavioral problems
(Welch & Graham, 1999). It is also called ‘hidden hunger’due-hunger due to the
appearance of undesirable symptoms with_few visible warning signs that could impair
the mental and physical development of humans and generate long-term effects on
human health (Alderman et al.,2006). Microelement deficiencies are common in
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developed and developing countries; and have become a major global health concern.
Experts have estimated that one-third of the world population is at risk of Fe
deficiency (Alloway,2009). Women of child-bearing age and children are more prone
to microelement deficiencies because they have greater micronutrient needs
(Grzeszczak et al., 2020). Therefore, adequate intake of essential minerals is
important to eliminating ‘hidden hunger’.Because the majority of the world’s
population depends on a few staple crops, such as wheat, rice, and maize,
biofortification of these food crops seems to be a promising approach to address
dietary mineral deficiencies (Khush et al., 2012). Several attempts have been made
towards mineral improvement in plants, of which traditional breeding and genetic
engineering techniques have been considered to be the most feasible and
cost-effective approaches (Bouis, 2003).

Wheat (Triticum aestivum L.), one of the most important staple food crops in the
world, contributes more than 50% of the diet and up to 60% of daily intakes of Fe and
Zn in several developing countries (Cakmak et al., 2010). Because wheat has many
advantages such as wide agronomic flexibility and ease of storage, billions of people
depend on wheat fer-fulfitingto fulfill their nutritional prerequisites. Hence, a
sustainable way to protect the population from mineral deficiencies is to improve the
nutritional quality of wheat preduction-through the breeding and selection of wheat-
varieties with naturally high mineral content. This requires a better understanding of
the genetic basis of mineral element accumulation in wheat grains.

Irheritanee-The inheritance of micronutrients is quantitative-in—rature. Linkage
mapping and association analysis are useful methods in—for identifying QTLs for
mineral elements. Linkage mapping generally involves specific populations such as
recombinant inbred lines (RILs), doubled haploid (DH) lines, F2:3 families, and
backcross populations (BCxFy) to identify QTLs of target traits (Groos et al., 2007;
Wang et al., 2011). However, these populations can only be used to identify QTLs for
a limited number of traits. Establishing themis—these population is also
time-consuming and labor-intensive. Compared with linkage mapping, genome-wide
association studies (GWAS) based on linkage disequilibrium (LD) capitalizes on
historical recombination; and thus could identify more QTLs related to complex traits
at a higher mapping resolution (Falconer & MacKay, 1996). Therefore, GWAS has
become an important approach in QTL mapping for important and complex
agronomic traits (Gao et al.,2016). Various studies have been carried out to identify
QTLs associated with wheat grain-Fe (Aroraet al., 2019;_ Alomari et al., 2018;
Crespo-Herrera et al., 2017; Cu et al., 2020; Gorafi et al., 2016; Kumar et al., 2018;
Peleg et al., 2009; Rathan et al., 2021; Roshanzamir et al., 2013; Shi et al., 2013;
Srinivasa et al., 2014; Tiwari et al., 2016; Velu et al., 2017; Wang et al., 2021a; Wang
et al., 2021b). Furthermore, Uauyet al.(2006) have reported a NAC gene (NAM-B1)
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that is associated with increased grain Fe content.

In GWAS analysis, the low density of molecular markers could cause a loss of
linkages between markers and loci of target traits. High-density linkage maps are
important to high-resolution QTL mapping and identification of candidate genes.
Hence, plentiful molecular markers are imperative to construct wheat saturate genetic
maps; and to significantly improve the efficiency of QTL mapping in GWAS.
Compared with other types of molecular markers, single-nucleotide polymorphisms
(SNPs) have many advantages such as the most abundant DNA sequence variation
present in plant genomes, are virtually unlimited, evenly distributed along the genome,
bi-allelic, and co-dominant (Akpinar et al., 2017), making SNPs ideal molecular
markers in GWAS analysis. With the development of new sequencing technologies,
methods of increasing the number of SNPs have been developed in wheat. Particularly,
recently developed SNP gene chips have provided larger numbers of SNP markers. To
date, SNP chips have been widely used in QTL analysis for important agronomic
traits (Gao et al., 2016; Cui et al., 2017).

