Contributions to a neurophysiology of meaning: The interpretation of written messages could be an automatic stimulus-reaction mechanism before becoming conscious processing of information. 3 4 Roberto Maffei^{1*}, Livia Selene Convertini¹, Sabrina Quatraro¹, Stefania Ressa¹, 5 Annalisa Velasco¹ 6 7 ¹ A.L.B.E.R.T. (ARPA-Firenze Landmarks on human Behaviour Experimental Research 8 Team), Florence – Italy. 9 * E-mail: roberto@robertomaffei.it; albert@arpafirenze.it 10 11 12 13 14 Abstract 15 **Background**. Interpretation is the process through which humans attribute meanings to 16 every input they grasp from their natural or social environment. Formulation and 17 exchange of meanings through natural language are basic aspects of human behaviour 18 and important neuroscience subjects; from long ago, they are the object of dedicated 19 scientific research. Two main theoretical positions (cognitivism and embodied cognition) 20 are at present confronting each other; however, available data is not conclusive and 21 scientific knowledge of the interpretation process is still unsatisfactory. Our work 22 proposes some contributions aimed to improve it.

23 *Methodology*. Our field research involved a random sample of 102 adults. We presented 24 them a real world-like case of written communication using unabridged message texts. 25 We collected data (written accounts by participants about their interpretations) in 26 controlled conditions through a specially designed questionnaire (closed and opened 27 answers). Finally, we carried out qualitative and quantitative analyses through some 28 fundamental statistics. 29 **Principal Findings**. While readers are expected to concentrate on the text's content, they 30 rather report focusing on the most varied and unpredictable components: certain physical 31 features of the message (e.g. the message's period lengths) as well as meta-information 32 like the position of a statement or even the lack of some content. Just about 12% of the 33 participants' indications point directly at the text's content. Our data converge on the 34 hypothesis that the components of a message work at first like physical stimuli, causing 35 readers' automatic (body level) reactions independent of the conscious attribution of 36 meaning. So, interpretation would be a (learned) stimulus-reaction mechanism, before 37 switching to information processing, and the basis of meaning could be 38 perceptual/analogical, before propositional/digital. We carried out a first check of our 39 hypothesis: the employed case contained the emerging of a conflict and two versions 40 ("H" and "S", same content, different forms) of a reply to be sent at a crucial point. We 41 collected the participants' (independent) interpretations of the two versions; then, we 42 asked them to choose which one could solve the conflict; finally, we assessed the 43 coherence between interpretations and choice on a 4-level scale. The analysis of the 44 coherence levels' distribution returned that, with regards to our expectations, incoherence 45 levels are over-represented; such imbalance is totally ascribable to "H" choosers. "H"
46 and "S" choosers show significant differences (p << 0.01) in the distributions of
47 coherence levels, what is inconsistent with the traditional hypothesis of a linear
48 information processing resulting in the final choice. In the end, with respect to the
49 currently opposing theories, we found out that our hypothesis has either important
50 convergences or at least one critical divergence, joined with the capacity to encompass
51 they both.

52

53 Abstract

Background. Even though the interpretation of natural language messages is generally conceived as a conscious processing of the message content, the influence of unconscious factors is also well known. What is still insufficiently known is the way such factors work. We have tackled interpretation assuming that it is a process, whose basic features are the same for the whole humankind, and employing a naturalistic approach (careful observation of the phenomenon in conditions the closest to "natural" ones, -and precise description before and independently of data statistical analysis).

Methodology. Our field research involved a random sample of 102 adults. We presented them with a complete real world-like case of written communication using unabridged message texts. We collected data (participants' written reports on their interpretations) in controlled conditions through a specially designed questionnaire (closed and opened answers), then treated it through qualitative and quantitative methods.

Contributions to a NEUROPHYSIOLOGY of MEANING

66 Principal Findings. We have proposed a hypothesis, upheld by field observations and
67 some experimental results, about where and how unconscious factors could act. Where:
68 in the three-step process we propose, the second step (we named it "disassembling")
69 presents special features indicating the possible action of unconscious factors. How:
70 disassembling appears to be an automatic reaction to the words/expressions of the read
71 message; thus, words and expressions would also function like physical stimuli, rather
72 than like symbols only. Such hypothesis, once confirmed, could help explaining some
73 links between the cultural (human communication) and the biological dimension
74 (stimulus-reaction mechanisms as the basis for meanings) of humans.

75

76 Introduction

Human-environment interactions have something special, with regards to the 77 78 other animals' interactions: human behaviour is not restricted to appropriate reactions; it 79 encompasses also entail conscious knowledge, which entails i.e. the attribution of 80 meanings (semantic aspect) to the incoming signals and stimuli. The other animals can 81 perform sophisticated reactions to the environmental inputs; however, it seems they do 82 not "understand" them (Gruber et al., 2015), even though they certainly can socially 83 exchange some learnings through imitation (about this, a classic study in Mainardi, 1988, 84 and some recent examples of reserrach researches in by Baciadonna, McElligott & 85 Briefer, 2013; Carter et al., 2014; Suchak et al., 2014). 86 Interpretation, namely the operation through which the meaning is attributed, is a 87 still widely unknown process. A specific difficulty is represented by natural language, i.e. 88 the main instrument through which human species (the only one endowed with such 89 capability in Nature) formulates and exchanges meanings and consciously understands 90 things. Natural language and its use which has been studied almost since the dawn of 91 humankind with researches ranging from the ancient rhetoric (for example, Geymonat, 92 1970; Barthes, 1970; Perelman, 1977) to the most recent approaches integrating 93 complementing linguistics with biology and neuroscience (for example Zuberbühler, 94 2005; Locke, 2009; Stekelenburg & Vroomen, 2012). Nevertheless, none of the 95 hypotheses proposed up until the present times can be considered capable to exhaustively 96 solve the problem of interpretation (some general reflections on this subject's such 97 complexity in Deacon, 2012). Even though natural language has been traditionally

approached under its profile of symbol-based consciously processed system. The way it

99 natural language works cannot be reduced to a simple coding-decoding procedure. By On

100 the one hand, a one-to-one correspondence among written signs (or spoken sounds) and

101 words does exist; by on the other hand, no such correspondence can be found between

102 any word/expression and the meaning attributed to it. This led a famous Italian linguist to

103 label natural language as structurally "equivocal" (De Mauro, 2003). Messages are (or,

104 at least, they appear) made up just of words; however, understanding a message always

105 goes far beyond the message's its words². The available data does not give definite

106 answers to the researchers' questions; in fact, interpreting the interpretation process is a

107 challenge that modern science has not yet won. O our field research intends to bring

108 some contributions to such endeavour.

Research lines and ideas: a synthetic overview. The available scientific literature 110 is so wide to make it impossible prevent, inside the boundaries of our work, an 111 exhaustive analysis. However, a rapid survey is sufficient to reveal some trends, the first 112 of which is the accelerating extension of these studies from the pure humanistic 113 disciplines to science field towards the field of science. Even a "hard" natural science 114 like physics has generated (from since XIXth Century) a "psychophysics" branch, 115 originally aimed to scientifically study the relationship between perceptions and

_

De Mauro, 2003 states that natural language is "equivocal" in etymological sense: from Latin *aeque vocare* (to name [different things] in the same way). That means: a same word can be used to refer to different meanings and different words can be used to indicate the same meaning.

² Material regarding the attempts to explain human communication and the questions of meaning and interpretation is really countless. Specific works will be indicated within the manuscript. Taking linguistics apart, we make reference to Pettigiani & Sica, 2003 for a review (in Italian) of psychological main approaches; Krauss & Fussell, 1996 for a wide survey from the perspective of social psychology.

116 sensations, recently extended to the direct investigation of knowledge processes (see 117 ahead). Another trend, thanks to the extraordinary development of technology and 118 informatics, is the enhancement of the studies that explore interpretation inside the neural 119 processes of the brain cortex: the neuron-level research and the wide use of advanced 120 imaging techniques bear witness for this.

All this considered, we can roughly outline a picture with two main scientific
122 research lines, the first of which can be named Mind-centred approaches and can be
123 synthesized as follows. Understanding/interpretation is totally-based on abstract
124 (conceptual) knowledge. Information feeds are Incoming information is provided through
125 the body (perception) but is the "mind" that processes stimuli and incoming signals
126 inputs at symbolic level, transforming turning them in into propositional representations
127 in the brain cortex and understanding them in terms of concepts. The answer to the inputs
128 (reaction) is based on such comprehension and is shaped as a command to some effectors
129 (typically the motor system). Knowledge is the result of a sort of computation; the mind
130 is separated from the body and rules it. The role of the motor system is totally passive.

The second research line can be named **Body-centred approaches** and can be synthesized as follows. Understanding/interpretation is attained through a motor reaction 133 of the body that can instantiates understanding or, at maximum at least, co-exists with 134 conceptual knowledge. When an external stimulus/signal is perceived, it is firstly

We will not enter the disputed question of mind, its existence, its nature and its relationships with the body in general and the brain in particular. For a first level of delving further into the this subject: by on the one hand, the early survey of Sperry, 1952; by on the other hand, the more recent works of Marcus, 2004; Rose, 2005; Zeki, 2010. In the context of this our Introduction, the "mind" is simply intended as a factor which, by following some theoretical positions, totally controls body through different functions with respect to functions that differ from biological processes.

135 "understood" through a motor reaction which is automatic, involuntary and based on 136 "mental maps" that are motorial, not (or not only) propositional. Understanding is a sort 137 of motor experience that goes along with conscious (rational) information processing; the 138 body is not detachable from the mind and can drive it. The role of the motor system is 139 active and decisive for understanding.

140 The main features of the first group's theories are synthesized in some recent 141 works like, for example, Zipoli Caiani, 2013 (Chapters 1 and 2); Ferrari & Rizzolatti, 142 2014 (specially Pag. 2); Gallese, 2014 (specially Pag. 2, with the concept of ontological 143 reductionism); Pulvermüller et al., 2014 (specially Introduction and Fig. 1)⁴. In addition 144 to this, a browsing of the literature unveils a wide series of theories that, even if they 145 differ in many details albeit different, consider the mind (see Footnote 3) through the 146 metaphor of the computer, or even of simpler mechanisms. The range goes from the 147 merely mechanical (and naïve) theories of psychoneural isomorphism (Sperry, 1952, pp. 148 293-294) and those inspired by the first electronic computers (Newell, Shaw & Simon, 149 1958), to the various I.P. (information processing) models (Massaro & Cowan, 1993) and 150 current cognitive science positions (Negri et al., 2007; Mahon & Caramazza, 2008; 151 Mahon & Caramazza, 2009). The shared concept is that information is essentially 152 processed in a linear and unidirectional sequence, based upon a functional (besides the 153 anatomical) separation among sensory, associative and motor areas of the brain cortex 154 (for a general presentation and discussion see also Rizzolatti & Sinigaglia, 2006, Chapter

The last three works (<u>Ferrari & Rizzolatti, 2014</u>; <u>Gallese, 2014</u>; <u>Pulvermüller et al., 2014</u>) are ascribable to the theories of the second group; nonetheless, they are cited also here because contain particularly clear synthesis of the opposite field positions. Ahead in the text we will describe a mirror-case (<u>Hickok, 2009</u>).

156 Gallese, 2000, page 27). The motor system is conceived as a merely operative
157 instrument, totally dependent on the output from associative areas. For precision's sake,
158 we must add that our description is a simplification: there are theories and ongoing
159 research lines that can be included in this first group while they, nonetheless, take motor
160 processes into a special account. For example, the current formulations of Common
161 Coding principle (Prinz, 1997; Hommel et al., 2001) and Ideomotor principle (Pezzulo et
162 al., 2006; Sauser & Billard, 2006; Melcher et al., 2008).
163 The second group of theories (the body-centred ones) can be traced back, at least,
164 to XIXth Century, up to the works of Lotze, 1852 (cited in Rizzolatti & Sinigaglia, 2006)
165 and James, 1890, which present reflections on the relationships between perception and
166 action. Other philosophers followed came after⁵, up until a new series of
167 neurophysiological studies appeared in the second part of XXth Century⁶. Such
168 researches gathered evidence that the sequential processing theory and the supposed

155 1, specially pages 20-22; for a synthesis of the cognitivism cognitivist paradigm see

-

169 totally passive role of motor system's passive role are untenable. In addition, a leap ahead

170 has probably been accomplished with the discovery of mirror neurons (di Pellegrino et

Some special mentions about the philosophers: Mach, 1897, in particular pages 1-8 (on the relationship between scientific knowledge and perceptual experience of physic world), pages 15-17 (a famous example on subjectivity of perspective) and pages 93-95 (sense organs as active elements of perception, fine-tuned through experience, rather than as passive receptors); Poincaré, 1902 [2003], especially Chapter 4 (on the relations between geometrical space and "representative", i.e. perceptual, space); Poincaré, 1908 [1997], Part I, specially pages 52-63 (phenomenology of a mathematical discovery and the role of sensitivity and aesthetic feeling); Merleau-Ponty, 1965, particularly Part II (with special regards to introduction chapter, on the impossibility to have a knowledge of the environment that is independent of the body experience).

Some special mentions about the neurophysiological studies: Sperry, 1952, especially pages 299-300 about on the relationships between perceptions and ideas; Jeannerod et al., 1995; Liberman & Wahlen, 2000; Fowler, Galantucci & Saltzman, 2003.

172 Rizzolatti & Craighero, 2004; Iacoboni et al., 2005; Rizzolatti & Sinigaglia, 2006). 173 According to this theory, understanding (at least, understanding of motor acts) would be 174 firstly attained through a motor reaction of the body, "immediately and automatically". 175 Cognition would be "embodied". 176 Embodiment of cognition, and its consequences on knowledge and interpretation 177 process, are the object of a heated scientific dispute lively scientific debate. Some parts 178 of our work will touch such question; then, it is worth referring to an example, in order to 179 clarify out the different positions. In a review that critically examines the mirror neuron-180 based approach to cognition well exemplified in Hickok, 2009 the author proposes an 181 example, aimed to dispute the embodied cognition hypothesis (direct reference to 182 Rizzolatti, 2001). He invites to Imagine someone pouring a liquid from a bottle into a 183 glass: Then, he continues arguing that, by following that the embodied cognition 184 hypothesis, an observer can "embodily" understand such action since, thanks to his 185 mirror neurons, he undergoes a motor reaction "as if" himself was actually pouring (by 186 the way, such reaction does not turn into any actual movement, it remains virtual). This 187 said, the author replies However, that pouring "could be understood as pouring, filling, 188 emptying, tipping, rotating, inverting, spilling (if the liquid missed its mark) or 189 defying/ignoring/rebelling (if the pourer was instructed not to pour)..." (see Hickok, 190 2009, page 1240, italic by the author). Such example, in our opinion, well represents the 191 crucial point: the scientifically evident automatic reaction that instantiates embodied

171 al., 1992) and the related following studies on them (for example Gallese, 2000;

⁷ We are intentionally employing the words "immediately and automatically": they are typically used in describing the mirror-systems' working.

192 cognition does not explain the whole process of interpretation, and the attribution of a 193 conceptual meaning seems to have a different nature. Thus, we have either scientific 194 evidence of embodied cognition or daily-life experience of scattered conceptual 195 interpretations; can these two visions be conciliated or are they alternative? And which 196 one can actually account for the field observations? 197 The contrast between these two positions has not yet been solved even though, 198 with respect to its beginning, the debate has grown up far further. In particular In the few 199 last years, the hypotheses based on the mirror neurons discovery have been refined, for 200 example through the concepts of Mirroring mechanisms (MM) and Embodied simulation 201 (ES) (Gallese, 2005, 2006, 2007, 2008, 2009a; Gallese et al., 2009; Gallese & Sinigaglia, 202 2011a; Ferri, Gallese & Costantini, 2011; Marino et al., 2011; Gallese & Sinigaglia, 203 2012; Ferrari & Rizzolatti, 2014; Gallese, 2014). About this the ongoing dispute, a 204 summary and a state-of-the-art outline can be found in Zipoli Caiani, 2013; apart from 205 this, and one of the most interesting documents is a forum (Gallese et al., 2011) inside 206 which the most delicate and controversial questions are widely debated. The main ones, 207 with regards to the subject of our work, are the following four: goal-dependency of 208 mirror reactions, with references provided by upholders (Umiltà et al., 2008; Cattaneo et 209 al., 2009; Rochat et al., 2010) and detractors (Range, Viranyi & Huber, 2007; Hickok, 210 2009; Hickok & Hauser, 2010; Muller & Cant, 2010); the nature of motor representations 211 in the brain cortex and the hypothesis that action understanding obtained through mirror 212 neurons would be a form of knowledge qualitatively different from the propositional and 213 abstract ones (widely discussed in Gallese et al., 2011); the interpretation of the human

214 ability to understand actions that cannot be performed, like the barking of a dog 215 (Rizzolatti & Sinigaglia, 2006; Hickok, 2009; Rizzolatti & Sinigaglia, 2010); the 216 interpretation of neuropsychological evidence about the relationship among motor 217 impairments and action recognition underperformances (with works that uphold one 218 position, for example Moro et al., 2008; Pazzaglia et al., 2008, or the other, for example 219 Negri et al., 2007; Hickok, 2009). 220 Experimental research involving language. Such kind of research is closer to our 221 work, which employed written messages; thus, it is worth (rapidly) delving further into 222 some of its main aspects. Theoretically, the divergence between cognitivist and 223 embodied cognition approaches can be synthesized as follows (for further reference see, 224 for example, Bedny et al., 2008; Rizzolatti & Fabbri-Destro, 2008; Goldman & de 225 Vignemont, 2009; Gallese, 2011; Gallese & Sinigaglia, 2011b; Bedny et al., 2012): 226 cognitivism upholds the sequential processing idea, i.e. cognition would be the result of 227 perception (the sound of a spoken message as well as the sight of written words) 228 followed by the symbolic processing of what perceived (turning the spoken or written 229 words into their meanings) followed by a reaction (typically, but not exclusively, a motor 230 one). Oppositely, the embodiment theories uphold the concept of direct connections 231 among cortical sensorial and motor areas ("sensorimotor grounding" of cognition, Guan 232 et al., 2013). Namely, the perceived spoken or written words would trigger a motor

233 reaction and would be mentally represented also in a motor, rather than a purely 234 conceptual, way. In this sense, cognition would be embodied⁸. From a technical slant, the two research lines tend to privilege different 235 236 laboratory approaches: cognitivist field frequently engages the noun-verbs dissociation 237 problem, studying it through researches on cortically damaged, selectively impaired 238 patients; such studies are mainly aimed to define the nature of concept representations in 239 the brain cortex (lexical or semantic, lexico-semantic dissociation issue), and to cortically 240 map them (for example Crepaldi et al., 2006; Arévalo et al., 2007; Moseley & 241 Pulvermüller, 2014; Gallese, 2014). One specific question addressed by some researches 242 is "how does the brain code and generate semantic cognition?" (for example Patterson, 243 Nestor & Rogers, 2007; Pobric, Jefferies & Lambon Ralph, 2010; Hoffman & Lambon 244 Ralph, 2011); the answer proposed by the cited works is the "hub-and-spoke" model, 245 with a special role played by the ATL, Anterior Temporal Lobe. 246 Conversely, the embodied cognition theorists mainly go searching for the 247 connections between language and its motor correlates, one well-known of which is the 248 ACE (Action-sentence Compatibility Effect), often checked through measuring and 249 comparing the reaction times collected during language-and-action combined match-250 advantage experiments (see for example Vitevitch et al. 2013; Horchak et al., 2014). 251 Such studies are frequently carried out through neuroimaging works (for example

Such embodiment, inside the same embodied cognition field, can be conceived in different ways: it can stand alone, *per se* resolving the problem of knowledge ("sensorimotor processing underlies and constitutes cognition", <u>Guan et al., 2013</u>), or can be a "motor representation" that accompanies conscious knowledge processes (the two kinds of knowledge proposed by Gallese, for example in <u>Gallese et al., 2011</u>; see also <u>Gallese, 2014</u>).

