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Iron (Fe) is an essential micronutrient of the body. Low concentrations of bioavailable Fe in
staple food result in micronutrient malnutrition. Wheat (Triticum aestivum L.) is the most
important global food crop and thus become an important source of iron for people.
Breeding nutritious wheat with high grain -Fe has provides a method for alleviating
malnutrition. Understanding the genetic basis of micronutrient concentration in wheat
grains may provide useful information for breeding for high Fe varieties through marker-
assisted selection (MAS). Hence, in the present study, a genome-wide association studies
(GWAS) was conducted for grain Fe. An association panel of 207 accessions was
genotyped using a 660K SNP array, and phenotyped for grain Fe content at three
locations. The genotypic and phenotypic data obtained thus was utilized for GWAS. A total
of 911 SNPs were significantly associated with grain Fe concentrations. These SNPs were
distributed on all 21 wheat chromosomes, and each SNP explained from 5.79% to 25.31%
of the phenotypic variations. Of particular note, the two significant SNPs (AX-108912427
and AX-94729264) that not only have a more significant effect on grain Fe concentration
but have the reliability under the different environments. Furthermore, candidate genes
potentially associated with grain Fe concentration were predicted, and 10 candidate genes
were identified. These candidate genes were related to transport, translocation,
remobilization, and accumulation of iron in wheat plants. These findings will not only help
in better understanding the molecular basis of Fe accumulation in grains, but also provide
elite wheat germplasms to develop Fe-rich wheat varieties through breeding.
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ABSTRACT

Iron (Fe) is an essential micronutrient of the body. Low concentrations of bioavailable Fe in
staple food result in micronutrient malnutrition. Wheat (7riticum aestivum L.) is the most
important global food crop and thus become an important source of iron for people. Breeding
nutritious wheat with high grain —Fe has provides a method for alleviating malnutrition.
Understanding the genetic basis of micronutrient concentration in wheat grains may provide
useful information for breeding for high Fe varieties through marker-assisted selection (MAS).
Hence, in the present study, a genome-wide association studies (GWAS) was conducted for grain
Fe. An association panel of 207 accessions was genotyped using a 660K SNP array, and
phenotyped for grain Fe content at three locations. The genotypic and phenotypic data obtained
thus was utilized for GWAS. A total of 911 SNPs were significantly associated with grain Fe
concentrations. These SNPs were distributed on all 21 wheat chromosomes, and each SNP
explained from 5.79% to 25.31% of the phenotypic variations. Of particular note, the two
significant SNPs (AX-108912427 and AX-94729264) that not only have a more significant
effect on grain Fe concentration but have the reliability under the different environments.
Furthermore, candidate genes potentially associated with grain Fe concentration were predicted,
and 10 candidate genes were identified. These candidate genes were related to transport,
translocation, remobilization, and accumulation of iron in wheat plants. These findings will not
only help in better understanding the molecular basis of Fe accumulation in grains, but also
provide elite wheat germplasms to develop Fe-rich wheat varieties through breeding.
Abbreviations GWAS, Genome-Wide Association Study; SNP, Single-Nucleotide
Polymorphism; LD, Linkage Disequilibrium; QTL, Quantitative Trait Loci; YY, Yuanyang; KF,
Kaifeng; SQ, Shangqiu; Fe, Iron.

INTRODUCTION

Micronutrient malnutrition is caused by a lack of important micronutrients such as Fe. Due
to its symptoms have few visible warning signs, so it is also called ‘hidden hunger’. This
condition could impair the mental and physical development of humans and generate long-term

effects on human health (4lderman et al., 2006). Microelement deficiencies are common in
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developed and developing countries, and have become a major global health concern. Experts
have estimated that one-third of the world population is at risk of Fe deficiency (4lloway, 2009).
Women of child-bearing age and children are more prone to microelement deficiencies because
they have greater micronutrient needs (Grzeszczak et al., 2020). Fe is a critical micronutrient,
and has several important functions in the body such as its central role in transportation of blood
oxygen, and reduced Fe intake can lead to impaired growth and behavioral problems (Welch &
Graham, 1999). Therefore, adequate intake of essential minerals is important to eliminating
‘hidden hunger’. Because the majority of the world’s population depends on a few staple crops,
such as wheat, rice, and maize, biofortification of these food crops seems to be a promising
approach to address dietary mineral deficiencies (Khush et al., 2012). Several attempts have been
made towards mineral improvement in plants, of which traditional breeding and genetic
engineering techniques have been considered to be the most feasible and cost-effective
approaches (Bouis, 2003).