Elevation of essential mineral concentrations in grains is an effective strategy for
improving the nutritional value of wheat to prevent micronutrient malnutrition. In the
present study, we performed the associative analysis with 207 wheat accessions from
eight countries using 660K SNP chips to identify QTLs for the concentration of grain
Fe. This study was conducted_to identify QTLs and candidate genes related to
grain-Fe content that may be useful for wheat biofortification.

MATERIALS&AND METHODSA

Plant materials and field trials

The association panel used in the present study contained 207 wheat diverse
accessions, comprising 194 accessions from the different wheat planting regions of
China including Henan Province, Shannxi Province, Jiangsu Province, Shandong
Province, Sichuan Province, Hebei Province, Shanxi Province, Beijing City, Anhui
Province, Hubei Province, Guizhou Province, Yunnan Province, Ningxia Province,
and HeilongjiangProvince and 13 accessions from seven other countries, including
Russia, France, Mexico, Japan, Australia, Bulgaria, and Romania. All of the
accessions were grown at Yuanyang (Y'Y, E 113°37', N 35°12'), Kaifeng (KF, E
114°30’, N 34°80"), and Shangqiu (SQ, E 115°65’, N 34°45’) in Henan Province
during the 2016 cropping seasons._Soil Fe content of the three experiment locations
were-was measured—Anéd,and the mean Fe content of soil for Shanggiu, Yuanyang,
and Kaifeng was 26.7 mg/kg, 26.4 mg/kg, and 26.1 mg/kg, respectively. Field trials
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were conducted in randomized complete blocks with three replicates at all locations.
Each plot contained three 2-m rows spaced 20 cm apart. Agronomic management
followed local practices. At wheat-maturity, wheat seeds were harvested separately for
each accession under the different planted locations. In every location, one sample of

seeds was collected for each replicated field plot, and a total of three samples were
obtained for each accession.

Determination of grain Fe concentration

Grains were harvested from each accession of the association population in the
Kaifeng, Shanggiu, and Yuanyang environments when they werematured-mature. The
following method was used for the analysis of grain Fe concentration (Zarcinaset al.,
1987). First, grains were washed thoroughly with purified water three times to remove
soil and dirt. Grains were dried in an oven at 70°C for 72 h and ground into a fine
powder that could pass through a 1-mm screen. Then, 50 micrograms of powdered
samples from each sample were microwave digested with 5mE5mL nitric acid (HNOs)
and 2 mL hydrogen peroxide (H202) in polypropylene tubes using a microwave
accelerate reaction system (CEM USA). Subsequently, Fe concentrations in the
solutions were measured by a flame Atomic Absorption Spectrometer (AAS) (model
1100, Perkin-Elmer). Meanwhile, blank samples and standard samples were added
each time for reference. All of the results represent the average of three replications.

Genotyping and quality control

The samples consisting of 207 wheat accessions were genotyped using the
Affymetrix 660K SNP array comprising 630,517 SNPs and performed by Capital
Bio-Corporation, Beijing, China (http://www.capitalbiotech.com/), following the
manufacturer’s protocol as described by Akhunovet al-{.(2009). To ensure the quality
of genotyping data, sample call rate, SNP call rate, minor allele frequency (MAF), and
Hardy-Weinberg equilibrium (HWE) were analyzed. In addition, accuracy was
checked for SNP clustering, and manual adjustments were made for incorrectly
clustered SNPs. The SNPs with a minor allele frequency (MAF) < 0.05 and missing
data over 20% were excluded from further data analysis. The physical positions of
SNP markers from 660K SNP arrays were obtained from the International Wheat
Genome Sequencing Consortium website (IWGSC, http://www.wheatgenome.org/).
Finally, a total of 224,706 high-quality SNP markers were used for GWAS analysis.