252 Tettamanti et al., 2005; Aziz-Zadeh et al., 2006; Speer et al., 2008; Aziz-Zadeh & 253 Damasio, 2008). It is interesting to note that, beyond their important differences, cognitivism and 254 255 embodiment research share at least one common aspect: they both use, in laboratory 256 experiments, words and short phrases isolated from every contexts (see, for example, 257 Bedny et al., 2008; Bedny et al., 2012, especially the Method sections; for some critical 258 reflections about the question, Pulvermüller et al, 2014, specifically Pag. 80, Chapter 7). 259 We guess there is a possible implicit concept upholding such approach: the idea that the 260 meaning is an intrinsic feature of words, something embedded inside them, and that 261 interpretation consists in extracting it (actually, the verb "to extract" is overtly used in 262 scientific publications, for instance Mahon & Caramazza, 2011). On About some recent trends. In the end, it is worth dedicating a mention to 263 264 mentioning a recent specialised research field of inside psychophysics, in which 265 researchers investigate cognition and semiosis through probabilistic models (Chater, 266 Tenenbaum & Yuille, 2006; Ingram et al., 2008; Tenenbaum et al., 2011), in particular 267 applying the Bayesian inference to reproduce mental processes and describe it through 268 algorithms (Griffiths, Kemp & Tenenbaum, 2008; Bobrowsky, Meir & Eldar, 2009; 269 Perfors et al., 2011; Fox & Stafford, 2012). Such concepts are currently in use also in the 270 Artificial Intelligence (AI) field⁹. Inside such research field, A specific peculiar sector

The origins of Artificial Intelligence (AI) studies can be traced back to the Thirties and the works of Alan Turing on a possible "intelligent machine". About the origins, see <u>Leavitt, 2007</u>, chapters 6 and 7, and <u>Turing, 1950</u> (the original work of Alan Turing). About the "Turing test" (testing the ability of distinguishing humans from computers through <u>exchanging</u> written messages <u>exchanges</u>) see a journalist's account in <u>Christian, 2012</u>. Some materials about recent research threads lines, closer to

271 concentrates on what follows interpretation, that is confrontation among different
272 "apprehensions" (conscious perceptions); the result of such confrontation is a
273 "judgement", i.e. decision and conceptualization (<u>Arecchi, 2010a; 2010b; 2010c; 2011a</u>).
274 New concepts are introduced to investigate semiosis: semantic and non-semantic
275 complexity (<u>Arecchi, 2008</u>), deterministic chaos (<u>Guastello, 2002</u>; <u>Arecchi, 2011b</u>),
276 inverse Bayesian inference (<u>Arecchi, 2010d</u>), creativity as NON-bayesian process
277 (<u>Arecchi, 2010e</u>), quantum dynamics (<u>Arecchi & Kurths, 2009</u>; <u>Nathan et al., 2012</u>) and
278 the reference to Gödel's incompleteness theorem as a limit to the possibility of
279 understanding cognition "from inside" (<u>since given</u> that, while studying cognition, we

281 Method

282 <u>Methodological aspects</u>. All this matter has not yet been adequately cleared; one

283 reason There are two main reasons why the question of interpretation and meaning has

284 not yet scientifically solved, the first of which is that there are still structural obstacles of

285 technical and ethical nature¹¹. Another difficulty The second main reason is the

our article's topics (like machine learning and natural language or image interpretation), can be found in Mitchell, 1997; Menchetti et al., 2005; Mitchell, 2009; Khosravi & Bina, 2010; Verbeke et al., 2012.

¹⁰ See <u>Goldstein, 2006</u> for a popular-scientific coverage about Gödel and his theorem; <u>Leavitt, 2007</u>, chapters 2 and 3, for a particularly clear synthesis of the theorem and its genesis (in connection with the *Entscheidungsproblem*, i.e. the "decision problem").

About the technical difficulties of data collecting: experimental techniques used on macaque monkeys (electrodes direct insertion inside single neurons) return very accurate measuring measurements, but on small brain cortex surfaces. About the ethic difficulties: these those techniques are almost impossible to be used on humans, and only indirect techniques as fMRI (functional Magnetic Resonance Imaging), MEG (Magnetoencephalography), PET (Positron Emission Tomography) or TMS (Transcranial Magnetic Stimulation) are systematically employed. They cover wider brain cortex surfaces but with inferior accuracy; moreover, they present difficulties with regards to instrument positioning and image interpreting. For a survey of these difficulties see

286 complexity of natural language (its "equivocal" nature, see De Mauro, 2003 and Footnote 287 1), usually overcome through a laboratory approach, i.e. studying interpretation isolated 288 from the interpreting organism and employing simple stimuli (single words, simple and 289 very short phrases; for instance Bedny & Caramazza, 2011). Such approach entails 290 limitations (underlined, for example, in Pulvermüller et al., 2014, specifically Pag. 80, 291 Chapter 7) that might undermine the research conclusions. In short: a message is not just 292 a bunch of words, and the question of interpreting a message cannot be considered as 293 satisfactorily cleared through adding up the interpretations of isolated words. On the 294 contrary, studying interpretation in the actual conditions it is usually performed 295 (interpretation of *messages*) could bring something new to our knowledge. The 296 methodological aspect is crucial, and we delved a little further into it. Some of the mirror 297 neurons discoverers and theorists have expressly tackled such aspect and highlighted that 298 one strong point of the neurophysiological research that led to such discovery is the 299 researchers' preference for a naturalistic-like approach: they let 300 In field experiments, researchers who capitalise on the existence of mirror 301 neurons intentionally favour a On field, the mirror neurons discoverers intentionally 302 privileged a naturalistic-like approach, letting the observed macaque monkeys freely 303 interact with available objects, rather than stimulate them with selected artificial stimuli 304 only (Rizzolatti & Sinigaglia, 2006, p. 3; in addition, about the reductionism question 305 and the distinction between methodological and ontological reductionism, see Gallese,

Rizzolatti & Sinigaglia, 2006, chapters 2, 6, 7, and Rizzolatti & Vozza, 2008, passim. A recent thread line of research is investigating the connections among single neurons activity and the total effects detectable through indirect techniques (see <u>Iacoboni, 2008</u>, chapter 7). In addition to all this, data interpretation and comparing are intrinsically difficult, given the differences in macaque and human brain cortex and the associated problem to check of identifying reliable correspondences.

306 2000, p. 26, and Gallese, 2009b; Gallese, 2010). Opposite to these stances, However, 307 their approach has been also criticized (Pascolo & Budai, 2013). which disputes the 308 monkeys' actual freedom in the experiments and the same existence of mirror neurons in 309 humans. From our point of view About the naturalistic-like approach, we had in our 310 background two works about on interactions inside online collaborative groups (Maffei, 311 2006; Maffei, Cavari & Ranieri, 2007) which let us appreciate the potential of scientific 312 observation in real world-like conditions on real-world communication cases. 313 314 Method 315 We set two objectives for our research: (1) To understand the process of 316 interpretation (i.e. how messages in natural language are turned into meanings by 317 receivers) as it works in real conditions, and design a structural model in order to 318 adequately represent it; (2) To produce a first check of the formulated hypothesis. 319 Consequently, we have divided our research into two parts: the first one is referred to 320 Messages #1, #2 and #3 of the case and to Questions #1 and #2 of the questionnaire; it is 321 mainly (even though not only) qualitative, investigates the process of taking into account 322 a message and turns into a hypothesis (a model of the interpretation process). The second 323 part is referred to Messages #4/H, #4/S and #5 of the case and to Questions #3, #4 and 324 Final of the questionnaire; it is quantitative, focused on a decision to be taken about a 325 reply to send, and represents a first check about our hypothesis. See SI Section 4 for the 326 messages' and the questions' texts. In order to achieve these objectives, we have tried a 327 naturalistic approach; designing observations in conditions the closest as possible to the

328 natural ones this means, first, that a phenomenon must be carefully observed and
precisely described in conditions the closest to "natural" ones (natural conditions = the
330 way and the contexts in which the phenomenon usually manifests). Second, it means that
331 observation and description must precede analysis, being carried out independently of it.
In such approach, the role of the observers is critical, either if they are involved in or
external to the phenomenon. In our research, we have employed 102 observers of the first
kind (the sample) and 5 (the authors) of the second one; this way, we have collected 102
335 self-reports (participants' answers to a specially designed questionnaire) and worked out
one analytical report (our research) about interpretation. On these bases, we designed
337 field research on a We have challenged our randomly selected sample of 102 adults
338 sample random challenging them with a real world-like written communication case,
339 using complete and unabridged message texts and collecting the participants'
340 interpretations. through a specially designed questionnaire. Further details about method
in the Supporting Information, Section 0; a full documentation of the survey process,
342 containing research guide-lines, case description and research protocol, as well as the
questionnaire, in the Supporting Information (SI) Sections 1, 2, 3, 4 and Section 5 with
Tables S1, S2. In addition: a description of the sample, and of the sub-samples drawn
from it for control purposes, in SI Section 6 with Tables S3-S5; some quantitative aspects
of collected data in SI Section 7; quality check of the collected data, their compliance
347 with the research necessities and their suitability in SI Sections 8 and 9 with Tables S6,
348 S7 and Fig. S1-S3.

349	It is worth specifying that the study of meaning and interpretation at behavioural
350	as well as neuronal level implies the use of indirect techniques: the meaning is not
351	something that can be directly measured and interpretation is a process that occurs inside
352	the brain and/or the body in ways that cannot be directly observed; for this, just indirect
353	approaches are available. Our research represents no exception; our indirect approach has
354	been based on the participants' accounts for their own interpretations immediately after
355	they had read the submitted messages. Naturally, such conscious accounts cannot be
356	considered an exact report of the actual interpretation process, given the possibility that
357	they are unconsciously biased. Indeed, by one hand, we have employed these data to
358	investigate correlated but different aspects; by the other hand, we have checked them
359	with other data and analyses in order to verify their real contribute to the research's goals.
360	Our work is not a clinical trial and no experimentations on the participants took
361	place. Our sample was not recruited in hospitals or any other institution; we gathered it
362	through the conductors' personal relationship network (details on sampling and survey
363	modalities in SI Section 3, particularly points 1013.). In addition, no personal data was
364	collected or anyhow involved in the survey, and verbal informed consent was requested
365	and obtained by participants on the basis of a written presentation of the survey and its
366	modalities. Through our questionnaire, we just collected, in a strictly anonymous way
367	(details here below and in SI Section 3), the participants' opinions about an exchange of
368	written messages, in order to investigate the process of message interpretation. The
369	submitted case was a fiction closely resembling some real cases the authors had dealt
370	with in their professional activities; its contents were totally neutral with regards to the

371 participants' lives and environments and did not touch any sensitive subject. For these 372 reasons, our research did not involve any critical issue related to ethics¹²; we anyway 373 requested, and obtained, the approval of The Ethics Committee for Scientific Research of 374 the Association ARPA-Firenze gave its approval either to the research design or to the 375 informed consent procedure. Further details related to method, sampling and ethical 376 aspects can be found in the Supporting Information (SI, from now on), Sections 0, 1 and 377 3. The Committee held a dedicated session to our research (in 2012, april 2^d) and its 378 approval was given through a formal decision documented by the session's official 379 report, signed by all the Committee's members and filed in the Association's archives. 380 About the **informed consent** of participants, it was necessary not only for ethical, 381 but also for technical reasons: since the answers to the questionnaire's questions were 382 handwritten by participants (directly on the submitted forms), the research should have 383 been impossible without a conscious, voluntary participation to the survey. Participants 384 (all of them were adult) received written information about the research through the title-385 page of the questionnaire (SI Section 4), being invited by the conductors to carefully read 386 it. After such reading, their consent was requested and obtained verbally. The reasons 387 why we did not collect written consent lie on the sampling and data collection procedure, 388 designed to fully guarantee the participants' anonymity (see also the research protocol in

An authoritative confirmation comes from the Cornell University (2013) "IRB Decision Tree" (https://www.irb.cornell.edu/documents/IRB%20Decision%20Tree.pdf) which reports (top right area of the first page) the following example of research that does NOT require an IRB approval: "The focus of the project is only on products, methods, policies, procedures, organizations: e.g., interviewing transportation staff and officials about parking or transportation policies and procedures". Our research exactly matches such example: we have not studied the sample's members personal characteristics; rather, we have collected their opinions about some specific (totally neutral) objects (the messages presented in the research's questionnaire) through gathering the answers they provided, willingly and anonymously, to the questionnaire.

389 SI, Section 3). By one hand, the technical features of data collection and the personal 390 relations among participants and conductors prevented any possibility of unwilling 391 contribution. By the other hand, a written consent would have implied a general database, 392 whose creation and management would have increased the risks of an accidental 393 information diffusion. Instead, our procedures made it impossible for everyone, all along 394 the research work (and the same is at present and will be in the future), either to trace 395 back participants by starting from the filled questionnaires or to recreate the participants' 396 database. Along with its approval of the research guide-lines, the Ethics Committee for 397 Scientific Research of the Association ARPA-Firenze approved also this informed 398 consent procedure. 399 Materials and procedure/1: the sample. Our research plan has been based on two 400 main assumptions: first, that interpretation is a process, rather than a single operation; 401 second, the process has the same basic (structural) universal characteristics for the whole 402 humankind. The rationale of our sampling was based on such assumptions: according to 403 our objectives, we focused on the reconstruction and understanding of the process, rather 404 than on sample features. Thus, the sample representativeness (for example with respect to 405 Italian people), as well as its social feature balance, were less critical; from an extreme 406 point of view, it could be sufficient that the sample members would belong to human 407 species. Operatively, we gathered our random sample through selecting only Italian 408 language native speakers, all adult, striving to reach a reasonable balance about gender 409 and student/worker conditions. Further details (the procedure we used to randomize the 410 sample included) can be found in SI, Section 6; the results are presented in Tables 1-3.