Wheat (Triticum aestivum L.), one of the most important staple food crops in the world,
contributes more than 50% of the diet and up to 60% of daily intakes of Fe and Zn in several
developing countries (Cakmak et al., 2010). Because wheat has many advantages such as wide
agronomic flexibility and ease of storage, billions of people depend on wheat for fulfilling their
nutritional prerequisites. Hence, a sustainable way against mineral deficiencies is improvement
of nutritional quality of wheat products through breeding approaches. Selection of wheat
varieties with naturally high mineral content can easily facilitate this strategy. This requires a
better understanding of the genetic basis of mineral element accumulation in wheat grains.

Inheritance of micronutrients is quantitative in nature. Linkage mapping and association
analysis are useful methods in identifying QTLs for mineral elements. Linkage mapping
generally involves specific populations such as recombinant inbred lines (RILs), doubled haploid
(DH) lines, F,.3 families, and backcross populations (BC,Fy) to identify QTLs of target traits
(Groos et al., 2007; Wang et al., 2011). However, these populations can only be used to identify
QTLs for a limited number of traits. Furthermore, construction of these mapping populations is
time-consuming and labor-intensive. Compared with linkage mapping, genome-wide association
studies (GWAS) based on linkage disequilibrium (LD) capitalizes on historical recombination,
and thus could identify more QTLs related to complex traits at a higher mapping resolution
(Falconer & MacKay, 1996). Therefore, GWAS has become an important approach in QTL
mapping for important and complex agronomic traits (Gao et al., 2016). Various studies have
been carried out to identify QTLs associated with wheat grain-Fe (4rora et al., 2019; Alomari et
al.,, 2018; Crespo-Herrera et al., 2017; Cu et al., 2020, Gorafi et al., 2016, Kumar et al., 2018;
Peleg et al., 2009; Rathan et al., 2021; Roshanzamir et al., 2013, Shi et al., 2013; Srinivasa et
al., 2014; Tiwari et al., 2016; Velu et al., 2017; Wang et al., 2021a;, Wang et al., 2021b).
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Furthermore, Uauy et al. (2006) have reported a NAC gene (NAM-BI) that associated with
increased grain Fe content.

In GWAS analysis, the low density of molecular markers could cause loss of linkages
between markers and loci of target traits. High-density linkage maps are important to high-
resolution QTL mapping and identification of candidate genes. Hence, plentiful molecular
markers are imperative to construct wheat saturate genetic maps, and to significantly improve the
efficiency of QTL mapping in GWAS. Compared with other types of molecular markers, single-
nucleotide polymorphisms (SNPs) have many advantages such as the most abundant DNA
sequence variation present in plant genomes, are virtually unlimited, evenly distributed along the
genome, bi-allelic, and co-dominant (4kpinar et al., 2017), making SNPs ideal molecular
markers in GWAS analysis. With the development of new sequencing technologies, methods of
increasing the number of SNPs have been developed in wheat. Particularly, recently developed
SNP gene chips have provided larger numbers of SNP markers. To date, SNP chips have been
widely used in QTL analysis for important agronomic traits (Gao et al., 2016, Cui et al., 2017).

Elevation of essential mineral concentrations in grains is an effective strategy for improving
the nutritional value of wheat to prevent micronutrient malnutrition. In the present study, we
performed associative analysis with 207 wheat accessions from eight countries using 660K SNP
chips to identify QTLs for the concentration of grain Fe. This study has two objectives. The first
is to identify QTLs and candidate genes of essential microelements that may be useful for wheat
biofortification. The second is to use the molecular markers significantly associated with major
effect QTLs in marker-assisted wheat breeding, increasing the possibility of new elite wheat

varieties with high grain Fe content.

MATERIALS & METHODS

Plant materials and field trials

The association panel used in the present study contained 207 wheat diverse accessions,
comprising 194 accessions from the different wheat planting regions of China including Henan
Province, Shannxi Province, Jiangsu Province, Shandong Province, Sichuan Province, Hebei
Province, Shanxi Province, Beijing City, Anhui Province, Hubei Province, Guizhou Province,
Yunnan Province, Ningxia Province, and Heilongjiang Province and 13 accessions from seven
other countries, including Russia, France, Mexico, Japan, Australia, Bulgaria, and Romania. All
of the accessions were grown at Yuanyang (Y'Y, E 113°37', N 35°12"), Kaifeng (KF, E 114°30’,
N 34°80") and Shangqiu (SQ, E 115°65’, N 34°45") in Henan Province during the 2016 cropping

seasons. Soil Fe content of the three experiment locations were measured. And the mean Fe
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content of soil for Shangqiu, Yuanyang and Kaifeng was 26.7 mg/kg, 26.4 mg/kg and 26.1
mg/kg, respectively. Field trials were conducted in randomized complete blocks with three
replicates at all locations. Each plot contained three 2-m rows spaced 20 cm apart. Agronomic
management followed local practices. At wheat maturity, seeds were harvested separately for
each accession under the different planted locations. In every location, one sample of seeds was
collected for each replicated field plot and total three samples were obtained for each accession.