Genome-wide association analysis and haplotype analysis

In the present study, a total of 224,706 SNPs with a minor allele frequency > 5%
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were used for the GWAS. Associations between genotypic and phenotypic data were
performed with_ML_Musing the kinship matrix by GAPIT package in R software
(Lipka et al., 2012). The P—P-value determining whether an SNP marker was
associated with Fe concentration and R?were-was used to evaluate the magnitude of
the MTA (significant marker-trait association) effects. GWAS was conducted for
wheat grain Fe concentration at Y'Y, KF, and SQ environments. Common haplotype
patterns were assessed in the Haploview version4.2 and haplotype blocks were
defined with the confidence interval method.

Candidate gene identification

ln-erdertTo identify the candidate genes for SNP flanking regions, the flanking
DNA sequences corresponding to the SNP markers significantly associated with Fe
concentration were used in BLAST searches against the reported common wheat
reference genome sequence in NCBI databases
(https://blast.ncbi.nIm.nih.gov/Blast.cgi). The high confidence gene list of wheat was
also obtained from the International Wheat Genome Sequence Consortium (IWGSC)
website (https://wheat-urgi.versailles.inra.fr/) and used to identify possible candidate
genes for each identified loci. The annotation of the candidate genes was
accomplished with InterProScan (http://www.ebi.ac.uk/interpro/scan.html). The
transcript and the corresponding annotation of candidate genes were obtained from
the website of IWGSC. For the loci that-where no candidates were found in its
mapping interval, the gene close to the peak SNP of the loci was-were assigned as the
candidate.

RESULTS

Phenotypic variation for grain Fe concentration in wheat populations

Grain Fe concentration was tested for 207 genotypes in three environments
(Supplemental Table S1). The range and mean of grain Fe concentration in the
accessions are presented in Table 1and Figure 1. Grain Fe concentration of accessions
for the different environments are also depicted irFigure—in figure 1. Grain Fe
concentration varied from 1.33-250.62 mg/kg at Kaifeng, 20.23-158.27 mg/kg at
Shanggiu, and 28.15-143.78 mg/kg at Yuanyang. Mean Fe concentration was 99.57
mg/kg at Kaifeng, 74.00 mg/kg at Shanggiu, and 68.12 mg/kg at Yuanyang. Grain Fe
concentration varied from 16.57 to 184.22 mg/kg (mean: 80.56 mg/kg) among the
three locations. In Kaifeng, the highest Fe concentration was recorded in genotype
KH438 (250.62 mg/kg), followed by KH445 (245.85 mg/kg), and KH242 (237.74
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mg/kg), whereas the lowest Fe concentration was recorded in genotype KH378 (1.33
mg/kg) followed by KH324 (4.67 mg/kg). In Shangqiu, the highest Fe concentration
was recorded in genotype SH257 (158.27 mg/kg), followed by SH373 (134.24 mg/kg),
and SH272 (133.85 mg/kg), but minimum Fe content was recorded in genotype
SH418 (20.23 mg/kg), followed by SH349 (20.24 mg/kg). However, in Yuanyang, the
highest Fe concentration was recorded in genotype AH418 (143.78 mg/kg), followed
by AH429 (133.76 mg/kg), and AH413 (131.38 mg/kg), while the lowest Fe content
was recorded in genotype AH249 (28.15 mg/kg), followed by AH240 (29.59 mg/kg).
The mean Fe concentrations of all of the accessions from three locations could be
described in decreasing order as follows: Kaifeng (99.57 mg/kg) >Shanggiu (74.00
mg/kg) >Yuanyang (68.12 mg/kg). ©n-the-basis—efBased on the above statistical
analysis, wheat accessions with high Fe concentrations were recommended for
breeding cultivars and selected as donors for Fe mineral biofortification in the future.
Population distributions of GWAS accessions for grain Fe concentrations were
continuous and exhibited a wide range of values for each location (Figure 1), which
showed that the inheritance of grain Fe was consistent with the quantitative trait.

