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ABSTRACT
Background. Populus euphratica is one of the most ancient and primitive tree species
of Populus spp and plays an important role in maintaining the ecological balance in
desert areas. To decipher the diversity, community structure, and relationship between
rhizosphere fungi and environmental factors at different growth stages of P. euphratica
demands an in-depth investigation.
Methods. In this study, P. euphratica at different growth stages (young, medium,
overripe, and decline periods) was selected as the research object, based on the
determination of the physicochemical properties of its rhizosphere soil, the fungal
community structure and diversity of P. euphratica and their correlation with soil
physicochemical properties were comprehensively analyzed through high-throughput
sequencing technology (internal transcribed spacer (ITS)) and bioinformatics analysis
methods.
Results. According to the analysis of OTU annotation results, the rhizosphere soil
fungal communities identified in Populus euphratica were categorized into10 phyla, 36
classes, 77 orders, 165 families, 275 genera and 353 species. The alpha diversity analysis
showed that therewas no obvious change between the different growth stages, while beta
diversity analysis showed that there were significantly differences in the composition of
rhizosphere soil fungal communities betweenmature and overripe trees (R2

= 0.31, P =
0.001), mature and deadwood (R2

= 0.28, P = 0.001). Ascomycota and Basidiomycota
were dominant phyla in the rhizosphere fungal community and the dominant genera
wereGeopora, Chondrostereum andunidentified_Sordariales_sp.The relative abundance
of the top ten fungi at each classification level differed greatly in different stages.
Canonical correspondence analysis (CCA) and Spearman’s correlation analysis showed
that conductivity (EC) was the main soil factor affecting the composition of Populus
euphratica rhizosphere soil fungal community (P < 0.01), followed by total dissolvable
salts (TDS) and available potassium (AK) (P < 0.05).
Conclusions. Our data revealed that the rhizosphere fungal communities at the
different growth stages of P. euphratica have differences, conductivity (EC) was the
key factor driving rhizosphere fungi diversity and community structure, followed by
total dissolvable salts (TDS) and available potassium (AK).
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INTRODUCTION
Soil microorganism is one of the key components of desert soil microecosystem, which
plays an important role in soil nutrient cycle and vegetation nutrient supply and recovery
(Neilson et al., 2012; Bull & Asenjo, 2013). Rhizosphere soil fungi are an important part
of soil-plant ecosystem, and ‘their community structure closely affects the growth and
development of plants. The diversity and ecological function of rhizosphere soil fungi have
become a hot topic in the field of soil microecology at home and abroad (Wu, Lin & Lin,
2014). Previous studies on soil fungal communities are mainly based on the traditional
plate culture method, which has proved the dependence of plants on fungal communities
(Costa et al., 2006). However, the number of soil fungi obtained by this method is very
small, and many fungi cannot be isolated and cultured directly (Wang et al., 2021a; Wang
et al., 2021b), so that it cannot fully reflect the composition of the community structure.

With the development of science and technology, high-throughput sequencing
technology has gradually become the mainmethod to study soil microorganisms (Liu et al.,
2015; Luo et al., 2020). In the current research, it was found that there is a close correlation
between rhizosphere microorganisms and plants, and their interaction mechanism was
complicated (Morgan, Bending & White, 2005). The composition of rhizosphere microbial
community will be affected by vegetation type (Sinha et al., 2008), soil type (Lu et al., 2011;
Acharya et al., 2021), human factors and other factors (Li et al., 2015; Huang et al., 2021;
Yin, Li & Du, 2021). For the same plant, different planting methods (Durrer et al., 2021),
different development stages, even genetic background and other factors will lead to the
change of the rhizosphere microbial community (Marschner et al., 2001; Dang et al., 2020).

Populus euphratica is one of the most ancient and primitive tree species of Populus spp. It
is a unique desert forest tree species, having the characteristics of drought resistance, saline
alkali resistance, heat resistance, wind and sand resistance, and plays an important role in
maintaining the ecological balance in desert areas (Nekoa et al., 2018). China has the largest
distribution range and the largest number of P. euphratica species in the world. More than
90% of P. euphratica forests in China are concentrated in Xinjiang region, and mainly in
the lower reaches of Tarim River and many downsteam in the southern edge of Tarim
basin (Wang, 1996). However, some researchers indicated that P. euphratica population
regeneration in the lower reaches of Tarim River showed a decline type, the proportion
of young plants in the population decreased significantly or even lacked, population
was mostly over mature forest plants and the overall performance of the decline trend
(Zhou et al., 2018). Currently, most studies of P. euphratica were focus on heteromorphic
leaves (Li et al., 2020a; Li et al., 2020b), photosynthetic physiological characteristics (Wang
et al., 2014), water use efficiency (Zhou et al., 2019), population structure (Miao et al.,
2020), etc, while few studies on the relationship between plant and rhizosphere soil
fungal community composition and diversity. Therefore, the goal of our work was to (1)
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Table 1 Morphological characteristics of P. euphratica at different growth stages.