Then the three samples were used to evaluate Fe concentration of each accession.
Determination of grain Fe concentration

Grains were harvested from each accession of the association population in the Kaifeng,
Shangqiu and Yuanyang environments when they were matured. The following method was used
for the analysis of grain Fe concentration (Zarcinas et al., 1987). First, grains were washed
thoroughly with purified water three times to remove soil and dirt. Grains were dried in an oven
at 70°C for 72 h and ground into a fine powder that could pass through a 1-mm screen. Then, 50
micrograms of powdered samples from each sample were microwave digested with SmL nitric
acid (HNOs3) and 2 mL hydrogen peroxide (H,O;) in polypropylene tubes using a microwave
accelerate reaction system (CEM USA). Subsequently, Fe concentrations in the solutions were
measured by a flame Atomic Absorption Spectrometer (AAS) (model 1100, Perkin-Elmer).
Meanwhile, blank samples and standard samples were added each time for reference. All of the

results represent the average of three replications.
Genotyping and quality control

The samples consisting of 207 wheat accessions were genotyped using the Affymetrix 660K
SNP array comprising 630,517 SNPs and performed by Capital Bio-Corporation, Beijing, China
(http://www.capitalbiotech.com/), following the manufacturer’s protocol as described by

Akhunov et al.(2009). To ensure the quality of genotyping data, sample call rate, SNP call rate,
minor allele frequency (MAF), and Hardy-Weinberg equilibrium (HWE) were analyzed. In
addition, accuracy was checked for SNP clustering, and manual adjustments were made for
incorrectly clustered SNPs. The SNPs with a minor allele frequency (MAF) < 0.05 and missing
data over 20% were excluded from further data analysis. The physical positions of SNP markers
from 660K SNP arrays were obtained from the International Wheat Genome Sequencing
Consortium website (IWGSC, http://www.wheatgenome.org/). Finally, a total of 224,706 high-
quality SNP markers were used for GWAS analysis.
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Genome-wide association analysis and haplotype analysis

In the present study, a total of 224,706 SNPs with a minor allele frequency > 5% were used
for the GWAS. Associations between genotypic and phenotypic data were analyzed using the
kinship matrix by GAPIT package in R software (Lipka et al., 2012). The P value determining
whether a SNP marker was associated with Fe concentration and R? were used to evaluate the
magnitude of the MTA (significant marker-trait association) effects. GWAS was conducted for
wheat grain Fe concentration at YY, KF, and SQ environments. Common haplotype patterns
were assessed in Haploview version 4.2 and haplotype blocks were defined with the confidence

interval method.
Candidate gene identification

In order to identify the candidate genes for SNP flanking regions, the flanking DNA
sequences corresponding to the SNP markers significantly associated with Fe concentration were
used in BLAST searches against the reported common wheat reference genome sequence in
NCBI databases (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The high confidence gene list of wheat
was also obtained from the International Wheat Genome Sequence Consortium (IWGSC)
website (https://wheat-urgi.versailles.inra.fr/) and used to identify possible candidate genes for
each identified loci. The annotation of the candidate genes was accomplished with InterProScan
(http://www.ebi.ac.uk/interpro/scan.html). The
transcript and the corresponding annotation of candidate genes were obtained from the website
of IWGSC. For the loci that no candidates found in its mapping interval, the gene close to the
peak SNP of the loci was assigned as the candidate.

RESULTS

Phenotypic variation for grain Fe concentration in wheat populations

Grain Fe concentration was tested for 207 genotypes in three environments (Supplemental
Table S1). The range and mean of grain Fe concentration in the accessions are presented in Table
1 and Figure 1. Grain Fe concentration of accessions for the different environments are also
depicted in Figure 1. Grain Fe concentration varied from 1.33-250.62 mg/kg at Kaifeng, 20.23—
158.27 mg/kg at Shangqiu, and 28.15-143.78 mg/kg at Yuanyang. Mean Fe concentration was
99.57 mg/kg at Kaifeng, 74.00 mg/kg at Shangqiu, and 68.12 mg/kg at Yuanyang. Grain Fe
concentration varied from 16.57 to 184.22 mg/kg (mean: 80.56 mg/kg) among the three locations.
In Kaifeng, the highest Fe concentration was recorded in genotype KH438 (250.62 mg/kg),
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followed by KH445 (245.85 mg/kg), and KH242 (237.74 mg/kg), whereas the lowest Fe
concentration was recorded in genotype KH378 (1.33 mg/kg) followed by KH324 (4.67 mg/kg).
In Shangqiu, the highest Fe concentration was recorded in genotype SH257 (158.27 mg/kg),
followed by SH373 (134.24 mg/kg), and SH272 (133.85 mg/kg), but minimum Fe content was
recorded in genotype SH418 (20.23 mg/kg), followed by SH349 (20.24 mg/kg). However, in
Yuanyang, the highest Fe concentration was recorded in genotype AH418 (143.78 mg/kg),
followed by AH429 (133.76 mg/kg), and AH413 (131.38 mg/kg), while the lowest Fe content
was recorded in genotype AH249 (28.15 mg/kg), followed by AH240 (29.59 mg/kg). The mean
Fe concentrations of all of the accessions from three locations could be described in decreasing
order as follows: Kaifeng (99.57 mg/kg) > Shangqiu (74.00 mg/kg) > Yuanyang (68.12 mg/kg).
On the basis of the above statistical analysis, wheat accessions with high Fe concentrations were
recommended for breeding cultivars and selected as donors for Fe mineral biofortification in the
future. Population distributions of GWAS accessions for grain Fe concentrations were
continuous and exhibited a wide range of values for each location (Figure 1), which showed that