Genome-wide association analysis of wheat grain Fe concentration

Across the three locations, a total of 911 SNPs were significantly associated with
grain Fe concentration (Figure 2, Supplemental Table S2), which were distributed
across all 21 chromosomes. The phenotypic variation explained by each SNP ranged
from 5.79% to 25.31%, suggesting that SNPs with moderate and minor effects on
grain Fe concentration were detected. Association analysis ferofgrain Fe
concentration in three locations was further analyzed._In Yuanyang, there were 48
significant SNPs on chromosomes 2A, 2B, 2D, 3A, 3B, 3D, 6A, and 6B. However, in
Kaifeng, 209 significant SNPs were detected, and-thesewhich were distributed on
chromosomes 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B,
and 7D.Compared with Yuanyang and Kaifeng, in-Shanggit-were-identified-themorea
greater number of significant SNPs:_were identified in Shanggiu.Althougha total of
446 SNPs were—was identified in Shangqgiu-, each SNP had a lower explanation
percentage for phenotypic variation.These SNPs were located on chromosomes 2A,
3A, 3D, 4A, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D.In addition, SNP numbers
varied greatly across the different chromosomes, of which the highest number of
SNPs was found on chromosome 5B (381) and the lowest on chromosomes 4D and
6D (1), which-suggestssuggesting that the 5B chromosome is the main genetic region
for grain Fe concentration. According to the flanking intervals of SNP, the identified
SNPs could be categorized into 46 non-redundant QTLs (Table 2). The number of
SNPs in each non-redundant QTL covered was different and varied from 1 to 64 SNPs.
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The number of QTLs varied across different genomes, and the highest number of
QTLs was found in the A genome (18), followed by the B genome (16), while only 12
QTLs were identified in the D genome.

Significantly, two major SNPs were found on ehromesemechromosomes 4A and
3D. One SNP-is, AX-108912427, was located at 699,571,654 bp on chromosome 4A.
It explained 25.31% of the observed variation in grain-Fe concentration. Another SNP,
AX-94729264, could explain 24.84% of the observed phenotypic variations and was
mapped to the physical position of 40,526,440 bp on chromosome 3D. In GWAS
analysis, reliable SNPs that were simultaneously detected in more than two
environments were considered more relevant for inbreeding the new varieties with
high grain Fe concentrations. In the present study, nine reliable SNPs, including
AX-94729264, AX-108912427, AX-94936962, AX-109956643, AX-111493816,
AX-111088162, AX-109899864, AX-94702817, and AX-95210102, were detected in
Kaifeng and Shanggiu environments. Of partictlar-neteNotably, the two significant
SNPs (AX-108912427 and AX-94729264) not only have a more significant effect on
grain Fe concentration but have-the—rehiabilityare also reliable under the different
environments, so a further study was-cenductedis needed for the two SNPs.