Group φ/cm H/m P/m×m

A 3.50∼5.41 2.53∼3.25 2.02× 1.93∼2.62× 3.13
B 8.12∼9.62 4.50∼5.50 2.82× 3.20∼3.50× 3.98
C 59.23∼67.88 12.30∼16.50 6.21× 6.09∼5.86× 7.40
D /

Notes.
φ, diameter at breast height (DBH); H, height of tree; P, crown; A, sapling; B, mature; C, overripe; D, deadwood.

analyze the composition and diversity of rhizosphere soil fungi of P. euphratica at different
growth stages in the lower reaches of the Tarim River; (2) explore the dominant fungi
in the P. euphratica rhizosphere at different stages, and the change of rhizosphere soil
physical and chemical properties; (3) elucidate the correlation between fungal community
composition and environmental factors. This study will provide scientific basis for the
study of rhizosphere microorganisms and population rejuvenation of P. euphratica and the
interaction between plants and microorganisms in arid areas.

MATERIALS & METHODS
Study sites and sampling
The study area was located in the natural P. euphratica forest in the lower reaches of Tarim
River basin, Xinjiang province (with the geographical coordinates of 40◦28′∼40◦55′N,
87◦51′∼87◦75′E), China. This area belonged to a typical continental extreme arid climate,
with the annual average precipitation was less than 50 mm, the evaporation was about
2,960 mm, the annual total solar radiation was 5,692∼6,360 kJ m−2, and the annual
average temperature was 10.5 ∼11.4 ◦C (Yang & He, 2000), the ecological environment
was extremely bad.

In mid-September 2020, soil samples were collected from selected natural P. euphratica
forests. According to the classification standard in P. euphratica forest written by Wang,
Chen & Li (1995). Four growth stages are selected, which including sapling (A), mature
(B), overripe (C), and deadwood (D). The diameter at breast height (DBH) of sapling was
about four cm, mature wood was 4∼10 cm, and overripe wood was 30∼70 cm. Three trees
with similar growth and no diseases and insect pests were selected for each stage to measure
morphological characteristics (Table 1) and collect rhizosphere soil samples (60 cm). At
the same time, the bare land without vegetation cover was selected as blank control (CK),
in the area and soil samples were collected (same depth), set up three sampling points to
take mixed soil samples, and obtain three groups of parallel samples at each place.

The sampling method of rhizosphere soil microorganisms was to dig the soil profile 0.5
m away from the primary root, and start from the fine root (sample’s depth was 60 cm),
the soil adhered to the root segment after shaking the fine root was the rhizosphere soil.
The collected soil was divided into three parts, one part was placed in a five mL sterile
centrifuge tube and stored in a liquid nitrogen tank for the determination of rhizosphere
fungal community; other part soil samples were put into sealed bags and brought back to
the laboratory, after natural air-drying, they were screened (twomm) for the determination
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of soil physical and chemical properties; the last part of the soil samples were weighed in
aluminum boxes, and drying in an oven (72◦/48 h) at the laboratory used for soil moisture
measurement.

Soil physicochemical properties
Soil properties were assessed as described in prior studies (Bao, 2008), organic matter
content (OM) was assessed using the KCr2O7 method, total nitrogen(TN) was assessed
using the HClO4-H2SO4 digestion method, total phosphorus (TP) was assessed using a
Mo-Sb colorimetric method, total potassium (TK) was measured via atomic absorption
spec-trometry, nitrate nitrogen(SNN), ammonium nitrogen(SAN) was assessed via a
0.01 M calcium chloride extraction method using a BRAN+LUEBBE flow analyzer,
available phosphorus(AP) wasdetermined by molybdenum antimony anti Colorimetry
(sodium bicarbonate extraction), available potassium (AK) was determined by atomic
absorption spectrometry (ammonium acetate extraction), pH (as measured with a Mettler
Tolido FiveEasy Plus pH meter), total dissolvable salts (TDS) (as assessed via atomic
absorption spec-trometry and titration), and conductivity (EC) (measured by Hanna
H1 2315 conductivity meter). In addition, the above determination of soil physical and
chemical properties was repeated three times.

