Distribution and phylogeography of the genus Mattirolomyces with a focus on the Asian M. terfezioides haplotypes (#64948)

First submission

Guidance from your Editor

Please submit by 7 Dec 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 11 Figure file(s)
- 1 Table file(s)
- 2 Raw data file(s)

DNA data checks

- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Distribution and phylogeography of the genus *Mattirolomyces* with a focus on the Asian *M. terfezioides* haplotypes

Jie Wei ¹, Tine Grebenc ², Xuan Zhang ³, Si-Ming Xiang ⁴, Yongjun Fan ^{Corresp. 5}

Corresponding Author: Yongjun Fan Email address: fanyj1975@163.com

Mattirolomyces is an edible commercial sequestrate genus that is globally distributed. Of the genus's five described species, Mattirolomyces terfezioides is the most common in Asia. Recent attempts to locate M. terfezioides outside its current distribution area in China documented the first records in areas of poplar trees with the lowest known temperature and precipitation averages for this species. This peculiar ecology was not reflected in the species' morphological features or phylogenetic positioning in the genus. The first attempt at applying the phylogenetic network approach in Mattirolomyces revealed that its geographic origin was in Asia-Pacific areas prior to frequent long-distance migration events. Based on recent areas of study, we found that the collections from Inner Mongolia and the Shanxi province were similar to European collections. Other Asian haplotypes were more basal, supporting the idea that M. terfezioides originated from this area in China and was subsequently transported to Europe. Exploring M. terfezioides' ecology and potential to grow with poplars also increases its potential for cultivation and consumption in central and eastern China, a currently underexploited opportunity that deserves further ethnomycological investigations.

¹ Forestry College, Inner Mongolia Agricultural University China, Huhhot, China

² Slovenian Forestry Institute, Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia, Ljubljana, Slovenia

³ Baotou teachers college, Baotou teachers college, Inner Mongolia University of Science and Technology, China, Baotou, China

⁴ Baotou teachers college, Baotou teachers college, Inner Mongolia University of Science and Technology, China, Baotou, China

School of Life Science and Technology, School of Life Science and Technology, Inner Mongolia University of Science and Technology, China, Baotou, China

1	Distribution and phylogeography of the genus <i>Mattirolomyces</i> with a focus on
_	
2	the Asian M. terfezioides haplotypes
3	
4	Jie Wei ¹ , Tine Grebenc ² , Xuan Zhang ³ , Si-Ming Xiang ³ , Yong-Jun Fan ⁴
5	
6	¹ School of Life Sciences, Inner Mongolia University, Huhhot, China
7	² Slovenian Forestry Institute, Ljubljana, Slovenia
8	³ Baotou Teachers'College, Inner Mongolia University of Science and Technology, Baotou
9	China
10	⁴ School of Life Science and Technology, Inner Mongolia University of Science and Technology,
11	Baotou, China
12	
13	Corresponding Author:
14	Yongjun Fan ¹
15	Qingshan District, Baotou, Inner Mongolia, China

Email address: fanyj1975@163.com

16

17 ABSTRACT

Mattirolomyces is an edible commercial sequestrate genus that is globally distributed. Of the 18 genus's five described species, Mattirolomyces terfezioides is the most common in Asia. Recent 19 attempts to locate M. terfezioides outside its current distribution area in China documented the 20 first records in areas of poplar trees with the lowest known temperature and precipitation 21 averages for this species. This peculiar ecology was not reflected in the species' morphological 22 features or phylogenetic positioning in the genus. The first attempt at applying the phylogenetic 23 network approach in *Mattirolomyces* revealed that its geographic origin was in Asia-Pacific areas 24 prior to frequent long-distance migration events. Based on recent areas of study, we found that 25 the collections from Inner Mongolia and the Shanxi province were similar to European 26 collections. Other Asian haplotypes were more basal, supporting the idea that M. terfezioides 27 originated from this area in China and was subsequently transported to Europe. Exploring M. 28 terfezioides' ecology and potential to grow with poplars also increases its potential for 29 cultivation and consumption in central and eastern China, a currently underexploited opportunity 30 that deserves further ethnomycological investigations. 31