Prediction of candidate genes

To understand the molecular mechanisms of Fe accumulation in wheat, candidate
gene analysis was conducted for Fe. Candidate genes were predicted for the SNPs that
were identified in GWAS analysis. An expression heat map was constructed for these
candidate genes using the public database of Wheat Expression Browser
(http://www.wheat-expression.com), and genes that were only specifically expressed
in grain tissues were predicted as candidate genes for grain Fe concentration. Ten
candidate genes were identified for grain Fe concentration (Table 3). On chromosome
3D, two candidate genes were found. One was TraesCS3D01G078500 that encoded
for a NAC domain-containing protein, which showed potential relevance to metal
remobilization and accumulation in wheat. Another gene is TraesCS3D01G080900,
which encodes a defensin-like protein that has biological activities in ion channel
blockage. Five candidate genes, namely TraesCS4A01G430000,
TraesCS4A01G431200, TraesCS4A01G431800, TraesCS4A01G431900, and
TraesCS4A01G432000,were  found on  chromosome  4A.  Interestingly,
TraesCS4A01G430000 and TraesCS4A01G432000encode plant unknown function
DUF581 family proteins that possibly participate in mineral translocation to seeds.
However, TraesCS4A01G431800 and TraesCS4A01G431900 encoded an associated
family protein (DUF581) that is related to senescence and participates in transporting
Fe ions. Only one gene, TraesCS4A01G431200, was associated with acid phosphatase.
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Acid phosphatase plays a role in providing the desired energy for active transport and
possibly affects Fe uptake and transport. TraesCS6A01G403500 on chromosome 6A
encodes the remorin protein that may be associated with the cytoskeleton or
membrane skeleton and may play a role in regulating Fe translocation, while
TraesCS6B01G449700 on chromosome 6B encodes a ring finger protein that is
relevant to the accumulation of more Fe in grains.

Haplotypes associated with grain Fe concentration

Based on the genome-wide association analysis, we detected a significant cluster
of 12 SNPs on chromosome 6B. In the corresponding region, 10 SNPs exhibited
strong LD and could form two LD blocks (blockl and block2) (Table 4, Figure 3,
Supplemental Table S3). The first large LD block spanned approximately 2,908 kb,
including six SNPs with two haplotypes (HaplA and HaplB), and the second LD
block spanned approximately 1,916 kb, including four SNPs with two possible
haplotypes (Hap2A and Hap2B). To compare the effect of different haplotypes, we
analyzed the effect of each haplotype on grain Fe concentration variation across the
three environments. The variation of grain Fe concentration in Hapl all reached the
significant levels in the Y'Y and SQ environments, but in Hap2, the significant level
for grain Fe concentration was only observed in the SQ environment. In the KF
environment, although Hapl or Hap2 had non-significant effects on the grain Fe
concentrations, the mean ef-grain Fe concentration with HapB was higher than that of
HapA, which coincided with the distribution tendency in YY and SQ. The combined
effect of the Hapl and Hap2 blocks was-were also analyzed. In the combination of
Hapl+Hap2, the variations in grain Fe concentration reached significant levels in YY
and SQ. In addition, the combination HaplA+Hap2A had a higher frequency (70.73%)
compared to haplotype Hap1B+Hap2B (29.27%).

Comparison with the previous studies

Several previous studies have been conducted for wheat grain Fe, and some
QTLs were identified for this trait. We retrieved a total of 94 wheat Fe QTLs that
were distributed among all 21 chromosomes except 1D (Supplemental Table S4). To
compare the Fe QTLs of this study with that of previous studies, the physical
positions of Fe QTLs were determined using the closest linked markers. Ultimately,
the physical position of 57 QTLs was successfully determined(Tong et al., 2020).
When we compared Fe QTLs of this study with those of the previous investigations,
major differences in QTL amount or QTL physical position were observed. In the
present study, a total of 46 Fe QTLs were identified, whereas a total of 94 QTLs were
found in all of the previous studies. We found that the position of a few QTLs efin
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this study nearly coincided with that of the previous studies. For example, Gorafiet al.
(2016) and our group found one wheat Fe QTL near the 496 Mb position on
chromosome 5D, and Pu et al. (2014) and our team also found one wheat Fe QTL
near the 616 Mb position on chromosome 7D.In addition, we found some QTLs in
locations similar to those of their counterparts from previous studies, which suggests
that at least some of the results of this study are consistent with those of previous
studysstudies.No other QTLs reported in the present study were identified in previous
studies. For instance, on chromosome 1D, we detected one QTL, but this QTL had not

been found-inprevious-studies:-documented elsewhere.