Soil fungi DNA extraction, PCR amplification and sequencing
Most of the methods adopted here are previously described in Hu, Yesilonis & Szlavecz
(2021). Briefly, soil genomic DNA was extracted from rhizosphere soil samples of
P. euphratica by cetyltrimethylammonium bromide (CTAB) (Hu, Yang & You, 2010), after
that, the purity and concentration of DNAwere detected by 2% agarose gel electrophoresis.
A proper amount of DNA sample was taken into a centrifuge tube and diluted with sterile
water to 1 ng µL−1. Using diluted genomic DNA as a template, ITS1 primers ITS5-1737F
(5′-GGAAGTAAAAGTCGTAACAAGG-3′) (Bellemain et al., 2010) and ITS2-2043R (5′-
GCTGCGTTCTTCATCGATGC-3′), Phusion R© high-fidelity PCR Master Mix with GC
Buffer and efficient high-fidelity enzyme from Biolabs, New England, were selected for PCR
(Walters et al., 2016). The PCR product was detected by electrophoresis using 2% agarose
gel, and recovered using the gel recovery kit provided by Qiagen company, TruSeq R© DNA
PCR-free Sample Preparation Kit (Illumina, USA) was used to construct the library, which
was quantitated by Qubit and Q-PCR. Lastly, the constructed library was sequenced and
computerized on Illumina HiSeq2500 platform of Beijing Compson Biotechnology Co.,
Ltd.

Sequence processing and analysis
FLASH (V1.2.7, http://ccb.jhu.edu/software/FLASH/) (Magoč & Salzberg, 2011) was used to
splice the offline data obtained by sequencing to get Raw tags data, through the Qiime
(V1.9.1, http://qiime.org/scripts/split_libraries_fastq.html) (Gregory et al., 2010) for data
quality control, after strict filtering (Bull & Asenjo, 2013), clean tags are obtained, then
we do chimera filtering (https://github.com/torognes/vsearch/) (Haas et al., 2011), and
ultimately get can be used for further analysis of Effective tags.
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Uparse (v7.0.1001, http://www.drive5.com/uparse/) (Edgar, 2013) was used to cluster
sequences into Operational taxa (OTUs) with 97% sequence similarity, annotate
the OTUs sequences, analyze the species annotation with the BLAST method (http:
//qiime.org/scripts/assign_taxonomy.html) (Altschul, 1990) in Qiime software and the
UNITE (v8.2) database (https://unite.ut.ee/) (Kõljalg et al., 2013), and count the community
composition of each sample at each classification level. The MUSCLE (v3.8.31)
(http://www.drive5.com/muscle/) (Edgar, 2004) was used for fast multi-sequence alignments
to get the phylogenetic relationships of all OTUs sequences, the data of each sample was
homogenized, and the data with the least amount of data in the sample was used as the
standard for homogenization. The subsequent alpha diversity and beta diversity were
analyzed based on the homogenized data.

Qiime (Version 1.9.1) was used to calculate fungal diversity index of soil samples,
including microbial richness (Chao1 index and ACE index) and microbial diversity
(Shannon index and Simpson index) (Wang et al., 2019).

R (Version 2.15.3) was used to draw the dilution curve, Venn diagram and Principal
coordinates analysis (PCoA) diagram. The Analysis of similarities (Adonis)in ‘‘vegan’’ R
package was used to examine differences between groups. LEfSe software was used for
linear discriminant analysis and effect size analysis with the default filtering value of LDA
score set at 4. Canonical correlation analysis (CCA) was used to test the relationship among
environmental factors, samples and microbes. The CCA was estimated using the ‘‘vegan’’
package in R (v3.6.1). Correlations between soil physicochemical properties and fungal
community composition were assessed via Spearman’s correlation analyses.

Statistical analysis (including one-way analysis of variance (ANOVA) and Spearman’s
correlation analysis) were carried out with SPSS 22.0 (IBM Inc., Armonk, USA).