32 **Keywords:** *Mattirolomyces terfezioides*, desert truffle, Inner Mongolia, phylogeograph

34

INTRODUCTION

The genus *Mattirolomyces* (Tuberaceae, Pezizales) was called the "Mattirolo fungus" by 35 Fisher in 1938, since Mattirolo was the first to describe the species, which he called 36 Choiromyces terfezioides, back in 1887 (Fisher, 1938). The type specimen was first collected 37 from clay agricultural soils in a non-typical ecological location in Piemonte, northern Italy, and 38 was at that time considered a potential partner of Prunus avium (Mattirolo, 1887). 39 Mattirolomyces is an ascomycetous genus and all known species of the genus form sequestrate to 40 hypogeous sporocarps (Fisher, 1938). Currently, five species in the genus Mattirolomyces have 41 been shown to have an intriguing geographical distribution. The genus type species 42 Mattirolomyces terfezioides (Mattir.) E. Fisch was recorded in Europe and Asia; M. spinosus 43 (Harkn.) Kovács, Trappe & Alsheikh in North America and Pakistan; M. mulpu Kovács, Trappe 44 & Claridge in Australia; M. austroafricanus (Marasas & Trappe) Kovács in South Africa; and M. 45 mexicanus Kovács, Trappe & Claridge in Mexico. The distribution of these five species suggest 46 a wide geographical (presumably global) distribution of the genus (Kagan-Zur et al., 2014) with 47 most records coming from eastern and southeastern Europe (Glejdura & Kunca, 2012; Kagan-48 Zur et al., 2014; Assyov & Slavova, 2016). 49 The desert regions of the southern hemisphere have low and variable average rainfall and 50 high summer temperatures. Mattirolomyces spp. and other desert truffles have broad 51 geographical, botanical, and cultural attributes that have made them regularly hunted and 52 harvested for food since prehistoric times (Trappe et al., 2010). In Europe and Asia, however, 53

this species is rarely recognized as a significant commercial species (*Boa, 2004*). *Mattirolomyces* spp. sporocarps are traditionally collected, sold, and consumed under the name *Terfezia terfezioides* (Mattir.) Trappe, a synonym of *Mattirolomyces terfezioides*. Despite its value as a mycorrhizal species and culinary delicacy, this species is not well-known in the northern hemisphere (*Kovács et al., 2007*). Most available collections of *M. terfezioides* are from Hungary (Europe) and northeastern China, namely Beijing, Hebei Province, and Shanxi Province. Most of the Chinese collections date several decades back with the most recent being from 1986 (*Wang et al., 2017*). The economic and culinary value of the Chinese of the Of the Chinese collections have not yet been evaluated. Furthermore, this species has been considered long-lost in China by many mycologists.

We were motivated by a recently discovered *M. terfezioides* collection from the desert areas of Inner Mongolia, China to revive the study of the Chinese genus, characterize the current ecological span of the species, and prepare a morphology-based description of the Chinese collection. Due to a low number of records and available nucleotide sequences, no phylogeographic insight into the genus is currently available. Therefore, we aimed to position the Chinese collections of *M. terfezioides* in a phylogenetic network of the whole genus, focusing on the relationship between the Chinese collections and the collections from other areas worldwide, in order to ultimately hypothesize the genus's geographic origin.