DISCUSSION

Breeding elite wheat varieties with high microelement content has proven to be
an effective biofortification method to address micronutrient malnutrition. The kernel
is_the most important organ of wheat, andwhich provides useful information for
biofortification breeding, and therefore has become the main study objective in Fe
content research. Increasing micronutrient content in wheat through breeding requires
the existence of substantial genetic variation for this trait. Selecting the accessions
with high Fe grain concentration from the diverse germplasms is important in wheat
breeding programs for enhancing Fe content._Several previous studies have been
conducted for detecting the variation of wheat grain Fe content (Garnett & Graham,
2005; Xu et al., 2012). The present study demonstrated that the association population
contained the plentiful genetic variations in grain Fe concentration. The high Fe
concentration in some wheat accessions, for example, KH438, KH445, and KH242, as
the elite lines, could be used for developing new wheat varieties with high grain Fe
concentration.

The understanding of the genetic basis of miererutrientsmicronutrient
accumulation_in the wheat grain and mapping of thequantitative trait loci (QTL) will
provide useful information ferimprovinggratn—for improving grain micronutrient
concentrations through marker-assisted selection (MAS). The present associated
mapping population exhibits a quantitative mode of inheritance for grain Fe
concentration, which is in agreement with previous reports (Tiwari et al., 2009;
Srinivasa et al., 2014). A-targe—number—of-theNumerous previous QTL mapping
studies have been conducted for wheat grain Fe (Aroraet al., 2019; Alomari et al.,
2018; Cu et al., 2020; Gorafi et al., 2016; Rathan et al., 2021; Velu et al., 2017; Wang
et al-., 2021a; Wang et al-., 2021b). EartierA previous study conducted by Pu et al.
(2014)reported five QTLs for grain Fe on chromosomes 2B, 4A, 5A, 5B, and 7D
using_recombinant inbred Hnesline population of wheat, and these QTLs were
coincided with the loci_ AX-111087936, AX-109551612, AX-110549899,
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AX-109486399, and AX-95112608 identified in this study. NetewserthyNotably, in
our study, two major SNPs with the highest phenotypic variation explained value
were identified for wheat grain-Fe concentration._One SNP (AX-108912427) was
mapped to the near genomic region of one QTL on chromosome 4A reported by Pu et
al. (2014). Another major SNP (AX-94729264)locatelocated on the 3D chromosome
near toQGFe.co-3Dwas reported by Liu et al{.(2019). Using the two wheat RIL
mapping_populations, Velu et al. (2017) identified four QTLs for wheat grain Fe on
chromosomes 2A, 2B, 5B, and 7B. In the near genomic regions of the four QTLs,
AX-94513201, AX-109274500, AX-108921926, and AX-110024541 were found in
our research. Interestingly, we observed that the loci for wheat grain Fe were seldom
found on the 1D chromosome befere-previously. Until recently, Rathan et al.(2021)
reported one QTL for wheat grain-Fe on chromosome 1D. In our research, we found
five significant SNPs for wheat grain Fe on chromosome 1D, which suggested that
this is the first time these SNPs were reported to the best of our knowledgethese-SNRPs-were
possible-thefirst-time-report._In the current study, all significant SNPs are scattered
across the entire wheat genome._In the comparatively narrow region on the 6B
chromosome, we detected a significant cluster of 12 SNPs, which spanned
approximately 4824 kb. This chromosome segment can be incorporated into breeding
efforts in cultivating a-high-Fe accumulation germplasm. Compared with the previous
studies, we detected more loci for wheat grain Fe concentration, which
possiblepossibly due to the high-density linkage map constructed with a large
numbersnumber of gene-based SNP markers based on a 660K SNP array in this study.
Identifying genes within a QTL region can help elucidate trait architecture if
gene function can be related to the associated trait. Although several studies have
reported QTLs for grain Fe concentration in wheat, only a few candidate genes have
previously been identified. The genetic mechanisms of wheat grain Fe concentration
are presently unclear. In this study, by candidate gene analysis, we found 10 candidate
genes for wheat grain Fe concentration. The functions of these candidate genes
arere—latedrelated to uptake, transport, translocation, remobilization, and
accumulation in wheat plants. Of the 10 candidate genes, TraesCS3D01G078500
encoded for a NAC domain-containing protein. Ogoet al.(2008) isolated an NAC
transcription factor, IDEF2, from rice and barley and revealed IDEF2 as a key
transcription factor regulating the Fe deficiency response. Uauyet al.(2006) also
reported one ancestral wild wheat allele, Gpc-B1, that is associated with increased Fe
content and encodes an NAC transcription factor that accelerates senescence and
increases nutrient remobilization from leaves to developpingdeveloping grains.
Interestingly, in the identified ten candidate genes, four genes were related to
senescence. autrieptsNutrients, including most minerals, are mobilized from
senescing leaves to other tissues during leaf senescence (Himelblau & Amasino, 2001).
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In wild-type wheat, Fe mobilization from the vegetative parts to the grain during leaf
senescence and grain maturation appears to be quite efficient, so most of the total Fe
is translocated to the grains (Garnett & Graham, 2005). The timing and efficiency of
senescence-mediated nutrient mobilization appears to be a primary determinant fer-of
grain Fe content. Previous studies have indicated that the NAM-B1 gene, which
encodes a member of the NAC transcription factor gene family, could play a central
role in senescence and nutrient mobilization (Uauy et al., 2006). In this study,
TraesCS4A01G430000, TraesCS4A01G432000, TraesCS4A01G431800, and
TraesCS4A01G431900 encoded the associated family protein (DUF581). The four
candidate genes are all related to senescence and transpertationefFe-transportation
offer ions. On the 3D chromosome, another gene, TraesCS3D01G080900, encodes a
defensin-like protein that has biological activities involving ion channel blockage.
More than 500 defensin proteins have been discovered to date. Most plant defensins
have been isolated from seeds, and these have also been identified in vegetative
tissues (Gachomo et al., 2012). TraesCS6A01G403500 encodes a remorin protein._
Remorin has been found in detergent-insoluble membranes and may be associated
with the cytoskeleton or membrane skeleton, which suggests that remorin may play a
role in regulating Fe uptake.