RESULTS
Differences in physical and chemical properties of rhizosphere soil
The physical and chemical properties of soil samples were measured (Table 2). The content
of SWC in A sample was significantly higher than B and C samples (P < 0.05), however,
there was no significant difference in the contents of TP, SNN and SAN in P. euphratica
rhizosphere soil at different growth stages (P > 0.05). The content of OM, TN, TK, AK,
AP, pH, EC and TDS in D sample were higher than A, B and C samples, among which the
contents of TK, AK, pH, EC and TDS were significantly different (P < 0.05). In addition,
there was no significant difference between B and C samples except the content of AK (P
> 0.05).

Sequencing data and OTU clustering
By sequencing the ITS fragments of soil fungi, 947,049 effective sequences were obtained
from soil samples, and 960OTUs were obtained by clustering with 97% sequence similarity.
The dilution curves of all soil samples tended to be flat, indicating that the sequencing
depth had basically covered all fungal groups in the samples, which could reflect the real
situation of soil fungal community in the rhizosphere of P. euphratica (Fig. 1).

Li et al. (2022), PeerJ, DOI 10.7717/peerj.13552 5/21

https://peerj.com
http://www.drive5.com/uparse/
http://qiime.org/scripts/assign_taxonomy.html
http://qiime.org/scripts/assign_taxonomy.html
https://unite.ut.ee/
http://www.drive5.com/muscle/
http://dx.doi.org/10.7717/peerj.13552


Table 2 Physicochemical properties of rhizosphere soil of P. euphratica at different growth stages.

A B C D CK

SWC (%) 6.34± 0.65a 3.41± 1.11bc 3.17± 1.05bc 5.02± 0.24ab 1.61± 0.09c
OM (g kg−1) 7.06± 1.66ab 7.17± 2.13ab 5.66± 1.11b 11.04± 1.44a 5.16± 0.78b
TN (g kg−1) 0.42± 0.07ab 0.51± 0.03ab 0.37± 0.04b 0.54± 0.02a 0.41± 0.02ab
TP (g kg−1) 0.58± 0.01a 0.61± 0.03a 0.61± 0.05a 0.64± 0.01a 0.65± 0.03a
TK (g kg−1) 18.25± 0.54b 17.54± 0.18bc 17.93± 0.23b 19.71± 0.15a 16.85± 0.23c
AK (g kg−1) 0.42± 0.03c 0.34± 0.12c 0.93± 0.21b 3.40± 0.24a 0.39± 0.08c
AP (mg kg−1) 3.06± 1.83ab 2.01± 1.45b 1.86± 1.09b 6.03± 0.93a 2.31± 0.71ab
SNN (mg kg−1) 4.86± 1.04ab 3.16± 2.19b 2.84± 0.87b 3.97± 0.43ab 8.14± 2.35a
SAN (mg kg−1) 2.49± 0.04a 2.94± 0.41a 2.46± 0.69a 2.11± 0.31a 2.72± 0.21a
pH (1:5) 7.78± 0.05c 8.43± 0.13b 8.61± 0.15b 9.49± 0.19a 7.89± 0.19c
EC (ms cm−1) 2.78± 0.15b 2.11± 1.46b 2.74± 1.08b 7.96± 1.14a 5.34± 0.78ab
TDS (g kg−1) 9.78± 0.42b 7.81± 5.34b 8.65± 3.88b 30.01± 4.59a 18.84± 2.98ab

Notes.
A, sapling; B, mature; C, overripe; D, deadwood; CK, bare soil; SWC, soil water content; OM, organic matter; TN, to-
tal nitrogen; TP, total phosphorus; TK, total potassium; AK, available potassium; AP, available phosphorus; SNN, nitrate
nitrogen; SAN, ammonium nitrogen; pH, hydrogen ion concentration; EC, electrical conductivity; TDS, total salt.
Values in the table are mean± standard deviation, different letters in the same line indicate significant differences (p < 0.05).

Figure 1 Rarefaction curves of fungal community composition in 15 samples. The rarefaction curves
different colors represent different samples (CK, A, B, C and D: bare soil, sapling, mature, overripe and
deadwood, respectively; the second number representing the replicate number).

Full-size DOI: 10.7717/peerj.13552/fig-1
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Figure 2 Venn diagram at OTU level in the rhizosphere of P. euphratica. Each petal corresponds to
a sample group, with the shared overlapping region representing OTUs common to all samples, and the
numbers on individual petals representing the number of OTUs unique to a given sample group. (A, B, C
and D: bare soil, sapling, mature, overripe and deadwood).