the inheritance of grain Fe was consistent with the quantitative trait.
Genome-wide association analysis of wheat grain Fe concentration

Across the three locations, a total of 911 SNPs were significantly associated with grain Fe
concentration (Figure 2, Supplemental Table S2), which were distributed across all 21
chromosomes. The phenotypic variation explained by each SNP ranged from 5.79% to 25.31%,
suggesting that SNPs with moderate and minor effects on grain Fe concentration were detected.
Association analysis for grain Fe concentration in three locations was further analyzed. In
Yuanyang were identified 48 significantly SNPs on chromosomes 2A, 2B, 2D, 3A, 3B, 3D, 6A,
and 6B. However in Kaifeng, 209 significantly SNPs were detected and they distributed on
chromosomes 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D.
Compared with Yuanyang and Kaifeng, in Shangqiu were identified the more number of
significant SNPs. Although total of 446 SNPs were identified in Shangqiu. each SNP had a lower
explanation percentage for phenotypic variation. These SNPs were located on chromosomes 2A,
3A, 3D, 4A, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D. In addition, SNP number varied
greatly across the different chromosomes, of which the highest number of SNPs was found on
chromosome 5B (381) and the lowest on chromosome 4D and 6D (1), which suggests that the 5B
chromosome is the main genetic region for grain Fe concentration. According to the flanking
intervals of SNP, the identified SNPs could be categorized into 46 non-redundant QTLs (Table
2). The number SNPs in each non-redundant QTL covered was different and varied from 1 to 64

SNPs. The number of QTLs varied across different genomes, and the highest number of QTLs
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231 was found in the A genome (18), followed by the B genome (16), while only 12 QTLs were
232 identified in the D genome.

233 Significantly, two major SNPs were found on chromosome 4A and 3D. One SNP is AX-
234 108912427, its physical position was 699,571,654 bp on chromosome 4A, and it explained 25.31%
235 of the observed variation in Fe grain concentration. Another SNP, AX-94729264, could explain
236 24.84% of the observed phenotypic variations and was mapped to the physical position of
237 40,526,440 bp on chromosome 3D. In GWAS analysis, reliable SNPs that were simultaneously
238 detected in more than two environments were considered more relevant inbreeding the new
239 varieties with high grain Fe concentration. In the present study, nine reliable SNPs, including
240 AX-94729264, AX-108912427, AX-94936962, AX-109956643, AX-111493816, AX-
241 111088162, AX-109899864, AX-94702817, and AX-95210102, were detected in Kaifeng and
242 Shangqiu environments. Of particular note, the two significant SNPs (AX-108912427 and AX-
243 94729264) that not only have a more significant effect on grain Fe concentration but have the

244 reliability under the different environments, so further study was conducted for the two SNPs.
245 Prediction of candidate genes

246 To understand the molecular mechanisms of Fe accumulation in wheat, candidate gene
247 analysis was conducted for Fe. Candidate genes were predicted for the SNPs that were identified
248 in GWAS analysis. An expression heat map was constructed for these candidate genes using the

249 public database of Wheat Expression Browser (http://www.wheat-expression.com), and genes