411	The total sample (Table 1) results slightly imbalanced with regards to gender
412	(women exceed men), education (Graduates/Post-graduates exceed High-school degree
413	granted members) and employment (students/unemployed exceed employed members).
414	For these reasons, even though social features balance is less relevant in our work, we
415	have selected more homogeneous sub-samples from the total sample, in order to verify
416	our analyses every time it turned out necessary. The first sub-sample ("AGE", Table 2) is
417	exclusively composed by people over 29 years-old (60 members); the second one
418	("EMPLOYMENT", Table 3) is exclusively composed by employed people (65
419	members).
420	Materials and procedure/2: the case. The main operative instruments through
421	which we have implemented our naturalistic-like approach (further details in SI, Section
422	0) are the case and the questionnaire. The case we submitted to the sample (it is fully
423	detailed and documented in SI, Sections 2, 4 and 5) is a fictional piece very close to a
424	real cases the authors had professionally dealt with (the messages are drawn from actual
425 <u>.</u>	messages and the outlined relationship between the characters has been actually
426	observed). Exactly, this case is an online (via e-mail) interaction between two colleagues
427	(no previous relations between them) having different roles and ranks in the same
428	organization; the two characters are a female employee (XX) and a male professional
429	(the "architect" YY, Project Account for the installation of a heating plant in XX's
430	office). Their interaction consists (from its start to its end) in exchanging 5 e-mails, 3 of
431	which (Messages #1, #3 and #5) are sent by XX, which starts and ends the interaction,
432	and 2 (Messages #2 and #4) by YY. Such exchange (whose subject is the work-in-

433 progress of a heating plant) can be divided into two phases, during the first of which
434 (Messages #1, #2 and #3) a conflict emerges that will be solved through a special version
of the fourth message (sent by YY); the solution of the conflict is confirmed by the last
436 (fifth) message, in which XX declares her satisfaction. A synthesis of the first three
messages is the following (further details and a full documentation can be found in SI,
438 Section 4):
Msg #1 (XX to YY) – A 67 word e-mail to the Project Account about the
installation of the heating plant in her office. She requires an inspection, claiming
about "flaws" in the present state of the works. Flaws are no better detailed. She
declares she is also speaking on behalf of some colleagues and uses the expression
"we would be pleased if, at least once, someone of our Corporation could come
here and control".
Msg #2 (YY to XX) – A brief (48 words) answer of the Project Account in which
the regularity of the Project progress is declared. The message ends with the
phrase: "at the moment, the progress substantially complies with the chronogram"
Msg #3 (XX to YY) – A 136 words reply in which XX declares herself totally
unsatisfied. Her message presents two main features: (i) some minor flaws are
listed; (ii) she expresses what resembles an actual threat against YY, in the case he
would not take measures (she specifically refers to a hypothetical "waste of public
money", given that the Project funding involved public resources).
Now the conflict is on and the second phase starts: YY prepares a reply to XX's
454 Msg #3 (namely, he prepares the first version, the "H" one, of Msg #4). The label "H"

455 has been used because such version is a "hard" reply; a YY's colleague suggests him a 456 softer version (the "S" one) in order to avoid exacerbating the conflict. YY accepts the 457 advice, he sends Msg #4/S to XX and the case ends with the conflict resolution (XX's 458 satisfaction declared in Msg #5). Full-text versions of Messages #4/H, #4/S and #5 are 459 displayed in Table 4; see also SI, Section 5 and Tables S1, S2, for details about the 460 rationale of the two alternative messages. 461 *Materials and procedure/3: the questionnaire and the survey.* The questionnaire 462 has been the instrument through which we have challenged the sample with the case; it is 463 fully documented in SI, Section 4. The survey has been divided into two phases, 464 following the interaction structure; in the first phase (Questions #1 and #2), we asked the 465 participants to interpret the first three messages and to indicate which "concrete 466 elements" of those messages their interpretations had been based on. In the second phase, 467 we submitted them (separately, see SI, Section 3, for details about submission modalities, 468 counterbalancing of "H" and "S" message submitting included) the two versions of Msg 469 #4 and asked them (Questions #3 and #4) to give their separate interpretations. Finally, 470 after submitting Msg #5 (that ends the interaction), we asked them (Final Question) to 471 indicate which of the two versions (the original "H" or the colleague's suggestion "S"), in 472 their opinion, had been actually sent in order to elicit the final answer. 473 The data collection rationale. Our peculiar management of the survey and, 474 specifically, of the participants/survey conductors relationship (SI, Section 0, for details) 475 allow us to exclude that participants' answers are intentionally distorted or insincere. 476 Given this, what data did we exactly collect in our survey? In the first phase (Questions

477 #1 and #2) we collected the participants' conscious reports on their interpretations.	
Naturally, the reports we gathered cannot be considered as reliable descriptions of the	
479 "true" interpretation process; rather, they are descriptions of the participants' subjective	
480 (conscious) experiences about interpretation. We thought that, even though the link	
481 among these conscious accounts and the true process is unknown, the answers could	
482 allow us to observe, in a naturalistic-like way, the behaviours associated to the	
483 interpretation process. On this basis, we could probably detect enough clues in order to	
formulate a hypothesis on the deeper "true" process of message interpreting. In other	
485 words: we tried an indirect approach given that the interpretation process cannot be	
486 directly observed.	
In the second phase (Questions #3, #4 and Final Question), we investigated the	
488 relationship between the interpretation of a situation and a consequent decision to be	
made; such decision was the selection, between the original and the suggested version of	f
490 Msg #4 ("H" and "S" versions, from now on), of the one capable to solve the case (i.e.	to
491 elicit the final Message #5). Our thought was that the consistency between interpretation	n
492 and the following decision could give us either further clues for a deeper understanding	
493 of the interpretation process or elements for checking our hypothesis.	
494	
495 Results from the first part of the research: observing and hypothesizing	
The first level of our analysis regarded our research's first part and yielded	
497 something expected and something unexpected. We remind recall that each	
498 questionnaire's question submitted to the sample sent two inputs to the respondents: at	

499 first, they participants were requested to freely interpret some aspects of the submitted 500 messages; then, they were requested to account for their own interpretations through 501 indicating the "concrete elements" on which these were founded. We will describe 502 separately our analyses related to the first and the second kind of data. 503 Data related to the first input provided, through a qualitative analysis, the main 504 expected outcome: the scatter of the participants' interpretations. Data from the second 505 input provided, through a quali-quantitative analysis, the main unexpected outcome: the 506 possibility of an intermediate, unpredicted step following text decoding and preceding 507 text content processing. Analysis of the answers to the questions' first input: qualitative analysis. These 508 509 answers have fully confirmed the our predictions an expected feature: demonstrating a 510 wide range of differences/'scatter' in scatter of the respondents' interpretations. About 511 interpretation scatter, we have quoted an example (taken from Hickok, 2009) in our 512 Introduction. In addition, some descriptions, referred to special cases and entailing 513 divergence of interpretations, can be found in <u>Bara & Tirassa, 1999; Sclavi, 2003</u>; 514 Campos, 2007¹³. Inside our research, the answers to Question #2 provide us a specific 515 example. Firstly, we asked participants if, through comparing Message #3 to with 516 Message #1, they found the attitude of XX (the sender) towards YY (the receiver) being 517 changed (SI Section 4 for the messages' and questions' texts Method Section and SI, 518 Section 4 for the texts of the messages; SI, Section 4 for the question full-texts). Then, to

Specifically Exactly: <u>Bara & Tirassa, 1999</u>, pp. 4-6 (communicative meanings as joined constructions); <u>Sclavi, 2003</u>, pp. 93-98 (the "cumulex" play); <u>Campos, 2007</u>, pp. 390-394 (analysis of a real historical communication event case).

519 the 61 who answered "YES" (60% of the sample), we asked to specify how they would 520 define the new XX's attitude. They provided 83 specifications: 64 stated XX's position 521 as strengthened, 12 as weakened and 7 unchanged (although these seven, too, had 522 answered "YES" to the first part of Question #2). In addition, we can find completely 523 opposing statements in these specifications and we can see that scattering covers very 524 different aspects of the XX-YY interaction (behaviours, emotions and so on, Table 5). Such a phenomenon is well known and can be observed for all the messages and 525 526 for any part of them, even if accurately selected: it is impossible to find parts of a 527 message that are interpreted in the same way by all the participants. The observed 528 interpretation scatter can be represented through a "megaphone-shape" picture (Fig. 1): 529 receivers take into account the same information but their final interpretations diverge¹⁴. 530 Even though these observations are common and undisputed, the problem why this 531 happens remains to be explained. We named this phenomenon "classic interpretation" 532 scatter" and tried to delve further into it. We made a first attempt using a semantic 533 approach: we considered the respondents' answer texts like semantic sets to be 534 investigated through pre-defined categories of meaning. After several tries, we 535 abandoned such approach realizing that, whatever category set we used, too many 536 exceptions, not-decidable cases and ambivalences we found (what confirms the 537 "equivocal nature" of human language, see Footnote 1).

-

¹⁴ In the exact same way of the example drawn from <u>Hickok, 2009</u> and presented in Introduction: in that case a physical action is described as interpretable in very different ways (by different observers as well as by only one who is observing from different points of view). However, there is no question about the action *per se*. In our case, the reading of the same message by different people evokes very different interpretations; however, the message information content of the message cannot be under question disputed, (being the message typed and having a unique editing).

538 <u>Analysis of the answers to the question<mark>s'</mark> second input<mark>: quali-quantitative</mark></u>	
539 <u>analysis</u> . These answers contain This analysis refers to the "concrete elements"	
540 respondents have indicated as the basis of their interpretations. We approached it by	
541 carefully and sequentially reading the answers (more than once), and splitting their	
542 content into homogeneous categories. It is worth noting that, in so doing, the answers	
have been tackled like something <i>physical</i> , rather than semantic (i.e. independently of	
544 their content and meanings). Such an operation was performed by one of the authors,	
then discussed and shared with the others; its result consisted in We found the following	
546 macro-categories presented in Table 6. of concrete elements: (1) Summaries of the	
message texts and syntheses of their information content, presented through respondent'	S
own words; (2) Quotations between double quotes, referred to selected words, full	
phrases (or parts of them) or periods. Such kind of indications have been provided also	
through pointing the beginning and the ending word of the quoted strings ("from	
551 to"). The string length could cover up to a whole paragraph of the message (from a	
keyboard "Enter" to the following). (3) Incidental strings, meaningless per se. Such	
strings were extracted from original full phrases and quoted isolated from the rest. (4)	
Complement/accessory parts of the text: punctuation marks ¹⁵ , personal or professional	
555 titles used in the opening, the salutes used in the closing etc. (5) Items unrelated to the	
556 text semantics or to the message content; a tight selection is presented in Table 6. The lis	st

¹⁵ In one of the two pilot-sessions of the survey, one message contained an exclamation mark; it was specifically identified, and noted as a meaningful component *per se*, by one of the participants. For this reason, it was removed in order to limit influencing respondents. In fact, other respondents successively picked up, from questionnaires now bereft of that exclamation mark, quotation marks (used in certain passages of the submitted messages) as a meaningful component *per se*.

is indefinite, given that each item generally appears at low frequency while the range of
possible items is extremely widespread. Items of this kind are actually unpredictable;
even the <i>lack of some content</i> can be focused and reported as a source of meaning (Table
560 6, final row). (6)References to some overall effects produced by the message on the
participant (see SI Section 8.a, final part, for details). In fact, in this kind of answers,
participants state they cannot indicate any "concrete element"; the meaning they have
attributed derives from a "general impression" received from the message, from the
564 message's "general tone".
In such analysis we have tackled the answers like something <i>physical</i> , rather than
semantic, and have treated their texts independently of their content and meaning. Doing
so, we have seen that the meaning can spring from parts of the message bereft of any
intrinsic content, from aspects external to the text and even from the lack of content
itself. In short: whichever the message, the source of its meaning can lie anywhere; this
was unexpected. In truth, the idea that the interpretation of a message is a question far
overtaking its pure words is widely investigated with regards to spoken communications;
this is reasonable if we consider the possible added signals, like non-verbal language and
573 context stimuli, in such situation (see, for example, Horchak et al., 2014, specially the
574 concept of "situated cognition", and Gibson, Bergen & Piantadosi, 2013). It has been
quite surprising to discover it in written communications, that are totally bereft of such
added signals; there was something else, in this matter, and it did not seem a simple
577 question of added information. Indeed, our impression that the meaning attributed to a
578 message can lie "anywhere" should be taken into a literal account: it seems impossible to

319	previously write up a complete list of the features that could become sources of
580	meaning, given that any new reader can introduce new subjective criteria and detect new
581	sources, totally unpredictable for the other readers.
582	The question now is: how does all this work? How can we describe, and model,
583	the process of interpretation, subjected to such uncertainty? In order to answer these
584	questions we named "components" the items indicated in the answers to the questions'
585	second input and went back to the questionnaires in order to tally the components present
586	in our survey. We have tallied a total of 1,319 components clearly indicated by
587	participants and we have displayed in <u>Table 3</u> their absolute and relative amounts.
588	In order to verify our statement, we firstly carried out some distribution analyses
589	about the components Secondly, we have further checked our quantitative analysis; we
590	considered that references to full sentences or periods (20.9% in the total) could be
591	another way used by participants for indicating contained information. However, even in
592	such case the sum of the two components would occupy just one third (exactly, 33.1%)
593	of the total indicated components. Still unsatisfied,
594	In synthesis: our observations do not match the concept of interpretation like a
595	sequential taking into account of the message's content along with its conscious
596	processing. Rather, the emerging picture is the following:
597	The resulting picture was unexpected, being a cluesuggesting that the
598	understanding of a message could be determined (not only slightly swayed) by factors
599	unlinked to its text and content (Table 7). This was specially surprising because we had
600	used written messages only, bereft of added signals like non-verbal language and context

601 stimuli that affect verbal communication (see, for example, Horchak et al., 2014, 602 specially the concept of "situated cognition", and Gibson, Bergen & Piantadosi, 2013). 603 Our observations led to us to hypothesize that every aspect of even a written message 604 (and even immaterial like an e-mail), regardless of its nature and its intrinsic semantic 605 value, could be treated as a meaningful element of the message. The most interesting 606 observation is about the references to the *lacks of information* as "concrete elements" 607 (Table 7, final row): how can an information content act through its absence? In short: 608 following the reports of the participants, interpretations seemed largely independent of 609 the information content of the messages. 610 In order to delve further into such matter, we named "components" the categories 611 of the indicated concrete elements and, at first, we tried to estimate their amount. Given 612 that our focus remained on the process, rather than on the sample features, our goal was 613 to provide a rough estimate. Such an estimate was important mainly in relative terms: in 614 case of relative small non-content (non-information) amounts, we would have to abandon 615 this part -of our research. But those amounts were not small. Our analysis of the 1,319 616 detected components is displayed in Table 8; the indications that clearly focus on the 617 information content constitute only a small minority (around 12%, see Table 8, "%" row, 618 "Cont." column) while references to different text components reach, on the whole, about 619 65% (Table 8, "%" row, sum of the first five column totals). The indications referred to 620 some overall effects of the message represent about 15% of the total. About the 621 meaningless components (void of content per se, mere "form" components), their

622 relative amount can be estimated in at least 35% (holding together symbols, incidental 623 passages, other components and grammatical notations).

624 The proportion of the information content components on the total is very low; 625 even if we sum their relative amount (12,1%) to the indications of sentences or periods 626 (20,9%, a possible alternative way for referring to the information content) we reach just 627 1/3 of the total (33%). The question was important and we carried out a further check: we 628 carefully re-examined the filled questionnaires about with reference to the information 629 content component. We found out (Table 9) that one half of the sample (51 people) 630 expresses, among the others, at least 1 reference to such component (no recordable 631 similar hint recordable by the other half). However, only 7 respondents provide a 632 balanced or prevalent amount of indications (50%, or more, of the personal individual 633 total) about information content. Among them, only one reaches 100%. Our conclusion 634 was that, in fact, references to the information content are a definite minority in 635 participants' indications. In order to complete the picture, we checked the distribution of 636 the indicated components, searching for possible imbalances that could contradict our 637 findings. Such analyses return a picture without any significant imbalance Nothing 638 emerged: on the one hand, the distributions of the provided indications result uniform 639 with respect to the different questions (Fig. 2) and almost regularly shaped with respect 640 to the types of the components (ranked approximately by physical dimensions, Fig. 3). 641 On the other hand, the sample distributions related to the amount of the component types 642 employed (Fig. 4), and to the total indications provided by each respondent (Fig. 5), 643 result in "bell curve" shapes.

We can try to synthesize this part of our analysis outlining the behaviours 644 645 revealed by the respondents' answers to the second input of the questions: first, the 646 interpretation process looks to be starting like a selective and subjective picking up of (or 647 focusing on) the most different components, rather than being a systematic, conscious 648 scanning of the text's content. Such behaviour is widely scattered: in the whole research, 649 with regards to each specific message, it is impossible to find two identical combinations 650 of focused on components in participants' answers. Second, readers seem to make no 651 distinction among intrinsically meaningful or meaningless components: the meaning they 652 attribute can derive from any "chunk" of the text or from any other text or non-text 653 element arbitrarily chosen. Readers seem to interpret a message indifferently picking up 654 meaningful and meaningless components and subjectively combining them. While 655 reading and text decoding go ahead sequentially, readers go on freely (randomly, from an 656 external observer's point of view) isolating "chunks" of the text (as well as other 657 components and even external context aspects) and selecting them as the foundation of 658 the message's meaning. Third, while the final meaning attributed to the message is 659 justified through the selected indicated components, no reason (at all, in any cases) is 660 provided for that selection: in the respondents' accounts participants' answers, the 661 focused components suddenly appear; they are presented just as "given", and without any 662 doubt¹⁶.

¹⁶

The unique doubt expressed in the whole research is the following: 1 participant (out of 102) declares uncertainties in his final choice (between Msg #4/H and #4/S) writing that the final effect could be obtained with both the messages under choice. It must be noted that, with regards to the other questions, also this special participant's answers, too, are totally doubt-free, like the rest of the participants' ones.

At this point, we named "disassembling" the observed selective focusing and 664 took two measures. At first, we hypothesized a new image for the interpretation process, 665 inverted with respect to the "megaphone-shape" (Fig. 1) one. Our argument was that, if 666 scatter manifests itself in the beginning (scattering of focus), a "funnel-shape" picture 667 (Fig. 6) could be more suitable: people that select one same component are expected to 668 interpret it in very similar ways. Secondly, we picked up from our data an example of 669 disassembling and decided to carry out an in-depth analysis of it.