Full-size DOI: 10.7717/peerj.13552/fig-2

Venn diagram revealed that there were 391 OTUs for A sample, 342 OTUs for B sample,
463 OTUs for C sample, 518 OTUs for D sample, 128 OTUs were shared by A, B, C and
D samples (Fig. 2). Besides, the numbers of unique OTUs to each sample were as follows:
75 for A sample, 68 for B sample, 77 for C sample and 191 for D sample, respectively,
accounting for 19.18%, 19.88%, 16.63% and 36.87% of the all OTUs.

Differences in fungal diversity
The alpha diversity index of soil fungal community in rhizosphere of P. euphratica at
different growth stages was different (Table 3). As shown in Table 3, the Coverage index
of each sample was close to 100%, which proved the integrity of the detected samples
sequence, indicating that the sequencing results at this level could reflect the true situation
of fungal community composition in the measured samples. Shannon index was consistent
with Simpson index, the value was the highest in D sample, Chao1 index and ACE index
were the highest in B sample. However, there was no significant difference between different
growth stages.

Both PCoA (Fig. 3) and Adonis (Table 4) all revealed that there were significant
differences in soil fungal community composition between B and C samples (R2

= 0.31
P = 0.001), B and D samples (R2

= 0.28 P = 0.001). There was no significant difference
between A and the other samples.
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Table 3 Diversity indices for each sample.

Group Shannon Simpson Chao1 ACE Coverage

CK 3.234± 0.388 0.791± 0.045 232.519± 24.107 236.779± 23.966 0.999± 0
A 2.219± 0.419 0.543± 0.119 277.532± 77.002 240.901± 34.103 0.999± 0
B 1.887± 0.470 0.396± 0.118 309.919± 29.289 318.324± 32.015 0.999± 0
C 3.136± 0.767 0.706± 0.120 238.784± 14.176 244.780± 13.354 0.999± 0
D 3.989± 0.562 0.813± 0.094 272.700± 26.691 272.206± 27.908 0.999± 0
p 0.114 0.0761 0.672 0.258

Notes.
Values in the table are mean± standard deviation.

Figure 3 Principal coordinates analysis (PCoA) based on Bray–Curtis distance method at the OTU
level. CK, A, B, C and D: bare soil, sapling, mature, overripe and deadwood, respectively; the second num-
ber representing the replicate number.

Full-size DOI: 10.7717/peerj.13552/fig-3

Differences in fungal community composition at different levels
of rhizosphere soil
A total of 10 phyla, 36 classes, 77 orders, 165 families, 275 genera and 353 species were iden-
tified through comparative identification of OTUs representative sequences of soil samples
(Fig. 4). As shown in Fig. 4, Ascomycota was the dominant phylum in the rhizosphere
soil of P. euphratica (average relative abundance of 58.54%), followed by Basidiomycota
(15.96%). Compared with phylum classification level, the composition of rhizosphere
soil fungal community in different stages differed greatly from class classification level.
At the class classification level, Sordariomycetes, Pezizomycetes and Agaricomycetes were
the dominant fungi, and the relative abundance of Sordariomycetes was 8.05%∼34.85%,
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Table 4 Adonis test compare data samples among groups.

Group F R2 P

D-B 1.59 0.284 0.001**

D-C 2.298 0.365 0.1
D-CK 1.521 0.275 0.1
D-A 1.957 0.329 0.1
B-C 1.784 0.308 0.001**

B-CK 1.17 0.226 0.3
B-A 1.228 0.235 0.101
C-CK 1.868 0.318 0.1
C-A 1.438 0.264 0.4
CK-A 1.583 0.264 0.001**

Notes.
**Highly significant p-value, p< 0.01.
(CK, A, B, C and D: bare soil, sapling, mature, overripe and deadwood).