250 that were only specifically expressed in grain tissues were predicted as candidate genes for grain
251 Fe concentration. Ten candidate genes were identified for grain Fe concentration (Table 3). On
252 chromosome 3D, two candidate genes were found. One was TraesCS3D01G078500 that encoded
253 for a NAC domain-containing protein, which showed potential relevance to metal remobilization
254 and accumulation in wheat. Another gene is TraesCS3D01G080900, which encodes a defensin-
255 like protein that has biological activities in ion channel blockage. Five candidate genes were
256 found on chromosome 4A, including TraesCS4A01G430000, TraesCS4A01G431200,
257 TraesCS4A01G431800, TraesCS4A01G431900, and TraesCS4A01G432000. Interestingly,
258 TraesCS4A01G430000 and TraesCS4A01G432000 encode plant unknown function DUF581
259 family proteins that possibly participate in mineral translocation to seeds. However,
260 TraesCS4A01G431800 and TraesCS4A01G431900 encoded an associated family protein
261 (DUF581) that is related to senescence and participates in transporting Fe ions. Only one gene,
262 TraesCS4A01G431200, was associated with acid phosphatase. Acid phosphatase plays a role in
263 providing the desired energy for active transport and possibly affects Fe uptake and transport.
264 TraesCS6A01G403500 on chromosome 6A encodes the remorin protein that may be associated
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with the cytoskeleton or membrane skeleton and may play a role in regulating Fe translocation,
while TraesCS6B01G449700 on chromosome 6B encodes a ring finger protein that is relevant to

the accumulation of more Fe in grains.
Haplotypes associated with grain Fe concentration

Based on the genome-wide association analysis, we detected a significant cluster of 12
SNPs on chromosome 6B. In the corresponding region, 10 SNPs exhibited strong LD and could
form two LD blocks (blockl and block2) (Table 4, Figure 3, Supplemental Table S3). The first
large LD block spanned approximately 2,908 kb, including six SNPs with two haplotypes
(HaplA and Hap1B), and the second LD block spanned approximately 1,916 kb, including four
SNPs with two possible haplotypes (Hap2A and Hap2B). To compare the effect of different
haplotypes, we analyzed the effect of each haplotype on grain Fe concentration variation across
the three environments. The variation of grain Fe concentration in Hapl all reached the
significant levels in the YY and SQ environments, but in Hap2, the significant level for grain Fe
concentration was only observed in the SQ environment. In the KF environment, although Hapl
or Hap2 had non-significant effects on the grain Fe concentrations, the mean of grain Fe
concentration with HapB was higher than that of HapA, which coincided with the distribution
tendency in YY and SQ. The combined effect of the Hap1 and Hap2 blocks was also analyzed.
In the combination of Hapl+Hap2, the variations in grain Fe concentration reached significant
levels in YY and SQ. In addition, the combination HaplA+Hap2A had higher frequency
(70.73%) compared to haplotype Hap1 B+Hap2B (29.27%).

Comparison with the previous studies

Several previous studies have been conducted for wheat grain Fe, and some QTLs were
identified for this trait. We retrieved a total of 94 wheat Fe QTLs that were distributed among all
21 chromosomes except 1D (Supplemental Table S4). To compare the Fe QTLs of this study
with that of previous studies, the physical positions of Fe QTLs were determined using the
closest linked markers. Ultimately, the physical position of 57 QTLs was successfully
determined (7ong et al., 2020). When we compared Fe QTLs of this study with those of the
previous investigations, major differences in QTL amount or QTL physical position were
observed. In the present study, a total of 46 Fe QTLs were identified, whereas total of 94 QTLs
were found all of the previous studies. We found that the position of a few QTLs of this study
nearly coincided with that of the previous studies. For example, Gorafi et al. (2016) and our
group found one wheat Fe QTL near the 496 Mb position on chromosome 5D, and Pu et al.
(2014) and our team also found one wheat Fe QTL near the 616 Mb position on chromosome 7D.
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In addition, in the similar location for some QTL of the present study, several QTLs were
identified in the previous studies, which suggest that the partly result of this study is accordance
with the previous study. Except for the above QTLs, other QTLs of the present study were not
identified in the previous studies. For instance, on chromosome 1D, we detected one QTL, but

this QTL was found in previous studies.

DISCUSSION

Breeding elite wheat varieties with high microelement content has proven to be an effective
biofortification method to address micronutrient malnutrition. The kernel as the most important
organ of wheat, and provides useful information for biofortification breeding, and therefore has
become the main study objective in Fe content research. Increasing micronutrient content in
wheat through breeding requires the existence of substantial genetic variation for this trait. And
selecting the accessions with high Fe grain concentration from the diverse germplasms is
important in wheat breeding programs for enhancing Fe content. Several previous studies have
been conducted for detecting the variation of wheat grain Fe content (Garnett & Graham, 2005;
Xu et al., 2012). The present study demonstrated that the association population contained the
plentiful genetic variations in grain Fe concentration. The high Fe concentration in some wheat
accessions, for example, KH438, KH445, and KH242, as the elite lines, could be used for
developing new wheat varieties with high grain Fe concentration.