Increasing grain-Fe content in wheat has received more attention in recent years
and become an important quality breeding objective in wheat practice around the
world. However, to date, the genetic mechanism controlling grain Fe content is still
unclear in wheat. In the present study, a total of 911 significant SNPs associated with
grain Fe concentration were identified, and 10 candidate genes were predicted.
Collectively, these findings have three potential uses. First, these findings will provide
some useful wheat germplasms withhigh-faveurablehighlyfavorable alleles of Fe
content for breeding the elite Fe enrich varieties. Second, the markers identified in
this study could be utilized in molecular marker-assisted breeding (MAS) for the
biofortification of wheat to increase kernel-Fe content. The last and perhaps most
promising is the utilization of important regions with stacking significant SNPs, and
candidate genes will facilitate the breeding of Fe-enriched wheat varieties. Because
most of the significant SNPs and candidate genes in this study were not reported
before in wheat, more-further studies are needed to validate our findings in the future.

CONCLUSIONS

ta-brieflyBriefly, two major SNPs and nine reliable SNPs for wheat grain Fe
were identified, and tenrl0 candidate genes were predicted. All significant SNPs
identified in this study were scattered across the entire wheat genome, and one loci
cluster was found on the 6B chromosome. The functions of the candidate genes are
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primarily associated with transport, translocation, remobilization, and accumulation of
Fein wheat plants._Therefore, this study provides useful loci and_gene information for
improving Fe_concentration in wheat grain. In the future, further studies need to be
conducted for the candidate genes_identified herein, which_would be helpful to
elucidate_the molecular mechanisms of Fe_content in the wheat grain,,
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