Pezizomycetes (0.21%∼36.09%) and Agaricomycetes (0.35%∼56.94%). At the order
classification level, the dominant species were Pezizales, Agaricales, and Hypocreales,
accounting for 0.20%∼36.08%, 0.23%∼56.84% and 1.04%∼29.02% of the total sequences
in all groups, respectively. The dominant species at the family classification level
are Pyronemataceae, Agaricales_fam_Incertae_sedis and unidentified_Sordariales_sp,
Pyronemataceae (0.19%∼35.32%), Agaricales_fam_Incertae_sedis (0.001%∼56.43%),
unidentified_Sordariales_sp (0.02%∼27.84%). The dominant species at the genus
classification level wereGeopora, Chondrostereum and unidentified_Sordariales_sp, Geopora
(0.08%∼35.26%), Chondrostereum (0.001%∼56.43%), unidentified_Sordariales_sp
(0.02%∼27.84%). The dominant species at the species classification level were Chon-
drostereum_purpureum, Geopora_sepulta and Geopora_sp, Chondrostereum_purpureum
(0.001%∼56.43%), Geopora_sepulta (0.01%∼27.38%), Geopora_sp (0.07%∼26.52%). In
conclusion, the relative expression abundance of the top ten fungi at each taxonomic level
was significantly different at each stage.

Species differences of soil fungal community
LEfSe was used to search for biomarkers, so as to find species with significant differences
in abundance between groups. In this study, LEfSe analysis was used to analyze the
species abundance data of fungi in rhizospheres soil samples, the rank sum test was used to
detect the different species in different groups and LDA score (LDA score= 4) was obtained
through LDA. Finally, the evolutionary clade of different species (Fig. 5A) and the histogram
of LDA value distribution (Fig. 5B) were drawn, both of them reflected the distribution
characteristics of species with different rhizosphere fungal community structure of P.
euphratica. A total of 23 biomarkers were obtained, with relatively more in B and C samples
(three taxa for A sample, eight taxa for B sample, eight taxa for C sample, and four taxa
for D sample). Specifically, Sporobolomyces sp, Sporobolomyces, Fusarium proliferatum were
significant in A sample, Thelephoraceae sp, Thelephorales, unidentified, Thelephoraceae,
Sordariales, Sordariales sp, unidentified Sordariales sp, unidentified Sordariales sp were
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Figure 4 Top 10 relative abundance of fungal community classified at phylum (A), class (B), order (C),
family (D), genus (E) and species (F) level in each sample.Ordinate is the relative abundance of fungal
community; abscissa is the group name (CK, A, B, C and D: bare soil, sapling, mature, overripe and dead-
wood, respectively).

Full-size DOI: 10.7717/peerj.13552/fig-4

significant in B sample, Synchytriales, Synchytriomycetes, Synchytrium endobioticum,
Synchytrium, synchytriaceae, Chondrostereum, Chondrostereum purpureum, Agaricales
fam Incertae sedis were significant in C sample, Tremellomycetes, Acremonium rutilum,
Gibberella intricans, Gibberella were significant in D sample.

Correlation of soil physical and chemical factors and fungal
community structure
Canonical correlation analysis (CCA) can reflect the relationship between microflora and
environmental factors, and can obtain the important environmental driving factors that
affect the distribution of samples (Fig. 6). EC, TDS and AK were the main environmental
factors that significantly affected the rhizosphere fungal community of P. euphratica (P
< 0.05), and EC was the main driving factor (R 2

= 0.704, P <0.01) (Table 5). As shown
in Fig. 7, the interpretation amount of the first sorting axis was 12.15%, and that of the
second sorting axis was 11.47%. Spearman’ s correlation analysis was used to analyze
the correlation between soil factors and the relative abundance of the top 35 species at
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Figure 5 Cladograms (A) and LDA value distribution histogram (B) in samples. In cladograms (A),
the circle radiating from inside to outside represents the taxonomic level from the Phylum to the species.
Each small circle at a different taxonomic level represents a taxonomic at that level, and the diameter of
the small circle is proportionate to the relative abundance of species. The figure shows the species with
LDA Score greater than the set value (default setting is 4) (B), that is, species with significant differences in
different groups. The length of the histogram represents the size of the influence of species with significant
differences. The English letters in the figure is the group name (A, B, C and D: bare soil, sapling, mature,
overripe and deadwood, respectively).

Full-size DOI: 10.7717/peerj.13552/fig-5
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Figure 6 CCA ordination diagrams of fungal communities and soil variables. The length of the ar-
row line represents the degree of correlation between a certain environmental factor and community and
species distribution, and the longer the arrow, the greater the correlation. When the angle between the en-
vironmental factors is acute, it means that there is a positive correlation between the two environmental
factors, while when the angle is obtuse, there is a negative correlation. (SWC, soil water content; OM, or-
ganic matter; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AK, available potassium; AP,
available phosphorus; SNN, nitrate nitrogen; SAN, ammonium nitrogen; pH, hydrogen ion concentra-
tion; EC, electrical conductivity; TDS, total salt; respectively; A, B, C, D and CK: sapling, mature, overripe,
deadwood and bare soil).