The understanding of the genetic basis of micronutrients accumulation in the wheat grain
and mapping of the quantitative trait loci (QTL) will provide the useful information for
improving grain micronutrient concentrations through marker assisted selection (MAS). The
present associated mapping population exhibits a quantitative mode of inheritance for grain Fe
concentration, which is in agreement with previous reports (Tiwari et al., 2009; Srinivasa et al.,
2014). A large number of the previous QTL mapping studies have been conducted for wheat
grain Fe (Arora et al., 2019; Alomari et al., 2018; Cu et al., 2020, Gorafi et al., 2016, Rathan et
al., 2021; Velu et al., 2017; Wang et al. 2021a; Wang et al. 2021b). Earlier study conducted by
Pu et al. (2014) reported five QTLs for grain Fe on chromosomes 2B, 4A, SA, 5B and 7D in a
recombinant inbred wheat lines, these QTLs were coincided with the loci AX-111087936, AX-
109551612, AX-110549899, AX-109486399 and AX-95112608 identified in this study.
Noteworthy, in our study two major SNPs with the highest phenotypic variation explained value
were identified for wheat grain Fe concentration. One SNP (AX-108912427) was mapped to the
near genomic region of one QTL on chromosome 4A reported by Pu et al. (2014). Another
major SNP (AX-94729264) locate on 3D chromosome that near to QGFe.co-3D reported by Liu
et al.(2019). Using the two wheat RIL mapping populations, Velu et al. (2017) identified four
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QTLs for wheat grain Fe on chromosomes 2A, 2B, 5B and 7B. In the near genomic regions of
the four QTLs, AX-94513201, AX-109274500, AX-108921926 and AX-110024541 were found
in our research. Interestingly, we observed that the loci for wheat grain Fe were seldom found on
1D chromosome before. Until recently, Rathan et al. (2021) reported one QTL for wheat grain
Fe on chromosome 1D. In our research, we found five significant SNPs for wheat grain Fe on
chromosome 1D, which suggested that these SNPs were possible the first time report. In the
current study, all significant SNPs scattered across the entire wheat genome. In the
comparatively narrow region on 6B chromosome, we detected a significant cluster of 12 SNPs,
which spanned approximately 4824 kb. This chromosome segment can be incorporated into
breeding efforts in cultivating a high-Fe accumulation germplasm. Compared with the previous
studies, we detected more loci for wheat grain Fe concentration, which possible due to the high-
density linkage map constructed with a large numbers of gene-based SNP markers based on a
660K SNP array in this study.

Identifying genes within a QTL region can help elucidate trait architecture if gene function
can be related to the associated trait. Although several studies have reported QTLs for grain Fe
concentration in wheat, only a few candidate genes have previously been identified. The genetic
mechanisms of wheat grain Fe concentration are presently unclear. In this study, by candidate
gene analysis, we found 10 candidate genes for wheat grain Fe concentration. The functions of
these candidate genes are re- -lated to uptake, transport, translocation, remobilization, and
accumulation in wheat plants. Of the 10 candidate genes, TraesCS3D01G078500 encoded for a
NAC domain containing protein. Ogo et al. (2008) isolated an NAC transcription factor, IDEF2,
from rice and barley and revealed IDEF2 as a key transcription factor regulating the Fe
deficiency response. Uauy et al. (2006) also reported one ancestral wild wheat allele, Gpc-B1,
that is associated with increased Fe content and encodes an NAC transcription factor that
accelerates senescence and increases nutrient remobilization from leaves to developping grains.
Interestingly, in the identified ten candidate genes, four genes were related to senescence.
nutrients, including most minerals, are mobilized from senescing leaves to other tissues during
leaf senescence (Himelblau & Amasino, 2001). In wild-type wheat, Fe mobilization from the
vegetative parts to the grain during leaf senescence and grain maturation appears to be quite
efficient, so most of the total Fe is translocated to the grains (Garnett & Graham, 2005). The
timing and efficiency of senescence-mediated nutrient mobilization appears to be a primary
determinant for grain Fe content. Previous studies have indicated that the NAM-B1 gene, which
encodes a member of the NAC transcription factor gene family, could play a central role in
senescence and nutrient mobilization (Uauy et al., 2006). In this study, TraesCS4A01G430000,
TraesCS4A01G432000, TraesCS4A01G431800, and TraesCS4A01G431900 encoded the
associated family protein (DUF581). The four candidate genes are all related to senescence and
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participate in transporting Fe ions. On 3D chromosome, another gene, TraesCS3D01G080900,
encodes a defensin-like protein that has biological activities involving ion channel blockage.
More than 500 defensin proteins have been discovered to date. Most plant defensins have been
isolated from seeds, and these also been identified in vegetative tissues (Gachomo et al., 2012).
TraesCS6A01G403500 encodes a remorin protein. Remorin has been found in detergent-
insoluble membranes and may be associated with the cytoskeleton or membrane skeleton, which
suggests that remorin may play a role in regulating Fe uptake.