A disassembling example in detail and a perceptual hypothesis. Question #1

671 requests requested evaluations with regards related to sender-receiver positions and to the

672 relationship between them, on the basis of Messages #1 and #2 (see Method Section and

673 SI, Section 4, for the messages texts). We found out that 53 people (52% of the sample)

674 had quoted an expression the sender (the employee "XX", see Method Section and SI,

675 Sections 2, 4) used in Message #1¹⁷: she premised her request of a technician inspection

676 with the words "we would be pleased if at least once...". This simple expression,

677 apparently trivial, (also short (8 words in a 67 word message) and in no way highlighted

678 in comparison to with the rest of the text, has collected 68 quotations (15 people

679 expressed two, see Footnote 17). Then, respondents have given interpreted such specific

680 passage in at least 22 divergent interpretations different ways, summarized in Table 9

681 Table 10.

This means that focusing on the same component does not imply convergent

683 interpretations. As much as to say that the interpretation scatter manifests at both levels:

¹⁷ The 53 people have expressed reported their interpretations answering Question #1-a (23), #1-b (15) or both the questions (15). See SI Section 4 for the questions' full texts.

684 the disassembling (scattering of focusing on components) and the following attribution of 685 meaning (each sub-group, focused on a same component, provides scattered conscious 686 interpretations). This means also that the "funnel-shape" picture, too, must be revised: 687 what we observed could be better expressed through an "hourglass-shape" picture (Fig. 688 7). In fact, disassembling and classic interpretation scatter would co-exist and manifest 689 themselves **in sequence**. We notice that the expression we are considering appears to be 690 a minor element in Message #1 text, something incidentally expressed; it is composed 691 using common words and bears no inherent information content (once the passage gets 692 isolated from the rest of the message, it is impossible to attribute it a definite meaning). 693 In short: it is a mere form component. So, how could respondents select such incidental 694 passage? And what did they, exactly, grasp in it? What is more, given that the following 695 interpretations are scattered, what did respondents, exactly, interpret, having started from 696 an identical, spontaneous selection? 697 Now, the message we have used in our research was always the same, invariable 698 with regards to written form as well as to information content. Thus, if the interpretations 699 of the readers are so scattered, this cannot depend on the message itself, it must depend 700 on the readers: they evidently give an active contribution in attributing meanings, they 701 are not passive symbol decoders. Nothing new, so far: our observations confirm old 702 ideas, for example the ones that the constructivist hypothesis proposed many years ago 703 (Watzlawick, 1984). The question is: how can this happen? By one hand, respondents 704 explain through the outcomes of "disassembling" the conscious attribution of meaning 705 that follows; by the other hand, no accounts report about the source of disassembling.

706	The selective focusing manifests "immediately and automatically", apparently pre-	ceding
707	and feeding the conscious processing that follows, and that is all.	
708	At this point we felt we had elements enough to draw a conclusion and pro	pose a
709	hypothesis. The first part of the observed process ("disassembling") does not reser	nble
710	any information processing, symbol treatment or sign decoding; it rather looks like	e a
711	perceptual scheme. We mean that, if we hypothesize that the components are focus	used
712	because they firstly act like "physical" stimuli, triggering automatic reactions off	
713	("body" level) in the receivers, then the observed phenomena will become	
714	comprehensible. The main points of our hypothesis are the following:	
715	 Considering interpretation as a process, decoding of written signs must 	be its
716	first step, for turning them into words. Decoding is the "technical" aspe	ect of
717	reading, not directly linked to meanings and just feeding the following	steps.
718	Along with the sequential decoding, words and the other message comp	ponents
719	would immediately act like stimuli, triggering a receiver's automatic re	action
720	off ("body" level). This would be the second step, i.e. disassembling. It	S
721	results would be different from a person to another given that the capacitant	ity of a
722	component to act like a stimulus depends on the subjective reactivity of	feach
723	receiver.	
724	Then, the conscious processing of the collected inputs would start. Being	ng the
725	steps set in a cascade, the "input" on which this third step would be car	ried out
726	should (mainly, at least) consist of the automatic reaction's outcomes, a	not of
727	the source message's content.	

728	Our hypothesis is that the interpretation process structure can be represented with
729	a three-step (three sub-processes) model like the one in Fig. 8. It gives account of how
730	respondents focused on the incidental passage and what they grasped from it: they
731	automatically reacted to a stimulus (presumably through some unconscious connections
732	with previous experiences that had involved something similar) and such stimulus
733	oriented the following conscious process
734	In synthesis: interpretation process would firstly consist in a re-experiencing of
735	past situations through an analogical resounding at body-level, thanks to a stimulus-
736	reaction mechanism triggered off through perception. Such reaction would feed forward
737	(presumably through proprioception) the following attribution of conscious meaning to
738	the subjective experience (rather than to the source message).
739	Now, the picture we are facing is the following: first of all, focusing on the same
740	component does not entail convergent interpretations. In other words: we have two levels
741	of scatter, one at "disassembling" stage (scatter of focusing on the components) and the
742	other at the following stage, when the conscious meaning is attributed to the focused
743	components. Thus, the correspondent metaphor cannot even be the "funnel" (Fig. 6);
744	rather, it could be an "hourglass-shape" one (Fig. 7). Secondly, we have to take into
745	account that the expression "we would be pleased if at least once" bears no notable
746	features: common words, in no way highlighted and having no inherent meanings (once
747	the passage gets isolated from the rest of the message, it is impossible to attribute a
748	definite meaning to it). So, how and why has it been focused by the sample members?

749 A third element is a behavioural feature systematically (all cases) observed: on 750 the one hand, respondents explain their interpretations (the conscious meanings they 751 attributed) through the disassembling outcomes (i.e. using the components they focused 752 on). On the other hand, they did not explain the reason why they exactly focused on those 753 components. The selective focusing manifests "immediately and automatically", priming 754 the attribution of a conscious meaning. At the end, a last consideration: we have 755 submitted identical copies of the same messages to the participants; thus, if the 756 interpretations of the sample are so scattered, it cannot depend on the messages. Rather, 757 it must depend on some active contributions of the readers; evidently, they are not 758 passive symbol decoders. Nothing new, so far: our observations are consistent with old 759 ideas, for example the ones that the constructivist hypothesis proposed many years ago 760 (Watzlawick, 1984). 761 Our interpretation of such picture is the following. Analysing the participants' 762 reported behaviours, we have the impression that there are to be facing two different 763 processes. This contrasts with the current approaches, which research on interpretation 764 tacitly assuming that there is a unique operation to be explained through the experiments 765 in terms of INPUT/OUTPUT (message IN/meaning OUT with the brain as the 766 processor). If we, oppositely, assume that interpretation could be a discontinuous 767 process, made up of different operations, our observations become understandable. We 768 mean: phenomenologically, the interpretation of a natural language message starts with 769 the perception of physical stimuli (i.e. spoken sounds or written signs). Such stimuli 770 cannot be considered as the starting of the interpretation process, given that they are just

771 socially shared symbols in place of words. We can name this first step "decoding". After 772 decoding, symbols turned into words enter the actual process of interpretation, namely 773 the object of our observation; from this point on, we hypothesize a double-step process 774 (two sub-processes, Fig. 8). Disassembling should be the first step (second after 775 decoding), followed by the conscious attribution of meaning; the observation that mainly 776 upholds such hypothesis is the existence of a double level of scattering (see the 777 "hourglass-shape" picture, Fig. 7). 778 In addition, we assume that these steps have different natures; we base such 779 assumption on the observation that, in their answers, participants never account for 780 disassembling. Conversely, the disassembling outcomes are used to give reason of the 781 following step (the conscious attribution of meaning) that seems to be, literally, leant 782 against them. On these bases, we can assume that the last step corresponds to the 783 conscious, rational processing of the focused components; but what is the nature of 784 disassembling step? Our hypothesis, based on the presented observations and reflections, 785 is that it is a perceptual, not a conceptual-logic, step. The components would act like 786 "physical" stimuli, triggering automatic reactions off ("body" level) in the receivers. We 787 mean: the receivers would not consciously recognize the meaning of one component 788 before focusing on it¹⁸; simply, they would focus on those components suitable to trigger 789 their reactions off.

It is worth noting that, in such hypothesis, the process would turn into an infinite regress: if disassembling represents the conscious basis of the attribution of meaning, which could the disassembling conscious basis be? And which could be the conscious basis of the conscious basis of disassembling? And so on. A starting point of different nature is anyhow needed.

One last question remains: if a reader reacts to a given component, even though i	ι
791 appears to be meaningless/contentless, we need to identify what, exactly, that reader	
792 perceives. exactly, how can we precisely identify what a reader picks up when he/she	
793 selectively focuses on meaningless/contentless components? We think we can label	
794 identify it as the fact that one of these components is present in the message; it can be	
795 considered some meta-information to which readers can automatically react even though	
796 it is not embedded inside the message words (Table 10) (Table 11). This can clarify the	
797 aspect of the incidental passage ("we would be pleased if at least once") which	
798 triggered the participants' reaction off: the fact that XX had (redundantly) placed it in at	
799 a certain point of the her message 19.	
199 a certain point of the ner message.	
800	
800	S
800 Results from the second part of the research: checking the hypothesis	S
Results from the second part of the research: checking the hypothesis Our research's second part represents a first check about our hypothesis. We This	
Results from the second part of the research: checking the hypothesis Our research's second part represents a first check about our hypothesis. We This second part of our research is based on data drawn from the second part of the	
Results from the second part of the research: checking the hypothesis Our research's second part represents a first check about our hypothesis. We This second part of our research is based on data drawn from the second part of the questionnaire. Such part starts by submitting to participants two alternative versions of a	
Results from the second part of the research: checking the hypothesis Our research's second part represents a first check about our hypothesis. We This second part of our research is based on data drawn from the second part of the questionnaire. Such part starts by submitting to participants two alternative versions of a soft possible reply to Message #3: the original message, #4/H, and the colleague suggested	
Results from the second part of the research: checking the hypothesis Our research's second part represents a first check about our hypothesis. We This second part of our research is based on data drawn from the second part of the questionnaire. Such part starts by submitting to participants two alternative versions of a soft possible reply to Message #3: the original message, #4/H, and the colleague suggested one, #4/S (see Table 4 for the full text messages; SI, Section 5 and Tables S1, S2 for	
Results from the second part of the research: checking the hypothesis Our research's second part represents a first check about our hypothesis. We This second part of our research is based on data drawn from the second part of the questionnaire. Such part starts by submitting to participants two alternative versions of a soft possible reply to Message #3: the original message, #4/H, and the colleague suggested one, #4/S (see Table 4 for the full text messages; SI, Section 5 and Tables S1, S2 for details about the reasons of the alternative). Then, we asked them participants were	

¹⁹ It is particularly interesting to note that the expression "the fact that…" is spontaneously used by several respondents in their answers. For example, in the collected questionnaires we can find expression like the following: "the fact that the arguments are presented through a dotted list"; "the fact that XX is referring to public money".

810 choose between them the one the version suitable, in their opinion, to origin elicit the 811 final XX's answer (Message #5, that seals the positive ending of the case; see SI Section 812 4 for messages' and questions' full texts; SI, Section 5 and Tables S1, S2 for details 813 about the reasons of the alternative). Our rationale was the following: the participant's 814 choice could come as a result of the text information's conscious processing (cognitivism 815 stance) or as an automatic reaction independent of every conscious processing (embodied 816 cognition stance). In the first case (our "Hypothesis 0"), the final choices should be 817 outcomes of the interpretations given to the messages; thus, they should result somehow 818 correlated with them. In the second case, no correlation, or a different kind of correlation, 819 should be found (our "Hypothesis 1"). The problem emerged of measuring such 820 correlation now was how to assess such correlation. 821 The coherence between interpretation and choice. Firstly, we displayed (Table 822 11) (Table 12) the choices indicated by the sample members (SI Section 6 and Tables S3-823 S5 for the sub-samples description) and found out a strong imbalance between "S" and 824 "H" indications. Secondly, we compared the interpretations of Message #4/H (the 825 original) with those of Message #4/S (the suggested one; see SI Section 4 Table 4 for 826 messages' full texts full text messages). Source data (opened answers) was purely 827 qualitative. However, answers were easily classifiable into two main categories: 828 predictions for the message inducing a solution of the case (easing or overcoming, 829 anyhow solving the emerging conflict between the interlocutors); predictions for the 830 message inducing a surge, or escalation, in the conflict. We created the dummy variable 831 "Expected effects" and assigned it two values to it: "+" in the first condition; "-" in the

852 second one. Then, we labelled each questionnaire with two new symbols: one referred
833 Message #4/H (H+ or H-) and one to Message #4/S (S+ or S-). Methodologically, the
labelling has been carried out by one of the authors and, independently, by two external
persons; the answers were almost all well characterized and the assessment of the very
few cases in which the opinions diverged have been rapidly discussed and shared.
The combination of the two symbols indicates reports the combined predictions
838 each participant expressed about the effects of the two versions on XX: H+/S+ (both th
839 messages versions solving the conflict), H+/S- (Message #4/H easing the conflict while
840 Message #4/S escalating it), H-/S+ (the opposite), H-/S- (both escalating). Finally, we
841 arranged the symbols into a dichotomous table (Table 12) (Table 13). There is a clear
842 convergence on combined prediction "H-/S+"; the Chi-squared test highlights, at this
first stage, that some correlations between "H" and "S" interpretations could exist
first stage, that some correlations between "H" and "S" interpretations could exist $(p = 0.002, \text{ total sample}; p = 0.016, \text{ sub-sample} \text{ "AGE"}; p = 0.004, \text{ sub-sample})$
844 ($p = 0.002$, total sample; $p = 0.016$, sub-sample "AGE"; $p = 0.004$, sub-sample
844 ($p = 0.002$, total sample; $p = 0.016$, sub-sample "AGE"; $p = 0.004$, sub-sample 845 "EMPLOYMENT"). we set significance level to 5% and found out that, at this first
844 ($p = 0.002$, total sample; $p = 0.016$, sub-sample "AGE"; $p = 0.004$, sub-sample 845 "EMPLOYMENT"). we set significance level to 5% and found out that, at this first 846 stage, statistic tests highlight (even though not all cases result significant) that some
844 ($p = 0.002$, total sample; $p = 0.016$, sub-sample "AGE"; $p = 0.004$, sub-sample 845 "EMPLOYMENT"). we set significance level to 5% and found out that, at this first 846 stage, statistic tests highlight (even though not all cases result significant) that some 847 correlations between "H" (the original message) and "S" (the suggested one)
844 ($p = 0.002$, total sample; $p = 0.016$, sub-sample "AGE"; $p = 0.004$, sub-sample 845 "EMPLOYMENT"). we set significance level to 5% and found out that, at this first 846 stage, statistic tests highlight (even though not all cases result significant) that some 847 correlations between "H" (the original message) and "S" (the suggested one) 848 interpretations could exist (Chi-squared test: $p = 0.029$, total sample; $p = 0.166$, sub-
844 ($p = 0.002$, total sample; $p = 0.016$, sub-sample "AGE"; $p = 0.004$, sub-sample 845 "EMPLOYMENT"). we set significance level to 5% and found out that, at this first 846 stage, statistic tests highlight (even though not all cases result significant) that some 847 correlations between "H" (the original message) and "S" (the suggested one) 848 interpretations could exist (Chi-squared test: $p = 0.029$, total sample; $p = 0.166$, sub-849 sample "AGE"; $p = 0.038$, sub-sample "EMPLOYMENT"; Fischer's Exact test:
844 ($p = 0.002$, total sample; $p = 0.016$, sub-sample "AGE"; $p = 0.004$, sub-sample 845 "EMPLOYMENT"). we set significance level to 5% and found out that, at this first 846 stage, statistic tests highlight (even though not all cases result significant) that some 847 correlations between "H" (the original message) and "S" (the suggested one) 848 interpretations could exist (Chi-squared test: $p = 0.029$, total sample; $p = 0.166$, sub-sample "AGE"; $p = 0.038$, sub-sample "EMPLOYMENT"; Fischer's Exact test: 850 $p = 0.043$, total sample; $p = 0.219$, sub-sample "AGE"; $p = 0.064$, sub-sample

854 Then, we cross-checked the combined predictions with the final choices (Table 13) 855 (Table 14). The most frequent combined prediction (H-/S+) appears to be strongly 856 associated to "S" choice; indeed, the significance tests (Chi-squared) show that some 857 further, stronger relations do exist between combined predictions and choice (p = 0.000)858 total sample; p = 0.001, sub-sample "AGE"; p = 0.000, sub-sample "EMPLOYMENT") 859 (Chi-squared test: p = 0.001, total sample; p = 0.035, sub-sample "AGE"; p = 0.009, sub-860 sample "EMPLOYMENT"; Fischer's Exact test: p = 0.002, total sample; p = 0.027, sub-861 sample "AGE"; p = 0.008, sub-sample "EMPLOYMENT"). Such results led us facing 862 the core-question related to our hypothesis: given the existence of some correlations 863 between choice and combined predictions, which is its direction? We mean: do the 864 interpretations (the predictions) drive the choice (cognitivism stance) or, oppositely, does 865 the choice precede and somehow drive, or overcome, the interpretations (embodied 866 cognition stance)? 867 To delve further into such subject, we created a "coherence indicator" starting 868 from the following premises (SI Section 4 for messages' full texts) (Table 4 for full-text 869 messages): (i) The final Message #5 clearly indicates XX's satisfaction; therefore, the 870 conflict has come to its end. (ii) Now, let us figure a respondent whose answers to 871 Questions #3 and #4 return a combined prediction H+/S- (the original Message #4/H 872 solving the conflict, the suggested Message #4/S escalating it). Then, we expect that this 873 respondent indicates Message #4/H in his final choice (answer to Final question). Such 874 combination (H+/S- & "H" choice) would represent the maximum coherence level. (iii) 875 If another respondent provides the same combined prediction but chooses Message #4/S