Full-size DOI: 10.7717/peerj.13552/fig-6

genus level (Fig. 7). The results showed that EC was significantly positively correlated
with Thielavia, Xerombrophila (P <0.05), and negatively correlated with Lecanicillium,
unidentified, unidentified Onygenales sp, Fusarium, Geopora (P <0.05). TDS content
was positively correlated with Xerombrophila (P < 0.05), and negatively correlated with
Lecanicillium, unidentified, unidentified Onygenales sp, Fusarium, Geopora (P < 0.05). AK
was positively correlated with Thielavia, Xerombrophila, Didymella, Neomyrmecridium,
Aspergillus (P < 0.05), and negatively correlated with unidentified (P < 0.05).

DISCUSSION
The lower reaches of the Tarim River is located in an extremely arid climate area, with a
harsh ecological environment and a very fragile ecosystem (Zhao et al., 2015). Water and
salt content are the key factors limiting plant growth and development in this habitat, our
study found that SWC reached the highest in the root of young P. euphratica, followed
by the deadwood, and was significantly higher than mature, overripe and bare land (P
< 0.05), TDS content reached the highest in the rhizosphere of deadwood, which was three
times of that in other growth stages, the high SWC in the rhizosphere soil of saplings helps
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Figure 7 Heat maps of Spearman’s correlation analysis.Ordinate is the information of environmental
factors, and abscissa is the information of species at the genera level of taxonomy. The correlation coeffi-
cient r of Spearman is between−1 and 1, r < 0 is negative correlation, r > 0 is positive correlation, and the
mark * is significance test p< 0.05. (SWC, soil water content; OM, organic matter; TN, total nitrogen; TP,
total phosphorus; TK, total potassium; AK, available potassium, AP, available phosphorus; NO 3, nitrate
nitrogen; NH 4: ammonium nitrogen; pH, hydrogen ion concentration; EC, electrical conductivity; TDS,
total salt).

Full-size DOI: 10.7717/peerj.13552/fig-7

Table 5 Results for CCA testing effects of soil physicochemical properties on the composition of rhi-
zosphere fungal community in P. euphratica.

r2 P

SWC 0.181 0.318
OM 0.220 0.202
TN 0.342 0.077
TP 0.266 0.164
TK 0.052 0.744
SNN 0.163 0.320
SAN 0.151 0.389
AP 0.247 0.180
AK 0.423 0.044*

PH 0.166 0.371
EC 0.704 0.000**

TDS 0.692 0.001**

Notes.
r2 reflects the relationship between soil physical and chemical properties and fungal community structure, the P values are the
correlation coefficients.

**P < 0.01.
*P < 0.05.
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them to translocate, grow and develop smoothly in this environment. With the increase
of tree age and the weakening of growth potential, the capacity of plants to absorb soil
salt decreased, and the salt accumulation significantly increased the salt content in the
rhizosphere soil of the deadwood, it was consistent with the results of Guan’s study (Guan
et al., 2020). In addition, the accumulation of salt and some nutrients in the rhizosphere
soil may be the result of the comprehensive action of roots, water, microorganisms and
other factors. P. euphratica is a salt-tolerant plant, during its growth and development, it
can selectively absorb some salt ions, especially potassium ions, so as to resist the stress of
saline soil environment. Therefore, EC and AK in the rhizosphere soil of sapling, mature
and overripe were significantly lower than deadwood.

In this study, Shannon index and Simpson index were used to calculate community
diversity, ACE and Chao1 index were used to calculate community richness (Bokulich et
al., 2013). Through the calculation of the above indexes, there was no significant difference
between different groups. However, in terms of fungal community structure, there were
significant differences between mature and overripe, mature and deadwood. According
to previous studies, with the growth and development of plants, the metabolic activities
of plant roots, the nutrients, water and ventilation in the environment around the roots
have different changes, and the diversity of rhizosphere microorganisms and community
structure also change (Qiu et al., 2016; Zhao, Zhou & Ren, 2020). Deadwood root’s SWC,
OM and part of the soil nutrient content values were significantly higher than other stages,
the number up to 518 OTUs, alpha diversity index is relatively high, studies have shown
that SWC, OM, available nutrient content is higher, can create favorable conditions for the
growth of fungi, which can protect soil fungi and enhance their community abundance
(Zhang et al., 2021).