Increasing grain Fe content in wheat has received more attention in recent years and become
an important quality breeding objective in wheat practice around the world. However, to date,
the genetic mechanism controlling grain Fe content is still unclear in wheat. In the present study,
a total of 911 significant SNPs associated with grain Fe concentration were identified, and 10
candidate genes were predicted. Collectively, these findings have three potential uses. First, these
findings will provide some useful wheat germplasms with high favourable alleles of Fe content
for breeding the elite Fe enrich varieties. Second, the markers identified in this study could be
utilized in molecular marker-assisted breeding (MAS) for biofortification of wheat to increase
kernel-Fe content. The last and perhaps most promising is the utilization of important regions
with stacking significant SNPs and candidate genes will facilitate the breeding of Fe enriched
wheat varieties. Because most of the significant SNPs and candidate genes in this study were not

reported before in wheat, more further studies are needed to validate our findings in the future.

CONCLUSIONS

In briefly, two major SNPs and nine reliable SNPs for wheat grain Fe were identified, and
ten candidate genes were predicted. All significant SNPs identified in this study scattered across
the entire wheat genome and one loci cluster found on 6B chromosome. The functions of the
candidate genes are primarily associated with transport, translocation, remobilization, and
accumulation of Fe in wheat plants. Therefore, this study provides useful loci and gene
information for improving Fe concentration in wheat grain. In the future, further studies need be
conducted for the candidate genes identified herein, which would be helpful to elucidate the

molecular mechanisms of Fe content in the wheat grain.
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Table 1(on next page)

Tablel Descriptive statistics for grain Fe concentrations in GWAS population and soil Fe
content in three environments

® The maximum value of grain Fe concentration. "The minimum value of grain Fe
concentration. “ The mean value of grain Fe concentration. Significant differences in the
means for different environments ( P[J0.05 ) are indicated by different letters. ¢ Standard
deviation. ®Kurtosis refer to a measure of the ‘tailedness’ of the probability distribution of a
real-valued random variable. " Skewness refer to a measure of the asymmetry of the

probability distribution of a real-valued random variable about its mean. °The mean value of

soil Fe content for different environments.
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Environment Max?#(mg/kg) Min®(mg/kg) Mean®(mg/kg) SDd Skew® Kurtosisf Mean content for soil
(mg/kg)

Kaifeng (KF) 250.62 1.33 99.57h 64.50 0.5945 -0.6106 26.1

Shangqiu(SQ) 158.27 20.23 74.001 21.69 0.3568 0.8754 26.7

Yuanyang (YY) 143.78 28.15 63.12i 22.38 0.9795 0.8321 26.4

Mean 184.22 16.57 80.56 36.19 0.6436 0.3656 26.4
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Table 2(on next page)

Table 2 List of significant loci and their detailed information for Fe concentration
identified by GWAS

Nu refer to the number of the loci detected in this study; Peak SNP refer to the most
significant SNP in the mapping interval; Position refer to the physical position of most

significant SNPs in the mapping interval; P Value means P value of the target trait calculated

by MLM model; R’ refer to the percentage of phenotypic variance explained by the locus. KF,