877 coherence level. (iv). Given the natural variability always recorded in human samples, 878 we expected to find also intermediate coherence levels, based on the other possible 879 combinations (H+/S+ and H-/S-). These could be also also be due to the predictable 880 scattering of interpretations about the final Message #5: someone could interpret it as 881 something different from the sign of the conflict's ending (what happened in a fistful of 882 cases). 883 We defined four coherence levels, increasing from L (low) to LM (low-medium), 884 MG (medium-great) and G (great); the scale is fully presented in Table 14 Table 15. In 885 This way, it has been possible to study the final choice sample distribution with respect 886 to the coherence levels (Table 15) (Table 16). The percent distribution histogram of for 887 the whole sample (Figure 9, data from Table 15 Table 16) shows that the distribution is 888 the expected one shape except for the frequency of the low coherence bin, over-889 represented. Actually, we expected L frequency to be null or very close to null; anyway, 890 it should show result the lowest frequency of all. On the contrary, we found L values 891 higher than the LM ones, and representing 11% 12.2% of the sample. The two sub-892 samples (right columns of Table 16) show fully comparable features. At this point, we refined our analysis through separately analysing displaying 893 894 separately distributions of "H" and "S" choosers; for the reliability of comparison, we 895 excluded data referred to the respondents having just primary education levels (only 4 896 out of 102 in our sample). Data is displayed in Tables 16, 17, 18, 19, which show a 897 surprising asymmetry whose significance is confirmed by Chi-squared tests (always

876 in his final choice (combination H+/S- & "S" choice), this would represent the minimum

898 p<0.01 p<0.001). Graphic representations render even better such asymmetry: the total 899 sample histograms (Fig. 10, percent distributions from Table 16 Table 17) show that the 900 percent frequency of "S" (the suggested message) choosers (white bins) increases 901 regularly from L category to G, reminding (as expected) of certain power, or exponential, 902 curves. At the opposite Oppositely, the percent frequency of "H" (the original message) 903 choosers (grey bins) is arranged in an irregular, almost bimodal shape. We checked these 904 distribution shapes by using many different sub-samples (selection displayed in Fig. 11-905 16), included the already mentioned "Age" (Fig. 15, data from Table 17 Table 18) and 906 "Employment" (Fig. 16, data from Table 18 Table 19) sub-samples. We always obtained 907 the same significant imbalance. 908 Now, Chi-squared tests and graphic representations clearly indicate the existence 909 of a correlation between the participants' choice and the coherence level; but what about 910 its strength and its direction? In order to investigate the strength, we calculated the odds 911 ratio. Our success item was the L level, our failure items were all the other levels of 912 coherence coherence levels. Using data from Table 16 Table 17, we can find ODDS1 = 913 0.346 0.417 ("H", the original message choosers, about 1 success for each failure every 914 about 2 failures) and ODDS2 = 0.028 ("S", the suggested message choosers, 1 success 915 every about 36 failures). The final result is ODDS RATIO = 18.9×25.5 which highlights a 916 strong correlation between the "H" choice and the L coherence level. As much as to say 917 that, if you choose message #4/H, it is much more likely (with respect to message #4/S 918 choosers) that your choice is inconsistent with your interpretations of the two messages. 919 About the direction of such correlation (the interpretations precede and drive the choice

920 or the choice is independent of interpretations), we think the first position is not tenable;
921 indeed, it could be confirmed just in case of general consistence consistency between
922 interpretations and choice.
All this contrasts our "hypothesis 0": the participants' choice does not seem to
924 come as a result of the text information's conscious processing. Then, the choice should
925 be independent of the previous interpretations, what upholds our "hypothesis 1". After
926 this first conclusion, we set up a second indicator ("block preference" indicator) to
927 further check our hypothesis. For text length reasons, we present details about the such
928 indicator, its employment, and relative analysis in SI, Section 10 with Tables S8-S11. We
929 found no contradictions with the previous results.
930
931 Discussion
We will start our discussion summarizing our main findings. Then, we will
933 situate our work in the current scenario of scientific research; finally, we will discuss
934 some possible consequences of our results and indicate the possible directions in which
935 this study could be developed.
936 Summary of the research's main findings. The following points synthesize our
937 interpretation of the interpretation process, upheld by our work's experimental outcomes
938 (specified in italic).
939 > In all circumstances, the interpretation of natural language is a complex,
global experience not reducible to the interpretation of isolated spoken or
written words. <i>Reference to our qualitative analysis of the participants</i> '

942		answers to the first input of the questionnaire first part's questions
943		(specifically: description of the message non-word and meta-information
944		components, that prevail over verbal components and firstly orient the
945		reader's interpretation).
946	>	After decoding, a random, selective focusing on the most various and
947		unpredictable components of the message ("disassembling") starts, preceding
948		the conscious processing of the information content. Reference to our
949		qualitative analysis of the participants' answers to the first input of the
950		questionnaire first part's questions (specifically: observations about the
951		sudden appearance, extreme subjectivity and unexplained origin of the widely
952		divergent and unpredictable selected components).
953	>	"Disassembling" looks like a stimulus-reaction mechanism, rather than an
954		information treating process. Reference to our quali-quantitative statistical
955		analysis of a disassembling example (the case "we would pleased if at least
956		once") drawn from the participants' answers to the second input of the
957		questionnaire first part's questions.
958	>	Each message component would at first work like a physical stimulus, rather
959		than an information carrier; in other words, it would trigger an automatic
960		reaction off (body level) before the conscious processing of information
961		content starts. Our hypothesis, consistent with the data we collected, suitable
962		to give account for our observations and compatible with the current research
963		scenario.

964			Since "disassembling" feeds forward the following step (conscious
965			processing), it orients the attribution of meaning: conscious interpretation
966			would be carried out on the body's reaction, rather than on the source
967			information. Reference to our quantitative statistical analysis of the
968			participants' answers to the questionnaire second part's questions (coherence
969			indicator, coherence level distributions and related significance checks; block
970			preference indicator and related analysis).
971		>	After disassembling, the receiver's contact with the original message would be
972			lost ²⁰ . Consequence of the "in a cascade" setting of our model's three steps
973			(further details, with direct references to recent scientific paper consistent
974			with such conclusion, in next paragraph, which situates our work in the
975			current scientific research scenario).
976		>	The final outcome of the whole 3-step process is the meaning consciously
977			attributed to the incoming message and expressed by the receiver through
978			natural language.
979		Fro	om a methodological slant, our work showed that studying the interpretation of
980	natural	lan	guage messages in natural-like conditions can effectively complement

Our data led us to conclude that such contact can be recovered (like a sort of "fourth step" after the basic three of our model) only later and just in peculiar conditions; however, this is another story and, in this article, we will not delve further into it. In our research, one example of this can be the intervention of XX's colleague in the case. Even though the used case is a fiction, it is very close to observed real cases, in which the process can be described as follows: an expert, after **text decoding** (first step), detects an issue through **becoming alarmed** (automatic reaction, second step). Then, his/her feelings come to conscience and lead him/her to **consciously attribute** that text a negative assessment (third step). At this point, he/she starts the **in-depth analysis** of the case (our presumed "fourth step") through recovering the source message and studying it from a different point of view and through a different approach. The final result is the expert's solution of the case.

981 laboratory studies based on isolated words/phrases and contribute to a wider 982 comprehension of the phenomenon. In the first part of our analysis, we have employed 983 mainly qualitative methods and have hypothesized a discontinuity of the interpretation 984 process, made up by three sub-processes having different natures (Fig. 8). Being the first 985 (decoding) just a technical step (it turns the spoken or written symbols into words using 986 the socially shared code system), the new and critical step appears to be the following 987 one, i.e. our proposed "disassembling": the text of the message does not seem to be 988 scanned sequentially, exhaustively from its beginning to its end, by the reader; rather, it 989 seems to be scanned randomly, focusing on a very subjective selection of components 990 that is different from a reader to another. The reported differences in such focusing 991 represent the first of the two observed scatters. The outcomes of disassembling are reported by participants as the basis for the 992 993 following conscious attribution of meaning to the message; at the same time, no reason is 994 provided, in any of the self-reports, to justify disassembling. For this, our hypothesis is 995 that disassembling is an automatic reaction, out of conscious control, preceding and 996 feeding forward the conscious attribution of meaning to the message (we have also noted 997 that, in the opposite case, the analysis would turn into an infinite regress); at this level, 998 the second, well known observed scatter manifests. If our hypothesis will be confirmed, 999 this means that words are not mere symbols; they are also stimuli (they can act like 1000 physical stimuli) that trigger automatic reactions off in the receivers²¹. This would also

Such ambivalence looks interestingly (or just curiously?) similar to what happens in certain physics phenomena like the double nature of light (waves/particles) or the uncertainty about some features of many atomic particles. In those cases, the ambivalence is solved just in the process of

1002 the subjective reaction of the receiver, rather than the original message; our conscious 1003 direct contact with the real world would be prevented and we would actually attribute 1004 conscious meanings just to our automatic reactions. 1005 In short: through the first part of our work, we have outlined what kind of 1006 phenomenon interpretation could be. Our work's second part has been designed in a way 1007 similar to a social psychology experiment; through it, we have worked downstream with 1008 respect to the interpretation process itself, investigating its effects on a consequent 1009 behaviour (the final choice); we found significant imbalances in the coherence between 1010 interpretation and choice. Roughly, we can label as "rational" the choices that show 1011 maximum coherence with the previous interpretations of the two messages (the original, 1012 Message #4/H, and the suggested one, #4/S); conversely, we can label as "irrational" the 1013 choices that show minimum coherence. Well, We found that the irrational cases are 1014 significantly ascribable to "H" choosers rather than to "S" ones. In other words: the 1015 elements provided by interpretations appear insufficient to determine the choice; this 1016 means that other factors intervene. Such factors should be unconscious, otherwise they 1017 would be declared by at least some participants; in addition, they must have a different 1018 and stronger source from the conscious/rational analysis of the message content, 1019 otherwise their influence on the choice would not prevail.

1001 mean that what would enter the conscious attribution of meaning sub-process would be

measuring the phenomena (Zeilinger, 2010, for a discussion about the case of photons, and von Baeyer, 2013 for a recent point of view about such ambivalence); in the case of words, something similar would happen, given that their nature would become evident just in relation to the receiver's reaction.

1020 The main question is: why, in the decision process, do these factors significantly 1021 weigh just in connection with one choice and not with the other one? Further research is 1022 needed to find the answer. Provisionally, we think there are two possible hypotheses: (1) 1023 The two sub-samples follow different paths in interpreting natural language messages 1024 ("S" choosers would base their choices on rational information processing, which would 1025 precede action, while "H" choosers would react instinctively and choose before analysing 1026 the available information); (2) The two sub-samples actually follow the same path 1027 (automatic reaction preceding conscious information processing, in our opinion) and the 1028 difference they show is linked to the differences in their automatic reaction schemes ("S" 1029 choosers' reaction would privilege the attention to the relational aspects while "H" 1030 choosers' reaction would privilege the content aspects). 1031 The link between the second and the first part of our research is, mainly, the 1032 common trait of the unconscious factor influence on either the interpretation process or 1033 the action that follows interpretation. With regards to the interpretation process, we have 1034 presented a hypothesis about where and how unconscious factors could act: in the three-1035 step process we have proposed, we place them at the second step ("disassembling"); 1036 therein, disassembling appears to function like an automatic reaction to the 1037 words/expressions of the read message. With regards to the action that follows 1038 interpretation, about the unconscious factors that sway human behaviours, unhooking 1039 them from the conscious meaning attributed, we can hypothesize they are linked to some 1040 tracks left by disassembling in the reaction schemes of receivers.

1041 Situating our work in the current research scenario. With respect to the dispute 1042 between the stance of cognitivism-stance and the embodied cognition hypotheses, we 1043 think our research could be situated in a third position, for two reasons. The first reason 1044 is that, while these theories share (even though coming to opposite conclusions) the 1045 concept of natural language interpretation as a unique operation, we have seen it as a 1046 discontinuous process (three steps of different nature, "decoding" included). The second 1047 reason is that, in our model, two of the three sub-processes seem to be compatible, 1048 separately, with those two theories. We mean: the embodied concept features are akin to 1049 our second step ("disassembling"); the cognitivist hypothesis is clearly akin to our third 1050 step, (see Fig. 8). Probably, we can better exemplify this through recovering the example (see 1051 1052 Hickcok, 2009, page 1240) we presented in the Introduction. In our opinion, embodied 1053 cognition hypothesis looks at the that described act of pouring in its purely motorial 1054 nature; conversely, understanding it, for example, as "pouring" or "filling", requires the 1055 interpretation of a **situation** which is not limited to the act for itself per se. In order to 1056 attribute the "pouring" meaning, one must focus on the liquid flow direction (inside to 1057 outside, from the bottle); for the "filling" meaning, one must focus on the glass receiving 1058 the liquid; for the "emptying" meaning, one must focus on the bottle content's amount of 1059 liquid inside the bottle. An operation must be preceding the attribution of a conscious 1060 meaning: the previous, unconscious selection of a specific point of view, which is 1061 something closely resembling our "disassembling" step. The attribution of conscious

1062	meanings should be preceded by the previous, unconscious selection of specific points of
1063	view (something closely resembling our "disassembling" step).
1064	Scientific research of present times is, naturally, swayed by the confrontation
1065	between cognitive and embodied hypotheses. The "cognitive field" frequently engages
1066	the noun-verbs dissociation problem, studying it through researches on cortically
1067	damaged, selectively impaired patients; such studies are mainly aimed to define the
1068	nature of the concepts' representations in the brain cortex (lexical or semantic, lexico-
1069	semantic dissociation issue), and to cortically map it (for example Crepaldi et al., 2006;
1070	Arévalo et al., 2007; Moseley & Pulvermüller, 2014; Gallese, 2014). Conversely, the
1071	"embodied cognition field" mainly go searching for the connections between language
1072	and its motor correlates, one well-known of which is the ACE (Action-sentence
1073	Compatibility Effect), often checked through measuring and comparing the reaction
1074	times collected during language-and-action combined match-advantage experiments (see
1075	for example Vitevitch et al. 2013; Horchak et al., 2014). Such studies are frequently
1076	carried out through neuroimaging works (for example Tettamanti et al., 2005; Aziz-
1077	Zadeh et al., 2006; Speer et al., 2008; Aziz-Zadeh & Damasio, 2008).
1078	We have already reminded, in the Method section, the methodological aspect we
1079	consider common to the two research lines: they both use, during the experiments, words
1080	and short phrases isolated from every context (see, for example, Bedny et al., 2008;
1081	Bedny et al., 2012, especially the Method sections; and, for some critical reflections
1082	about the question, the already cited <u>Pulvermüller et al. 2014</u> , specifically Pag. 80,
1083	Chapter 7). Such methodological aspect elicits a further consideration: there is a cross-

1084	concept widely and implicitly shared by cognitivism and embodied theories, namely the
1085	idea that the meaning is something embedded inside words. These would work somehow
1086	like "carriers" of meaning and interpretation would consist in the "extraction" of
1087	meaning from words (actually, the verb "to extract" is overtly used in scientific
1088	publications, for instance Mahon & Caramazza, 2011).
1089	The divergence between the two approaches can be synthesized as follows (for
1090	further reference see, for example, <u>Bedny et al., 2008</u> ; <u>Rizzolatti & Fabbri-Destro, 2008</u> ;
1091	Goldman & de Vignemont, 2009; Gallese, 2011; Gallese & Sinigaglia, 2011b; Bedny et
1092	al., 2012): cognitivism upholds the sequential processing idea, i.e. cognition being
1093	conceptual and resulting from a sequence of perception / symbolic processing of the
1094	incoming information / (motor) reaction. Oppositely, the embodiment theories uphold the
1095	concept of direct connections among cortical sensorial and motor areas ("sensorimotor
1096	grounding" of cognition, Guan et al., 2013). In this sense, cognition would be
1097	embodied ²² . Now, how could our work be positioned in such picture? In a third position,
1098	we would say. In fact, both theories are based on the implicit idea that human
1099	communication is a continuous, homogeneous process. On the contrary, we hypothesize
1100	discontinuity, with the interpretation process made-up of three discrete, in-a-cascade
1101	steps which can result compatible with both ideas.
1102	Actually, in our opinion We must add that such overlapping is just one aspect
1103	of the question; our proposal entails at least one important difference with respect to the

Such embodiment, inside the same embodied cognition field, can be conceived in different ways: it can stand alone, *per se* resolving the problem of knowledge ("sensorimotor processing underlies and constitutes cognition", <u>Guan et al.</u>, 2013), or can be a "motor representation" that accompanies conscious knowledge processes (the two kinds of knowledge proposed by Gallese, for example in <u>Gallese et al.</u>, 2011; see also <u>Gallese</u>, 2014).