Ascomycota and Basidiomycota were the dominant phyla, but the abundance of the
two fungi was different at different developmental stages of P. euphratica. Among them,
Ascomycota had the highest relative abundance in sapling (81.20%), followed by mature
(72.08%), and the lowest in overripe (38.74%), Basidiomycota had the highest relative
abundance in overripe (57.25%), and the relative abundance in other periodswas low (range
1.41%∼2.69%). Many studies have shown that Ascomycota and Basidiomycota were the
dominant fungi in plant rhizosphere (Chen et al., 2021). For example, in the rhizosphere
of Picea asperata (Liu et al., 2021), Castanopsis hystrix and Pinus massoniana (Wang et al.,
2021a; Wang et al., 2021b), the relative abundance of both fungi were higher than other
fungi. Ascomycota was the dominant fungi in soil, most of which were saprophytic fungi
(Paungfoo-Lonhienne et al., 2015), they could degrade the organic matter such as lignin
and keratin in soil (Beimforde et al., 2014), and have a rapid evolution rate in various soil
ecosystems (Wang & Guo, 2016). In addition, Ascomycota might have the ability to adapt
to saline alkali or relatively arid soil environment, which made it the main dominant fungal
community in P. euphratica rhizosphere soil under the harsh environment in the lower
reaches of Tarim River. Basidiomycota was mostly saprophytic or parasitic fungi, as an
important decomposer in the soil (Yelle et al., 2008), it played an important role in the
nutrient cycle of P. euphratica rhizosphere soil.
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Compared with phylum classification level, dominant flora differed greatly among
different groups at genus level. Chondrostereum, as a biomarker in C sample, had the
highest relative abundance (56.43%) in C sample, but less than 0.01% in B and D samples.
Geopora had the highest relative abundance in A sample (35.26%), but less than 0.1% in D
sample. Unidentified_Sordariales_sp, as the biomarker in B sample, had the highest relative
abundance in B sample (27.84%), but the average abundance in other periods is less than
0.1%. Otherwise, the abundance of the above dominant fungi in CK was less than 1%. In
conclusion, dominant fungal communities changed significantly in different stages. with
the growth and development of P. euphratica, its roots had different selective enrichment
effects on specific fungi in the soil, which further indicated that these fungi may be closely
related to the growth and development of P. euphratica. Moreover, previous studies have
shown that the dominant fungal community changes dynamically with the growth and
development of plants (Li et al., 2020a; Li et al., 2020b).

The microbial community structure in the rhizosphere of plants was affected by various
biological and abiotic factors. The species and growth stage of plants determine which
microorganisms can enrich in the rhizosphere. On the other hand, the physical and
chemical properties of the soil in this area have a more macroscopic influence on the
microbial community (Chu et al., 2020). The results showed that EC, TDS and AK had
significant effects on soil fungal community, and EC was the most important factor,
this is reflected in the Spearman’s correlation analysis between dominant fungi and soil
physical and chemical factors. EC was significantly correlated with seven dominant fungi
species, of which it was significantly negatively correlated with four dominant fungi species.
Some studies showed that the main soil factor affecting the metabolic characteristics of
P. euphratica rhizosphere fungal community was EC, and EC and AK were negatively
correlated with fungal metabolic activity (Wang et al., 2017), which were consistent with
our study. Due to the scarcity of precipitation and high daily evaporation, the study
area belonged to the harsh arid and salt-alkali environment. TDS not only had a certain
influence on plant growth, but also could directly inhibit the activity of microorganisms
(Wang et al., 2009), and the influence on soil fungal community should not be ignored.

CONCLUSIONS
Based on high-throughput sequencing technology, we studied the differences in the
composition and structure of soil fungal community in the rhizosphere of P. euphratica at
four development stages. The results showed that the dominant phyla of rhizosphere fungi
were Ascomycota and Basidiomycota. The dominant fungal genera were Chondrostereum,
unidentified_Sordariales_sp, andGeopora. The relative abundance of the top 10 fungi at each
classification level varied greatly in different growth stages. The study on the relationship
between environmental factors and fungal community showed that EC was the main soil
factor affecting the composition of rhizosphere fungal community, followed by TDS and
AK.
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