SQ, YY refer to Kaifeng, Shanggiu, Yuanyang environment, respectively.
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Nu Chromosome Interval range No. of SNPs  Environment Peak SNP Position P Value R%(%)
1 1A 12192544- 35 YY AX- 504855880 5.02x104 12.19
504855880 110912741
2 1A 3260219-560890453 17 KF AX- 560890453 2.29x104 11.66
109487734
3 1A 338830974- 15 SQ AX-95178074 377027087 2.05x104 7.32
574937064
4 1B 328824347- 5 KF AX- 328879038 6.97x104 10.62
328880060 111580083
1B 385161579 1 YY AX-94632727 385161579 8.66x10* 11.69
1B 336787649- 136 SQ AX- 409302131 1.42x10-5 10.06
603147101 108903980
7 1D 5421805-20056510 5 KF AX- 16132987 9.97x10-¢ 14.71
110529533
8 2A 17032001- 10 KF AX-95247517 182302531 1.77x104 11.91
182302531
9 2A 52130032- 4 YY AX- 105628630 7.26x104 11.85
108517228 108896742
10 2A 83586426- 6 SQ AX- 775029238 5.07x104 6.45
775041568 111455865
11 2B 27522279- 4 KF AX- 95738751 3.01x10-¢ 15.91
777308839 110970921
12 2B 77961365- 32 YY AX- 77961365 2.37x104 12.89
475608029 108855338
13 2D 15442231-86079836 5 KF AX- 15442231 1.79x10-4 11.89
111611520
14 2D 50470803 1 YY AX-95104146 50470803 9.58x10-4 11.60
15 3A 16070421 1 YY AX- 16070421 7.98x10-4 11.77
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108847051
16 3A 15348646- 9 SQ AX-94863805 144473416 6.11x10-4 6.26
144473416
17 3A 202587965- 13 KF AX-94987631 731220289 5.01x10-5 12.87
731220289
18 3B 10301481- 3 YY AX- 679198055 6.95x104 11.89
737764644 108861017
19 3B 263249368- 7 KF AX- 376625452 9.37x10°¢ 14.77
404801032 110922471
20 3B 825341801 1 SQ AX- 825341801 8.37x10* 5.96
110526198
21 3D 40526440 1 KF AX-94729264 40526440 5.84x10°10 24.84
22 3D 40526440 1 SQ AX-94729264 40526440 1.57x10-5 9.95
23 3D 52650282- 5 YY AX- 57034968 4.46x10-4 12.30
454744784 108814800
Table 2 (continued)
No Chromosome Interval range No. of SNPs  Environment Peak SNP Position P Value R2(%)
24 4A 451704-699571654 8 KF AX- 699571654 4.35x10-10 25.31
108912427
25 4A 572558552- 4 SQ AX- 699571654 8.41x10¢ 10.60
718836253 108912427
26 4B 11987531-670399775 26 KF AX- 14490156 3.06x10 13.60
111479123
27 4D 500023674 1 SQ AX- 500023674 7.17x10* 6.11
109847855
28 S5A 492890942- 4 SQ AX- 492890942 6.99x10 8.42
553064045 109623019
29 S5A 547505636- 39 KF AX- 549160416 9.86x10¢ 14.72
650240330 109379942
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Table 3(on next page)

Table 3 The candidate genes and their information for grain Fe concentration identified
in this study

® The number of candidate genes for wheat grain Fe concentration. ° Physical position of the

SNP as reported in the IWGSC Chinese Spring reference genome RefSeq v2.0.
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Nu? Chromosome Identified loci in current Position(bp)® Candidate genes Annotation
study (closest/nearby)

1 3D AX-94729264 40526440 TraesCS3D01G078500 NAC domain-containing protein

2 TraesCS3D01G080900 defensin-like protein

3 4A AX-108912427 699571654  TraesCS4A01G430000 DUF581 family protein

4 TraesCS4A01G431200 Acid phosphatase 1

5 TraesCS4A01G431800 senescence-associated family
protein, putative (DUF581)

6 TraesCS4A01G431900 senescence-associated family
protein, putative (DUF581)

7 TraesCS4A01G432000 DUF581 family protein

8 6A AX-94936962 611858549  TraesCS6A01G403500 Remorin

9 6B AX-94702817 708943077  TraesCS6B01G447400 Remorin

10 TraesCS6B01G449700 Ring finger protein, putative
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Table 4(on next page)

Table 4 Variance analysis for haplotypes with different alleles and haplotype
combinations in two blocks on chromosome 6B

" Means the significant differences between haplotype A and haplotype B ( P[]0.05 ).
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Block Haplotypes Fe KF Fe SQ Fe YY Hap frequency(%)
Block1 HaplA 98.35+6.52 67.32+£2.23 63.32+2.44 34.00
Hap1B 102.06+5.83 73.45+1.88" 70.59+2.19" 66.00
Block2 Hap2A 92.90+6.02 68.19+2.32 64.28+2.65 70.00
Hap2B 96.41£10.18 77.27+£3.78" 74.20+5.20 30.00
Block1+ Block2 HaplA+ Hap2A 92.90+6.02 68.19+2.32 64.28+2.65 70.73
Hap1B+ Hap2B 99.48+10.15 76.91+£3.94* 75.49+5.25" 29.27
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Figure 1

Distribution of grain Fe concentrations in the wheat association analysis population

(A) Box plot for grain Fe concentration in three environments (Shangqiu ,Yuanyang and
Kaifeng). (B, C, D) Distribution of grain Fe concentration for the wheat association analysis

population in Kaifeng (KF), Shanggiu (5Q), Yuanyang (YY) environment, respectively.
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Figure 2

Manhattan and QQ plots of GWAS for wheat grains Fe concentration in the wheat
association mapping population based on the mixed linear model (MLM)

The horizontal red color line indicated the genome-wide significant threshold of -log,,(p-

value) of 3.0. The SNPs above the red dotted line are significantly associated with grain Fe
variation. Quantile-quantile scale representing expected versus observed -l1og10 (p-value) in

three environments (Kaifeng, Shangqiu and Yuanyang)
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Figure 3

Haplotype analysis for the significant SNPs associated with wheat grains Fe
concentration on chromosome 6B

Haplotype heatmap surrounding significant SNPs on chromosome 6B
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