1104 two theories: the discrete, in-a-cascade structure of our process implies a feeding chain, 1105 with the first step (decoding) that feeds the second (disassembling) which, in turn, feeds 1106 the final one. This results, after "disassembling", in the loss of the contact with the 1107 source message and in the conscious processing performed on the body-reaction signals 1108 (presumably received through proprioception). The real object of our (first level, see Footnote 18) knowledge would not directly be the outer world; rather, it would be our 1110 instinctive reactions to it (the outer inputs combined with our inner world). This is a 1111 relevant point, and we have selectively examined some of the available literature for a 1112 first check of it. 1113 Apart from this, if we extend back our literature survey, we can find, for example, 1114 that conscious thinking following (rather than preceding) "body" reaction(s) can be 1115 traced back up to the hypotheses of Nineteenth Century philosopher and psychologist 1116 William James. In one of his examples (the "James's bear", see James, 1890, Chapter 1117 XXV), James explains his theory of emotions suggesting that, for example (our 1118 synthesis), we do not run away from a bear because we see it, we know it is very 1119 dangerous, so we are scared of it and, consequently, we consciously decide to run away 1120 (as common sense would sustain). Conversely, we feel like we are afraid because 1121 (consciously and successively) we discover our body having started a desperate run. In 1122 other words: what we call "emotion" is usually intended as a body reaction consequent to 1123 the rational processing of consciously perceived environmental stimuli; James suggests 1124 that the body reaction immediately follows perception immediately and what we call 1125 "emotion" is the consciousness of the new body state (a form of self-consciousness). We

1127 and opposed through several that alternative theories have been proposed (for example 1128 Cannon, 1927; Schachter & Singer, 1962); nevertheless, we do refer to it because recent 1129 scientific research and reviews seem to suggest some re-consideration of the matter (for 1130 example, Friedman, 2010). We will not deepen the question here; however, we feel that 1131 James-Lange's intuitions could deserve another chance. 1132 In the Twentieth Century, we can find the Gregory Bateson's approach to human 1133 communication as a system and to the question of the receiver's active role; he uses a 1134 strictly formal presentation (see <u>Bateson</u>, 1972, in particular Chapter 4.8 on the logical 1135 categories of communication, founded on Russel and Whitehead's theory of logical 1136 types). In addition, we remind of recall a group of theories and models (some of which 1137 repeatedly expressly refer to Bateson's studies) that tackle the question mainly from a 1138 pragmatic slant: the so called "pragmatic models" (Berne, 1961; Watzlawick, Beavin 1139 <u>Bavelas & Jackson, 1967</u>; <u>Bandler & Grinder, 1975</u>). Conceived inside a psychoanalytic 1140 context, they all put perception and stimuli at the centre of their attention and reverse the 1141 relationship between action and thought using action (rather than thought) to induce 1142 training and therapeutic effects²³. We find no important contradictions among our

1126 are aware that James's James theory (exactly: James-Lange theory) has been criticized

By On the one hand, it is worth mentioning a special work coming from NLP founders (Grinder & Bandler, 1979): it appears different from the work that founded this theory (Bandler & Grinder, 1975) and that has successively been developed by NLP specialists (for example Dilts, 1998). As a matter of fact, that work gives a central role to perception and to physical stimuli (not mediated by language) as a possible communication and therapeutic instrument (see, in particular, the concept of "sensorial anchors" in Grinder & Bandler, 1979). By On the other hand, we should remind a Watzlawick's work on the modern evolution of psychotherapy (Watzlawick, 1987) that represents a severe critic to the classic approach and reverses the relation between action and thought (an Italian translation is retrievable in Nardone & Watzlawick, 1990, Chapter 1). In the same Nardone & Watzlawick, 1990, see also chapter 2 on perception as one main source of psychopathology.

1143 hypotheses and such models; rather, we find complementarity: they show how physical 1144 stimuli can act like messages; our results tell could show that words (even if only 1145 written) can act like physical stimuli. In addition, we can propose an explication of an 1146 unsolved point related to them: the biological foundations of the "aspect of relation" in 1147 human communication (Watzlawick, Beavin Bayelas & Jackson, 1967). On the basis of 1148 our results, this aspect could be exactly the body-level automatic reaction which precedes 1149 the conscious information processing. 1150 About the relevance of unconscious processes in human behaviour, some 1151 fundamental clarification is provided by Custers & Aarts, 2010 through a review of 1152 experimental works that re-examines the disputed question of the passage from 1153 perception to action. The authors compare the traditional positions of Sensory-motor 1154 Principle (SMP, for example Massaro & Cowan, 1993; and, for a presentation and 1155 discussion about the sequential processing of stimuli conceived as the foundation of 1156 human/environment interactions, see also Rizzolatti & Sinigaglia, 2006, chapters 1, 2) 1157 and Ideomotor Principle (IMP, Stöcker & Hoffmann, 2004; Pezzulo et al., 2006; Melcher 1158 et al., 2008; and, for a synthesis, Iacoboni, 2008, Chapter 2, pp. 56-57 of Italian edition). 1159 In so Doing so, they show how certain stimuli (images, solid objects or even written 1160 words), intentionally added to an experimental setting, can alter the sample behaviours, 1161 even if such stimuli are not consciously detected: "under certain conditions, actions are 1162 initiated even though we are unconscious of the goals to attain... [and] goal pursuit 1163 can... operate unconsciously" (Custers & Aarts, 2010). They also sustain that arguments

1164 frequently presented as rational motivations for action are, actually, *ex-post* justifications 1165 of unconsciously performed behaviours.

1166 The role of physical stimuli in swaying communication through natural language 1167 is confirmed by a series of recent works (for example Zhong, Bohns & Gino, 2010; Tsay, 1168 2013; and, for a popular-scientific coverage, Lobel, 2014). Further, quite unpredictable 1169 factors that can sway message interpretation can be the specific national languages used 1170 (for example Marian & Kaushanskaya, 2005; Costa et al., 2014) or the metaphors used to 1171 express concepts (Thibodeau & Boroditsky, 2011; Thibodeau & Boroditsky, 2013). Our 1172 data is consistent with all this the outlined scenario in that it confirms precedence the 1173 effects of perception-reaction with regards to on conscious processing. 1174 In the end of this rapid survey, we think it is worth re-examining the example 1175 (Hickok, 2009, for the opposing point of view see Gallese et al., 2011) presented in our 1176 Introduction in order to check our proposal in a concrete case. About the capacity of an 1177 observer to understand the action of pouring performed by someone, the author 1178 highlights that the "embodied cognition" hypothesis cannot explain the fact that the 1179 observer can interpret such action "as pouring, filling, emptying, tipping, rotating, 1180 inverting, spilling (if the liquid missed its mark) or defying/ignoring/rebelling (if the 1181 pourer was instructed not to pour)..." (see Hickcok, 2009, page 1240, italic by the 1182 author). The author also anticipates the counter-argument of a supposed mirror neuron 1183 theorist, i.e. that mirror neurons codify the goals, or intentions, of the actor: "But a goal, 1184 say to fill a glass with water, can be accomplished with any number of individual actions

1185 or sequence of actions: pouring from a pitcher, turning a spigot, dipping a glass in a lake, 1186 setting the glass in the rain..." (*ibidem*). Some possible consequences. Naturally, our results need to be confirmed; once 1187 1188 they would be, we can see four main possible consequences. The first one regards the 1189 discontinuous nature of the interpretation process and, specifically, the role of the second 1190 step of our model (disassembling) in human communication through natural language: 1191 some traditional empirical knowledge would find theoretical bases (for example in 1192 advertising and marketing fields) and a revision of human communication current models 1193 would be needed (for example with regards to mass media and education). Simply, the 1194 fact should be taken into account that human communication through natural language 1195 could work in a slightly different way than expected and thought up until now. 1196 One main consequence of our results, once they will be confirmed, would 1197 concern the nature of words. We are used to consider words almost exclusively in their 1198 symbolic nature; however, our research shows that they could have a double nature: they 1199 could work like symbols as well as physical stimuli. In a specific circumstance, which of 1200 the two natures will be active depends on the subjective "disassembling" performed by 1201 the receiver, rather than on the sender's intentions. This implies that which nature is in 1202 action will become observable only at the moment of the receiver's interaction with the 1203 message. This is very similar to what happens in certain physics phenomena, for example 1204 the double nature of light (waves/particles) or the uncertainty about some features of 1205 many atomic particles: the ambivalence is solved just in the process of measuring the

1206 pne	nomen	a (Zeiniger, 2010, for a discussion about the case of photons, and von Baeyer,
1207 201	3 for a	recent point of view about such ambivalence). All this entails what follows:
1208	>	There is a structural uncertainty in the human communication process: when
1209		a sender prepares a message (message production sub-process), he/she has the
1210		intention to produce some effects on the receiver (his/her communication has
1211		a goal, this is the pragmatic aspect); however, the actual effects the message
1212		will produce will depend on another sub-process (interpretation) that is under
1213		control by the receiver, not by the sender. Uncertainty is linked to the
1214		irreducible subjectivity of the receiver's "disassembling"24.
1215	>	Such subjectivity is not just a question of statistical scatter, with regards to
1216		presumed pre-definable message components; the question is that it is
1217		impossible to foresee what components, exactly, will trigger the receiver's
1218		automatic reaction off (receiver's reactivity is an absolutely individual
1219		feature).
1220	>	What is more, the selective focusing, by the receiver, on specific message
1221		components, seems to be a creative act, rather than a simple recognition of
1222		something contained inside the message. So, it would be impossible to
1223		previously detect and list, in a laboratory condition, "all" the components of a
1224		message. In fact, whatever the message, the concept of an inherent message's

Another way to express such concept is considering the sender-receiver couple as a complex system, and the meaning like an emergent phenomenon which characterizes it (about this specific matter see, for example, Guastello, 2002).

measurable information content fades. Human communication seems to be a
process having a different nature from computer communication.
In the end, communication and knowledge processes would be firstly analogical,
1228 rather than digital. The second consequence would be the analogical, rather than digital,
1229 basis of interpretation. Meaning would be established starting from the body automatic
1230 reaction in the "disassembling step", analogically triggered through individual reaction
1231 schemes probably based on similar, previous personal experiences. The final meaning,
1232 expressed through natural language, would be the result of the following step, i.e.
1233 conscious taking into account of the outcomes of such analogical process. This final
1234 meaning would not be directly based on the source message; rather, it will be based on
1235 the body reaction. Indeed, all This could lead us to approach consider natural language
1236 expertise like as a system of acquired reflexes, what would mean that human beings
1237 would "communicate through their body" in a wider and deeper sense than conceived at
1238 present (something quite different from mere non-verbal language performances). and
1239 Such feature could heavily affect the possibility to reproduce human interpretation
1240 process on digital computers, regardless of their processing power and data storage
1241 capacity. The two systems could result not only different, rather incompatible. We are
1242 not the first to who propose such observation (for example Arecchi, 2008; Arecchi,
1243 <u>2010b</u> ; <u>Arecchi, 2010c</u> on the non-algorithmic nature of knowledge and intelligence).
The third consequence could derive from our observations about the taking into
1245 account of the message components by the reader, that seems to be performed like a
1246 subjective operation, quite arbitrary and unpredictable. If this will be confirmed, the

1247 concept of "content of a message" should probably be revised, given that it would result
impossible to <i>ex-ante</i> define all the contents a reader could detect in a specific message.
What is more, as a fourth possible consequence, if mere "form" (aesthetic) components
1250 are indifferently taken into account as sources of meaning with respect to the content
1251 components, then the difference between form and content fades, leading to a concept of
"message" as a unit made up only by <i>components</i> , all of them having the same
importance (the same <i>ex-ante</i> probability of being chosen).
In the end of a so long arguing about the attribution of meaning, it is worth briefly
1255 considering the problem of "what is meaning" (what is the meaning of "meaning").
Beyond the strictly phylosophical, abstract definitions, nowadays we can record attempts
1257 to provide operative definitions; for example Guastello, 2002, who considers the sender-
1258 receiver couple as a complex system and the meaning like an emergent phenomenon
1259 which characterizes it. In the end, all this could Our research can lead to an hypothesize
1260 another operative definition of "meaning" (expressing the meaning of "meaning"),
1261 beyond the possible abstract ones: The meaning attributed to a message is the receiver's
1262 synthetic conscious report (through natural language) on the final state of his/her
1263 organism after experiencing the interaction with the message.
Other possible consequences of our results are the following:
The distinction between content and form of a message would lose its sense,
given that the apparently most insignificant (from the sender's point of view)
variation of the form can completely change the message's meaning (from the

1268		receiver's point of view). Given a message, we simply could not distinguish
1269		what is "content" and what is "form", before the receiver interacts with it.
1270	>	Human beings do not interpret data or single signals/stimuli; rather they
1271		interpret situations. Again, the human approach to a message, as well as to the
1272		surrounding environment (natural or social), would work analogically, through
1273		the organism's resounding to a recognizable situation, rather than digitally,
1274		through a rational scanning of the available incoming information.
1275	O_I	pened questions. We have provided some data upholding our hypothesis and
1276	our discus	ssion; at the same time, we are conscious that our results and our conclusions
1277	need to be	e confirmed. Among the undoubtedly several points to be checked, we highlight
1278	two main	questions. The first one is linked to the matter of analogical vs. digital nature of
1279	the proces	ses that contribute to meaning and knowledge building. Following our
1280	hypothesi	s, both the natures would be playing a role, each in a specific step of the
1281	interpretat	tion process: "disassembling" has an analogical nature while the conscious
1282	processing	g has a digital one. The main question is the timing of these two steps: if
1283	conscious	processing precedes, then some current models would be confirmed; if
1284	disassemb	oling precedes, then our hypothesis would be confirmed. The problem is just to
1285	find a way	y in order to definitely answer such question, what does not seem easy.
1286	Th	ne second point to be checked regards the reasons of the observed radical
1287	difference	e between the "H" choosers and "S" choosers group behaviours in terms of
1288	interpretat	tion/choice coherence; about this, we think there are two possible hypotheses:
1289	(1) The tw	vo subsamples follow different paths in interpreting natural language messages

("S" choosers would base their choices on rational information processing, which would precede action, while "H" choosers would react instinctively and choose before analysing the available information); (2) The two subsamples actually follow the same path (automatic reaction preceding conscious information processing, in our opinion) and the difference they show is linked to the differences in their automatic reaction schemes ("S" thoosers' reaction would privilege the attention to the relational aspects while "H" choosers' reaction would privilege the content aspects). We consider relevant such matter and we will not engage ourselves in extemporaneous considerations about it; rather, we have already begun to think to a dedicated specific research.

1300 Conclusion

Human behaviour (communication through natural language and "understanding" 1302 included) must be rooted into biology. We consider established and thoroughly share this 1303 such idea; for this, our results have to pass the crucial test: valid compliance with the 1304 evolution theory. Specifically, we must ask asked ourselves if a conscious organism that 1305 reacts before rationally thinking (what our work seems to confirm) could be a valid 1306 outcome of the evolution process.

At present times, human beings live inside sophisticated societies; however, their 1308 biology is the result of natural selection and represents the best fitting in a **natural** 1309 **hostile environment**. Biologically, we are still "the ones of the stone and of the sling"

²⁵ From the poem *Uomo del mio tempo* (Man of my age), of Italian poet (1959 Nobel Prize) <u>Salvatore Quasimodo</u>, 1947: *Sei ancora quello della pietra e della fionda*, / *uomo del mio tempo*... [You are still the one of the stone and of the sling, / Man of my Age...]. A complete text of the poem (original

1310 even though, from a cultural slant, we can account for ourselves in different ways.

1311 Rational thinking is, undoubtedly, much slower in comparison to with intuitive automatic

1312 reactions; at the same time, in a natural environment, fast reaction capacities are a critical

1313 surviving factor. Thus, reaction preceding reflection appears to be consistent with the

1314 evolution theory. Human communication and culture could have begun by employing the

1315 new feature of language through such general rule: at first, perception would not start

1316 complex (and slow) information treatment; rather, the entire organism automatically

1317 would change its state and, "resounding" similar situations, would be primed for

1318 immediate action. Then, rational thinking would follow. Another possible example of the

1319 "exaptation" process (Gould & Vrba, 1982).

Summing up all the data, literature and considerations we have presented, two 1321 things remain to be said. The first is that, now, we have at least a hypothesis to describe 1322 how human beings understand or do not understand one another and their environment: it 1323 depends on the way they firstly react (biological level) to the inputs and then can manage 1324 (cultural level) their own reactions. The second is that, in such perspective, if there is any 1325 possibility to represent the human semantic approach to relationship with the surrounding 1326 environment through a computational device, then its model should be the whole human 1327 being, not the sole brain cortex. As a consequence Consequently, what really can prevent 1328 present times computers from imitating human thought is not insufficient data processing 1329 power or data storage capacity; rather, it is the lack of a special peripheral unit: a human 1330 body.

language) is available at http://www.incontroallapoesia.it/poesie%20salvatore_quasimodo.htm (accessed 1 June 2015).

1331
1332
1333
1334
1335
1336
1337 Acknowledgements
1338 We thank Laura Baglietto, Andrea Baldini, Marco Calabrò, Leonardo Cavari, Hasna El-
1339 Hachimi, Alessandro Farini, Alessandra Gasperini, Maddalena Morandi, Claudia
1340 Santovito, Arabella Tanyel-Kung for their comments.
1341 A special thanks to Fortunato Tito Arecchi for his suggestions; to Andrea Fiaschi and
1342 Christina Tsirmpa for their text revision; to Letizia Scrobogna for her contribution to data
1343 revision; to Irene Maffei for her final text survey and impact assessment.

1344 References

1345 Arecchi FT, Kurths J. 2009. Nonlinear dynamics in cognitive and neural systems: 1346 Introduction to focus issue. *Chaos* 19, 015101 (2009).

1347 Arecchi FT. 2008. Coerenza, Complessità, Creatività. Roma: Di Renzo.

1348 Arecchi FT. 2010a. Coherence, cognitive acts and creativity (The physics of mental acts).
1349 In: Agazzi E, Di Bernardo G, ed. *Relations between Natural Sciences and Human*1350 *Sciences*. Actes de l'Academie Internationale de Philosophie des Sciences, Rovereto1351 Italie, 15-20 Sept. 2008. Genova: Tilgher, 307-329.

1352 Arecchi FT. 2010b. Coherence, complexity and creativity: from lasers to cognitive 1353 processes. *Giornale di Fisica - Quaderni di Storia della Fisica* 16 (2010):157-183.

1354 Arecchi FT. 2010c. Coherence, complexity and creativity: the dynamics of decision 1355 making. In: Faggini M, Vinci CP, ed. *Decision theory and choices: a complexity* 1356 *approach*. Milan: Springer-Verlag Italia, 3-21.

1357 Arecchi FT. 2010d. Dynamics of consciousness: complexity and creativity. *The Journal* 1358 of *Psychophysiology* (2010) 24 (2): 141-148.

1359 Arecchi FT. 2010e. The physics of mental acts: coherence and creativity. *Journal of* 1360 *Physics:* Conference Series 174, 012010 (2009).

1361 Arecchi FT. 2011a. Phenomenology of Consciousness: from Apprehension to Judgment. 1362 *Nonlinear Dynamics, Psychology and Life Sciences* 15: 359-375.

1363 Arecchi FT. 2011b. Chaos and Complexity. In: Jencks C ed. *The Post-Modern Reader*. 1364 Chichester: John Wiley & Sons, 279-283.

1365 Arévalo A, Perani D, Cappa SF, Butler A, Bates E, Dronkers N. 2007. Action and object 1366 processing in aphasia: From nouns and verbs to the effect of manipulability. *Brain and* 1367 *Language* 100 (2007) 79–94. DOI: 10.1016/j.bandl.2006.06.012.

1368 Aziz-Zadeh L, Damasio A. 2008. Embodied semantics for actions: Findings from 1369 functional brain imaging. *Journal of Physiology – Paris*. DOI: 1370 10.1016/j.jphysparis.2008.03.012.

1371 Aziz-Zadeh L, Wilson SM, Rizzolatti G, Iacoboni M. 2006. Congruent embodied 1372 representations for visually presented actions and linguistic phrases describing actions. 1373 *Current Biology 16* (September): 1818-1823. DOI: 10.1016/j.cub.2006.07.060.

1374 Baciadonna L, McElligott AG, Briefer EF. 2013. Goats favour personal over social 1375 information in an experimental foraging task. *PeerJ* 1:e172. DOI: 10.7717/peerj.172.

1376 Bandler R, Grinder J. 1981. *La struttura della magia*. Roma: Astrolabio-Ubaldini. [Or. 1377 ed.: Bandler R, Grinder J. 1975. *The structure of magic*. Palo Alto: Science & Behaviour 1378 Books.]

1379 Bara BG, Tirassa M. 1999. A mentalist framework for linguistic and extralinguistic 1380 communication. In: Bagnara S, ed. *Proceedings of the 3rd European Conference on* 1381 *Cognitive Science (ECCS '99)*. Roma: Istituto di Psicologia del CNR.

1382 Barthes R. 2000. *La retorica antica*. Milano: Bompiani. [Or. ed.: Barthes R. 1970. 1383 L'ancienne rhétorique. *Communications* 16: 172-223. DOI: 10.3406/comm.1970.1236.]

1384 Bateson G. 1976. *Verso un'ecologia della mente*. Milano: Adelphi. [Orig. ed.: Bateson G. 1385 1987 (1972). *Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry*, 1386 *Evolution, and Epistemology*. Northvale: Aronson.]

1387 Bedny M, Caramazza A, Grossman E, Pascual-Leone A, Saxe R. 2008. Concepts are 1388 more than percepts: The case of action verbs. *The Journal of Neuroscience*, October 29, 1389 2008, 28(44):11347-11353. DOI: 10.1523/JNEUROSCI.3039-08.2008.

1390 Bedny M, Caramazza A, Pascual-Leone A, Saxe R. 2012. Typical Neural 1391 Representations of Action Verbs Develop without Vision. *Cerebral Cortex* February 1392 2012, 22: 286-293. DOI: 10.1093/cercor/bhr081.

1393 Bedny M, Caramazza A. 2011. Perception, action, and word meanings in the human 1394 brain: the case from action verbs. *Annals of the New York Academy of Sciences* 1224: 81-1395 95. DOI: 10.1111/j.1749-6632.2011.06013.x.

1396 Berne E. 1971. *Analisi transazionale e psicoterapia*. Roma: Astrolabio-Ubaldini. [Or. 1397 ed.: Berne E. 1961. *Transactional analysis*. New York: Grove.]

1398 Bobrowski O, Meir R, Eldar YC. 2009. Bayesian filtering in spiking neural networks: 1399 noise, adaptation, and multisensory integration. *Neural Computation* 2009 May, 21(5): 1400 1277-320.

1401 Campos MN. 2007. Ecology of meanings: A critical constructivist communication 1402 model. *Communication Theory* 17: 386-410. DOI: 10.1111/j.1468-2885.2007.00304.x.

1403 Cannon WB. 1927. The James-Lange theory of emotions: a critical examination and an 1404 alternative theory. *The American Journal of Psychology* Vol 39, 1927, 106-124. DOI: 1405 10.2307/1415404.

1406 Carter AJ, Marshall HH, Heinsohn R, Cowlishaw G. 2014. Personality predicts the 1407 propensity for social learning in a wild primate. *PeerJ* 2:e283. DOI: 10.7717/peerj.283.

1408 Cattaneo L, Caruana F, Jezzini A, Rizzolatti G. 2009. Representation of goal and 1409 movements without overt motor behavior in the human motor cortex: A transcranial 1410 magnetic stimulation study. *Journal of Neuroscience* 29: 11134–11138.

1411 Chater N, Tenenbaum JB, Yuille A. 2006. Probabilistic models of cognition: Conceptual 1412 foundations. *TRENDS in Cognitive Sciences* Vol.10, No.7, July 2006.

1413 Christian B. 2012. Essere umani: che cosa ci dice di noi il test di Turing. [Or. ed.: 1414 Christian B. 2011. The most human human: What talking with computers teaches us 1415 about what it means to be alive. New York-London: Doubleday – Random House.]

1416 Costa A, Foucart A, Hayakawa S, Aparici M, Apesteguia J, Heafner J, Keysar B. 2014.
1417 Your Morals Depend on Language. *PLoS ONE* 9(4): e94842. DOI:
1418 10.1371/journal.pone.0094842.

1419 Crepaldi D, Aggujaro S, Arduino LS, Zonca G, Ghirardi G, Inzaghi MG, Colombo M,
1420 Chierchia G, Luzzatti C. 2006. Noun-verb dissociation in aphasia: the role of
1421 imageability and functional locus of the lesion. *Neuropsychologia* 2006; 44 (1): 73-89.
1422 PMID: 15922372.

1423 Custers R, Aarts H. 2010. The unconscious will. *Science* 329: 47-50. DOI: 1424 10.1126/science.1188595.

1425 De Mauro T. 2003 (1980). Guida all'uso delle parole. Roma: Editori Riuniti.

1426 Deacon T W. 2012. Natura incompleta: Come la mente è emersa dalla materia. Torino:1427 Codice Edizioni. [Or. ed.: Deacon T W. 2012. Incomplete nature: How mind emerged1428 from matter. New York: W. W. Norton & Company.]

1429 di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G.1992. Understanding motor 1430 events: A neurophysiological study. *Experimental brain research* 91: 176-180. DOI: 1431 10.1007/BF00230027.

1432 Dilts R. 2003. *Creare modelli con la PNL*. Roma: Astrolabio – Ubaldini. [Or. ed.: Dilts 1433 R. 1998. *Modeling with NLP*. Capitola: Meta Publications.]

1434 Ferrari F, Rizzolatti G. 2014. Mirror neurons research: the past and the future. *Phil*.1435 *Trans. R. Soc. B* 369, 20130169 (published 28 April 2014). DOI: 10.1098/rstb.2013.0169.

1436 Ferri F, Riggio L, Gallese V, Costantini M. 2011. Objects and their nouns in peripersonal 1437 space. *Neuropsychologia* 49 (2011): 3519–3524.

1438 Fowler CA, Galantucci B, Saltzman E. 2003. Motor theories of perception. In: Arbib 1439 MA, ed. *The handbook of brain theory and neural networks*. Cambridge: The MIT Press, 1440 2^d edition, 705-707.

1441 Fox C, Stafford T. 2012. Maximum utility unitary coherent perception vs. the Bayesian 1442 brain. *Proceedings of the Annual Meeting of the Cognitive Science Society*, Sapporo 1-4 1443 August 2012. *Available:*

1444 http://mindmodeling.org/cogsci2012/papers/0070/paper0070.pdf (accessed 1 June 2015).

1445 Friedman BH. 2010. Feelings and the body: the Jamesian perspective on autonomic 1446 specificity of emotion. *Biological Psychology*, Jul;84(3):383-93. DOI: 1447 10.1016/j.biopsycho.2009.10.006. Epub 2009 Oct 29.

1448 Gallese V, Gernsbacher MA, Heyes C, Hickok G, Iacoboni M. 2011. Mirror Neurons1449 Forum. *Perspectives on Psychological Science* 2011 6: 369. DOI:1450 10.1177/1745691611413392.

1451 Gallese V, Rochat M, Cossu G, Sinigaglia C. 2009. Motor cognition and its role in the 1452 phylogeny and ontogeny of intentional understanding. *Developmental Psychology* 45: 1453 103–113.

1454 Gallese V, Sinigaglia C. 2011a. How the body in action shapes the self. *Journal of* 1455 *Consciousness Studies* 18: No. 7–8, 117–43.

1456 Gallese V, Sinigaglia C. 2011b. What is so special about embodied simulation? *Trends in* 1457 *cognitive neuroscience* 2011 Nov, 15(11): 512-9.

1458 Gallese V, Sinigaglia C. 2012. Response to de Bruin and Gallagher: Embodied 1459 simulation as reuse is a productive explanation of a basic form of mind-reading. *Trends* 1460 *in Cognitive Sciences* February 2012, Vol. 16, No 2: 99-100. DOI: 1461 10.1016/j.tics.2011.12.002.

1462 Gallese V. 2000. The inner sense of action. *Journal of Consciousness studies* 7, 10: 23-1463 40.

1464 Gallese V. 2005. Embodied simulation: From neurons to phenomenal experience.

1465 *Phenomenology and the Cognitive Sciences* 4: 23–48.

1466 Gallese V. 2006. Intentional attunement: A neurophysiological perspective on social 1467 cognition and its disruption in autism. *Brain Research* 1079: 15–24.

1468 Gallese V. 2007. Before and below "theory of mind": Embodied simulation and the 1469 neural correlates of social cognition. *Philosophical Transactions of the Royal Society* B: 1470 Biological Sciences 362: 659–669.

1471 Gallese V. 2008 Mirror neurons and the social nature of language: The neural 1472 exploitation hypothesis. *Social Neuroscience* 3: 317–333.

1473 Gallese V. 2009a. Motor abstraction: A neuroscientific account of how action goals and 1474 intentions are mapped and understood. *Psychological Research* 73: 486–498.

1475 Gallese V. 2009b. Neuroscienze controverse: il caso dei neuroni specchio. Interview by 1476 Marco Mozzoni. *Brainfactor* 29/5/2009. *Available:* http://www.brainfactor.it/?p=1254 1477 (accessed 1 June 2015).

1478 Gallese V. 2010. The Mirror Neuron Mechanism and Literary Studies. Interview by 1479 Hannah Chapelle Wojciehowski. *University of California eScholarship 2010. Available:* 1480 http://escholarship.org/uc/item/56f8v9bv (accessed 1 June 2015).

1481 Gallese V. 2011. Embodied Simulation Theory: Imagination and Narrative. 1482 *Neuropsychoanalysis* 2011, 13 (2).

1483 Gallese V. 2014. Bodily selves in relation: embodied simulation as second-person 1484 perspective on intersubjectivity. *Phil. Trans. R. Soc. B* **369**, 20130177 (published 28 1485 April 2014). DOI: 10.1098/rstb.2013.0177.

1486 Geymonat L. 1970. *Storia del pensiero filosofico e scientifico*. Milano: Garzanti, Vol. 1, 1487 Sez. I.

1488 Gibson E, Bergen L, Piantadosi ST. 2013. Rational integration of noisy evidence and 1489 prior semantic expectations in sentence interpretations. *Proceedings of the National* 1490 *Academy of Sciences* May 14, 2013, Vol. 110, n. 20: 8051-8056.

1491 Goldman A, de Vignemont F. 2009. Is social cognition embodied? *Trend in cognitive* 1492 *sciences* April 2009, 13(4): 154-9.

1493 Goldstein R. 2006. *Incompletezza: La dimostrazione e il paradosso di Kurt Gödel*.1494 Torino: Codice Edizioni. [Or. ed.: Goldstein R. 2005. *Incompleteness: The proof and*1495 *paradox of Kurt Gödel*. New York-London: Norton.]

1496 Gould SJ, Vrba ES. 1982. Exaptation: A missing term in the science of form. 1497 *Paleobiology* 8 (1): 4-15.

1498 Griffiths TL, Kemp C, Tenenbaum JB. 2008. Bayesian models of cognition. In: Ron Sun,1499 ed. *Cambridge Handbook of Computational Cognitive Modelling*. Cambridge:1500 Cambridge University Press.

1501 Grinder J, Bandler R. 1980. *La metamorfosi terapeutica: Principi di Programmazione*1502 *Neurolinguistica*. Roma: Astrolabio-Ubaldini. [Or. ed.: Grinder J, Bandler R. 1979.
1503 *Frogs into princes: Neuro Linguistic Programming*. Moab: Real People Press.]

1504 Gruber T, Zuberbühler K, Clément F, van Schaik C. 2015. Apes have culture but may not 1505 know that they do. *Frontiers in Psychology* 6:91. DOI: 10.3389/fpsyg.2015.00091.

1506 Guan CQ, Meng W, Yao R, Glenberg AM. 2013. The Motor System Contributes to 1507 Comprehension of Abstract Language. *PLoS ONE* 8(9): e75183. DOI: 1508 10.1371/journal.pone.0075183.

1509 Guastello SJ. 2013 (2002). *Managing emergent phenomena: nonlinear dynamics in work* 1510 *organizations*. Abingdon (UK): Taylor & Francis, Psychology Press.

1511 Hickok G, Hauser M. 2010. (Mis)understanding mirror neurons. *Current Biology* 20: 1512 R593–R594.

1513 Hickok G. 2009. Eight problems for the mirror neurons theory of action understanding in 1514 monkeys and humans. *Journal of Cognitive Neuroscience* 21:7: 1229-1243. DOI: 1515 10.1162/jocn.2009.21189.

1516 Hoffman P, Lambon Ralph MA. 2011. Reverse concreteness effects are not a typical 1517 feature of semantic dementia: Evidence for the hub-and-spoke model of conceptual 1518 representation. *Cerebral Cortex*, September 2011;21:2103-2112. DOI: 1519 10.1093/cercor/bhq288

1520 Hommel B, Müsseler J, Aschersleben G, Prinz W. 2001. The theory of event coding 1521 (TEC): A framework for perception and action planning. *Behavioural and brain sciences* 1522 24: 849-937.

1523 Horchak OV, Giger JC, Cabral M, Pochwatko G. 2014. From demonstration to theory in 1524 embodied language comprehension: a review. *Cognitive Systems Research* Volumes 29-1525 30, September 2014: 66-85. DOI: 10.1016/j.cogsys.2013.09.002.

1526 Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G. 2005. 1527 Grasping the intentions of others with one's own mirror neuron system. *PLoS Biology* 1528 3(3): e79.

1529 Iacoboni M. 2008. *I neuroni specchio: Come capiamo ciò che fanno gli altri*. Torino: 1530 Bollati Boringhieri. [Or. ed.: Iacoboni M. 2008. *Mirroring People: The New Science of* 1531 *How We Connect with Others*. New York: Farrar, Straus & Giroux.]

1532 Ingram JN, Körding KP, Howard IS, Woolpert DM. 2008. The statistics of natural hand 1533 movements. *Experimental Brain Research* 188: 223–236. DOI 10.1007/s00221-008-1534 1355-3.

1535 James W. 1890. The principles of psychology. New York: Holt.

1536 Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. 1995. Grasping objects: Cortical 1537 mechanisms of visuomotor transformation. *Trends in Neuroscience* 18: 314-320.

1538 Khosravi H, Bina B. 2010. A survey on statistical relational learning. *Lecture Notes in*1539 *Computer Science*, Volume 6085/2010: 256-268. DOI: 10.1007/978-3-642-13059-5_25.

- 1540 Krauss RM, Fussell SR. 1996. Social psychological models of interpersonal 1541 communication. In: Higgins ET, Kruglanski A, ed. *Social Psychology: A handbook of* 1542 *basic principles*. New York: Guilford, 655-701.
- 1543 Leavitt D. 2007. L'uomo che sapeva troppo: Alan Turing e l'invenzione del computer.
 1544 Torino: Codice Edizioni. [Or. ed.: Leavitt D. 2006. The man who knew too much: Alan
 1545 Turing and the invention of the computer. New York-London: Norton.]
- 1546 Liberman AM, Whalen DH. 2000. On the relation of speech to language. *Trends in* 1547 *Cognitive Neuroscience* 4: 187-196.
- 1548 Lobel T.2014. *Sensation: the new science of physical intelligence*. New York: Simon & 1549 Schuster/Atria Books.
- 1550 Locke JL. 2009. Evolutionary developmental linguistics: Naturalization of the faculty of 1551 language. *Language Sciences* 31 (2009) 33-59. DOI: 10.1016/j.langsci.2007.09.008.
- 1552 Lotze RH. 1852. *Medicinische psychologie oder physiologie der seele*. Leipzig: 1553 Weidmannsche Buchandlung.
- 1554 Mach E.1897. Contributions to the analysis of the sensations. Chicago: Open Court.
- 1555 Maffei R, Cavari L, Ranieri M. 2007. L'autre face du changement: Constants et 1556 structures dans la collaboration en ligne. *Proceedings of the Colloques TICE* 1557 *Méditerranée* 2007. ISDM 29. *Available: http://isdm.univ-*
- 1558 <u>tln.fr/PDF/isdm29/MAFFEI.pdf</u> (accessed 1 June 2015).

1559 Maffei R. 2006. Questioni di stile: L'influenza dello stile di conduzione sui gruppi 1560 collaborativi online. *Proceedings of the Colloques TICE - Méditerranée 2006*. ISDM 25. 1561 *Available:* http://isdm.univ-tln.fr/PDF/isdm25/Maffei_TICE2006.pdf (accessed 1 June 1562 2015).

1563 Mahon B Z, Caramazza A. 2011. What drives the organization of object knowledge in 1564 the brain? *Trends in Cognitive Sciences*, Volume 15, Issue 3, 97-103, 14. DOI: 1565 10.1016/j.tics.2011.01.004.

1566 Mahon BZ, Caramazza A. 2008. A critical look at the Embodied Cognition Hypothesis 1567 and a new proposal for grounding conceptual content. *Journal of Physiology - Paris* 102: 1568 59-70. DOI:10.1016/j.jphysparis.2008.03.004.

1569 Mahon BZ, Caramazza A. 2009. Concepts and categories: A cognitive 1570 neuropsychological perspective. *Annual Review of Psychology* 60: 27-51. DOI: 1571 10.1146/annurev.psych.60.110707.163532.

1572 Mainardi D. 1988. L'animale culturale. Milano: Rizzoli, 3^d edition.

1573 Marcus G. 2004. La nascita della mente: Come un piccolo numero di geni crea la 1574 complessità del pensiero umano. Torino: Codice Edizioni. [Or. ed.: Marcus G. 2004. The 1575 birth of the mind: How a tiny number of genes creates the complexities of human thought. 1576 New York: Basic Books.]

1577 Marian V, Kaushanskaya M. 2005. Autobiographical memory and language in bicultural 1578 bilinguals. In: Cohen J, McAlister KT, Rolstad K, MacSwan J, eds. *Proceedings of the 4th* 1579 *International Symposium on Bilingualism*. Somerville (MA): Cascadilla Press.

1580 Marino BFM, Gough P, Gallese V, Riggio L, Buccino G. 2011. How the motor system 1581 handles nouns: A behavioural study. *Psychological Research* (published online). DOI 1582 10.1007/s00426-011-0371-2.

1583 Massaro DW, Cowan N. 1993. Information Processing Models: Microscopes of the mind. 1584 *Annual Review of Psychology* 44: 383-425.

1585 Melcher T, Weidema M, Eenshuistra RM, Hommel B, Gruber O. 2008. The neural 1586 substrate of the ideomotor principle: An event-related fMRI analysis. *NeuroImage* 39: 1587 1274-1288. DOI: 10.1016/j.neuroimage.2007.09.049.

1588 Menchetti S, Costa F, Frasconi P, Pontil M. 2005. Wide coverage natural language
1589 processing using kernel methods and neural networks for structured data. *Science Direct*,
1590 *Pattern Recognition Letters* 26 (2005): 1896-1906. *Available:*

1591 http://www.researchgate.net/publication/222681214_Wide_coverage_natural_language
1592 processing_using_kernel_methods_and_neural_networks_for_structured_data (accessed 1593 https://www.researchgate.net/publication/222681214_Wide_coverage_natural_language
1592 https://www.researchgate.net/publication/222681214_Wide_coverage_natural_language
1592 processing_using_kernel_methods_and_neural_networks_for_structured_data (accessed 1593 processing_using_hernel_methods_and_neural_networks_for_structured_data (accessed 1593 processing_using_hernel_methods_and_neural_networks_for_structured_data (accessed 1593 processing_using_hernel_methods_and_neural_networks_for_structured_data (accessed 1593 processing_using_hernel_methods_and_neural_networks_for_structured_data (accessed 1593 processing_using_hernel_methods_and_neural_networks_for_structured_data_">processing_using_hernel_methods_and_neural_networks_for_structured_data_">processing_using_hernel_methods_and_neural_networks_for_structured_data_">processing_using_hernel_methods_and_neural_networks_for_structured_data_">processing_using_hernel_methods_and_neural_networks_for_structured_data_">processing_us

1594 Merleau-Ponty M. 1965. *La fenomenologia della percezione*. Milano: Il Saggiatore.
1595 [English ed.: Merleau-Ponty M. 1962. *Phenomenology of perception*. London-New York: 1596 Routledge.]

1597 Mitchell TM. 1997. Machine learning. New York: McGraw Hill.

1598 Mitchell TM. 2009. Brains, meaning and corpus statistics. *Google Tech Talks* March 27, 1599 2009. *Available:* http://www.youtube.com/watch?v=QbTf2nE3Lbw (accessed 1 June 1600 2015).

1601 Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM. 2008. The neural basis 1602 of body form and body action agnosia. *Neuron* 60: 235–246.

1603 Moseley RL, Pulvermüller F. 2014. Nouns, verbs, objects, actions, and abstractions: 1604 Local fMRI activity indexes semantics, not lexical categories. *Brain and language* 132 1605 (2014): 28-42. DOI: 10.1016/j.bandl.2014.03.001.

1606 Muller CA, Cant MA. 2010. Imitation and traditions in wild banded mongooses. *Current* 1607 *Biology* 20: 1171–1175.

1608 Nardone G, Watzlawick P. 1990. L'arte del cambiamento. Milano: Ponte alle Grazie.

1609 Nathan DE, Guastello SJ, Prost RW, Jeutter DC. 2012. Understanding Neuromotor
1610 Strategy During Functional Upper Extremity Tasks Using Symbolic Dynamics.
1611 Nonlinear Dynamics, Psychology, and Life Sciences Vol. 16, Iss. 1 (January, 2012): 37-1612 59.

1613 Negri GAL, Rumiati RI, Zadini A, Ukmar M, Mahon BZ, Caramazza A. 2007. What is 1614 the role of motor simulation in action and object recognition? Evidence from apraxia. 1615 *Cognitive Neuropsychology* 24(8): 795-816. DOI: 10.1080/02643290701707412.

- 1616 Newell A, Shaw JC, Simon HA. 1958. Elements of a theory of human problem solving. 1617 *Psychological Review* 65: 151-166. DOI 10.1037/h0048495.
- 1618 Pascolo PB, Budai R. 2013. Just how consistent is the mirror neuron system paradigm? 1619 *Progress in Neuroscience* 2013; 1 (1-4): 29-43. DOI: 10.14588/PiN.2013.Pascolo.29
- 1620 Patterson K, Nestor PJ, Rogers TT. 2007. Where do you know what you know? The 1621 representation of semantic knowledge in the human brain. *Nature Reviews*, December
- 1622 2007. DOI: 10.1038/nrn2277
- 1623 Pazzaglia M, Smania N, Corato E, Aglioti SM. 2008. Neural underpinnings of gesture 1624 discrimination in patients with limb apraxia. *Journal of Neuroscience* 28: 3030–3041.
- 1625 Perelman C. 1981. *Il dominio retorico: Retorica e argomentazione*. Torino: Einaudi. [Or. 1626 ed.: Perelman C. 1977. *L'empire rhétorique : Rhétorique et argumentation*. Paris: Vrin.]
- 1627 Perfors A, Tenenbaum JB, Griffiths TL, Xu F. 2011. A tutorial introduction to Bayesian 1628 models of cognitive development. *Cognition* Volume 120, Issue 3, September 2011: 302–1629 321. DOI: 10.1016/j.cognition.2010.11.015.
- 1630 Pettigiani MG, Sica S. 2003. La comunicazione interumana. Milano: F. Angeli.
- 1631 Pezzulo G, Baldassarre G, Butz MV, Castelfranchi C, Hoffmann J. 2006. An analysis of 1632 the Ideomotor principle and TOTE. In: Butz MV, Sigaud O, Pezzulo G, Baldassarre G, 1633 ed. *Anticipatory Behavior in Adaptive Learning Systems: Advances in Anticipatory* 1634 *Processing*. Berlin: Springer, 73-93.

- 1635 Pobric G, Jefferies E, Lambon Ralph Ma. 2010. Category-specific versus category-
- 1636 general semantic impairment induced by Transcranial Magnetic Stimulation. Current
- 1637 Biology 20, 964-968, May 25, 2010. DOI: 10.1016/j.cub.2010.03.070
- 1638 Poincaré JH. 2003 (1902). La scienza e l'ipotesi. Milano: Bompiani. [English ed.:
- 1639 Poincaré JH.1905. Science and Hypothesis. London-Newcastle O. T.: Walter Scott
- 1640 Publishing.]
- 1641 Poincaré JH.1997 (1908). Scienza e metodo. Torino: Einaudi. [English ed.: Poincaré JH.
- 1642 1914. Science and method. London-Edinburgh-Dublin-New York: Nelson.]
- 1643 Prinz W. 1997. Perception and action planning. European Journal of Cognitive
- 1644 Psychology 9 (2): 129-154.
- 1645 Pulvermüller F, Moseley RL, Egorova N, Shebani Z, Boulenger V. 2014. Motor
- 1646 cognition-motor semantics: Action-perception theory of cognition and communication.
- 1647 Neuropsychologia 55 (2014) 71-84. DOI: 10.1016/j.neuropsychologia.2013.12.002.
- 1648 Quasimodo S. 1947. Giorno dopo giorno. Milano: Mondadori.
- 1649 Range F, Viranyi Z, Huber L. 2007. Selective imitation in domestic dogs. Current
- 1650 Biology 17: 868-872.
- 1651 Rizzolatti G, Craighero L. 2004. The mirror-neuron system. Annual review of
- 1652 Neuroscience 27: 169-192. DOI: 10.1146/annurev.neuro.27.070203.144230.

1653 Rizzolatti G, Fabbri-Destro M. 2008. The mirror system and its role in social cognition. 1654 *Current Opinion in Neurobiology* 18: 1-6. DOI: 10.1016/j.conb.2008.08.001.

1655 Rizzolatti G, Fogassi L, Gallese V. 2001. Neurophysiological mechanisms underlying the 1656 understanding and imitation of action. *Nature Reviews Neuroscience* 2: 661-670. DOI: 1657 10.1038/35090060.

1658 Rizzolatti G, Sinigaglia C. 2006. *So quel che fai: Il cervello che agisce e i neuroni* 1659 *specchio*. Milano: Cortina.

1660 Rizzolatti G, Sinigaglia C. 2010. The functional role of the parieto-frontal mirror circuit: 1661 Interpretations and misinterpretations. *Nature Reviews Neuroscience* 11: 264–274.

1662 Rizzolatti G, Vozza L. 2008. Nella mente degli altri. Milano: Zanichelli.

1663 Rochat MJ, Caruana F, Jezzini A, Escola L, Intskirveli I, Grammont F, Gallese V, 1664 Rizzolatti G, Umiltà MA. 2010. Responses of mirror neurons in area F5 to hand and tool 1665 grasping observation. *Experimental Brain Research* 204: 605–616.

1666 Rose S. 2005. *Il cervello del XXI Secolo: Spiegare, curare e manipolare la mente*.

1667 Torino: Codice Edizioni. [Or. ed.: Rose S. 2005. *The 21st Century brain: Explaining,*1668 *mending and manipulating the mind*. London: Jonathan Cape-Random House.]

1669 Sauser EL, Billard AG. 2006. Parallel and distributed neural models of the ideomotor 1670 principle: An investigation of imitative cortical pathways. *Neural networks* 19: 285-298. 1671 DOI: 10.1016/j.neunet.2006.02.003.

1672 Schachter S, Singer JE. 1962. Cognitive, social and physiological determinants of 1673 emotional state. *Psychological Review* Vol.69, No.5, September 1962.

1674 Sclavi M. 2003. Arte di ascoltare e mondi possibili. Milano: Bruno Mondadori.

1675 Speer NK, Reynolds JR, Swallow KM, Zacks JM. 2008. Reading stories activates 1676 neural representations of visual and motor experiences. *Psychological Science* 20/8: 989-1677 999. DOI: 10.1111/j.1467-9280.2009.02397.x.

1678 Sperry RW. 1952. Neurology and the mind–brain problem. *American Scientist* 40: 290-1679 312.

1680 Stekelenburg JJ, Vroomen J. 2012. Electrophysiological evidence for a multisensory 1681 speech-specific mode of perception. *Neuropsychologia* 50 (2012) 1425-1431. DOI: 1682 10.1016/j.neuropsychologia.2012.02.027.

1683 Stöcker C, Hoffmann J. 2004. The ideomotor principle and motor sequence acquisition: 1684 Tone effects facilitate movements chunking. *Psychological research* 68: 126-137. DOI: 1685 10.1007/s00426-003-0150-9.

1686 Suchak M, Eppley TM, Campbell MW, de Waal FBM. 2014. Ape duos and trios: 1687 spontaneous cooperation with free partner choice in chimpanzees. *PeerJ* 2:e417. DOI: 1688 10.7717/peerj.417.

1689 Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND. 2011. How to Grow a Mind: 1690 Statistics, Structure, and Abstraction. *Science* 331: 1279. DOI: 10.1126/science.1192788.

1691 Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M, Scifo P, Fazio F, 1692 Rizzolatti G, Cappa SF, Perani D. 2005. Listening to action-related sentences activates 1693 fronto-parietal motor circuits. *Journal of Cognitive Neuroscience* 17(2): 273-281.

1694 Thibodeau PH, Boroditsky, L. 2011. Metaphors we think with: the role of metaphor in 1695 reasoning. *PLoS ONE* 6(2): e16782. DOI:10.1371/journal.pone.0016782.

1696 Thibodeau PH, Boroditsky, L. 2013. Natural language metaphors influence reasoning. 1697 *PLoS ONE* 8(1): e52961. DOI:10.1371/journal.-pone.0052961.

1698 Tsay CJ. 2013. Sight over sound in the judgement of music performance. *Proceedings of* 1699 the National Academy of Sciences 2013 110 (36) 14580-14585. DOI: 1700 10.1073/pnas.1221454110.

1701 Turing A.1950. Computing machinery and intelligence. *Mind* 59: 433-460. DOI: 1702 10.1093/mind/LIX.236.433. *Available*:

1703 <u>http://www.csee.umbc.edu/courses/471/papers/turing.pdf</u> (accessed 1 June 2015).

1704 Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, 1705 Gallese V, Rizzolatti G. 2008. When pliers become fingers in the monkey motor system. 1706 *Proceedings of the National Academy of Sciences* USA 105: 2209–2213.

1707 Verbeke M, Van Asch V, Morante R, Frasconi P, Daelemans W, De Raedt L. 2012. A 1708 statistical relational learning approach to identifying evidence based medicine categories. 1709 Proceedings of the 2012 Conference on Empirical Methods in Natural Language

- 1710 Processing and Computational Natural Language Learning (EMNLP-CoNLL 2012),
- 1711 Jeju, Korea July 12–14, 2012. Available:
- 1712 https://lirias.kuleuven.be/bitstream/123456789/350664/1/VerbekeEtAl_EMNLP2012.pdf
 1713 (accessed 1 June 2015).
- 1714 Vitevitch MS, Sereno J, Jongman A, Goldstein R. 2013. Speaker Sex Influences 1715 Processing of Grammatical Gender. *PLoS ONE* 8(11): e79701. DOI: 1716 10.1371/journal.pone.0079701.
- 1717 von Baeyer HC. 2013. Can Quantum Bayesianism Fix the Paradoxes of Quantum 1718 Mechanics? *Scientific American*, June 2013.
- 1719 Watzlawick P, a cura di. 1988. *La realtà inventata Contributi al costruttivismo*. Milano: 1720 Feltrinelli. [Or. ed.: Watzlawick P, ed. 1984. *The invented reality*. New York: Norton.]
- 1721 Watzlawick P, Beavin Bavelas J, Jackson DD. 1971. *Pragmatica della comunicazione* 1722 *umana*. Roma: Astrolabio-Ubaldini. [Or. ed.: Watzlawick P, Beavin Bavelas J, Jackson 1723 DD. 1967. *Pragmatics of human communication*. New York: Norton.]
- 1724 Watzlawick P. 1987. If you desire to see, learn how to act. In: Zeig JK, ed. *The evolution* 1725 *of psychotherapy*. New York: Brunner/Mazel, 91-100.
- 1726 Zeilinger A. 2012. *La danza dei fotoni Da Einstein al teletrasporto quantistico*. Torino, 1727 Codice. [Or. ed.: Zeilinger A. 2010. *Dance of the Photons From Einstein to quantum* 1728 *teleportation*. New York: Farrar Straus & Giroux.]

1729 Zeki S. 2010. Splendori e miserie del cervello: L'amore, la creatività e la ricerca della 1730 felicità. Torino: Codice Edizioni. [Or. ed.: Zeki S. 2009. Splendours and miseries of the 1731 brain: Love, creativity and the quest for human happiness. Chichester: Wiley-Blackwell.]

1732 Zhong CB, Bohns VK, Gino F. 2010. Good lamps are the best police: darkness increases 1733 dishonesty and self-interested behaviour. *Psychological Science* Published online 29 1734 January 2010. DOI: 10.1177/0956797609360754.

1735 Zipoli Caiani S. 2013. Cognizione incorporata. *APhEx – Portale italiano di filosofia*1736 analitica (*Periodico online – ISSN 2036-9972*) 8, 2013. *Available:*1737 http://www.aphex.it/public/file/Content20140103_APhEx8,2013Cognizioneincorporata-1738_Zipoli.pdf (accessed 1 June 2015).

1739 Zuberbühler K. 2005. The phylogenetic roots of language: evidence from Primate 1740 communication and cognition. *Current directions in psychological science* 2005, 14:126. 1741 DOI: 10.1111/j.0963-7214.2005.00357.x.

1742