MATERIALS AND METHODS

Study site and sampling

The most temperate continental part of China, Inner Mongolia, has a cold semi-arid (BSk) 75 to cold desert (BWk) climate (Peel et al., 2007). Although the occurrence of Mattirolomyces was 76 not previously recorded in this area, the genus was found in most of its neighboring provinces, 77 which indicated its potential for fruiting in Inner Mongolia as well. Sporocarps were primarily 78 sought for in ecosystems that were suitable for Mattirolomyces (Kagan-Zur & Akyuz, 2014). 79 When selecting sampling microlocations, we targeted the known ectomycorrhizal partner sites 80 with pines and black locusts (Kagan-Zur & Akyuz, 2014), as well as young plantations of 81 Populus alba L. var. pyramidalis per ge at various locations in the Baotou area, Inner Mongolia, 82 China, between September and October 2018 and 2019. 83 The main climatic characteristics of the broader area where *M. terfezioides* was repeatedly 84 collected were: an elevation of about 1,070 m in the surveyed area, average temperature of 85 around 8.5°C, lowest temperature of minus 27.6°C, and highest temperature of 40.4°C. The 86 average annual rainfall in this area over the last 18 years is 301.6 mm (the minimum rainfall was 87 88 175.9 mm in 2005, and the maximum rainfall was 465.2 mm in 2003). The average annual rainfall in 2018 and 2019 was 364.8 mm and 327.6 mm, respectively, according to data from 89 Inner Mongolia Meteorology. The soils are sandy, hyphal aggregates that connected the roots 90 with above ground parts of the plants, and the sporocarps of this fungus developed from the 91 hyphal aggregates. 92 Sporocarps were collected by racking the soils where surface cracks indicated their potential 93 presence, generally following Castellano et al.'s (2004) procedure. All sporocarps were 94 photographed in situ with a Canon EOS 60D camera (Canon, Tokyo Japan), then dried in a 95

forced-air dryer and kept in the Herbarium and Fungarium of Baotou Teachers's College under accession numbers Fan0273.

Morphological observation

Macro- and microscopic characters were analyzed using a stereomicroscope (Motic K400, Motic Asia, Hong Kong) and light microscope (Motic BA410E with a Moticam2506 camera, Motic Asia, Hong Kong) following the list of characters found in Kovács *et al.* (2011). For comparison, we used Melzer's reagent and Cotton Blue chemical reactions. Scanning electron microscopy of spores was done on a desiccated and platinum-palladium coated material using Hitachi E-1010 (Tokyo, Japan), and examined and photographed with a Hitachi S-530 (Tokyo, Japan).

DNA extraction, PCR amplification, and sequencing

DNA extraction, PCR, and sequencing were carried out according to Wang *et al.* (2017), except PCR amplification was performed using Taq PCR Master Mix (Biobasic, Ontario, Canada). PCR products were purified and sequenced at the Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China. Sequences were deposited in GenBank with the accession numbers listed in Table 1.

Phylogenetic analyses

Available and compete nuclear rDNA ITS sequences from the genus Mattirolomyces were

retrieved from GenBank (Benson et al., 2013) and UNITE databases (Kõljalg et al., 2013) on 117 December 12, 2019. We conducted a nucleotide search using the basic local alignment search 118 tool (BLAST) with our representative sequence to trace additional sequences that were 119 potentially misnamed in the searched databases. A local *Mattirolomyces* spp. nuclear rDNA ITS 120 sequence database was built based on available and reliable sequences, and we selected 121 environmental parameters from papers where sequences were published or directly from online 122 databases (Table 1), with meteorological data from the latest FLUXNET synthesis dataset, the 123 FLUXNET2015 database (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/). 124 DNA sequences were assembled in BioEdit v5.0.9 (https://bioedit.software.informer.com). 125 MEGA7 (Kumar et al., 2015) was used for manipulation of sequences, and internal MEGA7 126 plug-ins were used for sequence alignment (ClustalW), testing for the best nucleotide 127 128 substitution model (ModelTest), maximum likelihood phylogenetic analysis (ML phylogenetic analysis), and construction of the phylogenetic tree. Kimura's 2-parametric model was selected 129 as the best for a distance calculation of a given dataset. In order to evaluate the stability of the 130 ML evolutionary tree topology, 1,000 bootstrap repetitions were run. Using the Bayesian method, 131 we calculated Bayesian inference with MrBayes v. 3.1.2 (Ronquist & Huelsenbeck, 2003) and an 132 HKY+G model. Four Markov chains were run for two runs from random starting trees for 1 133 million generations, until the split deviation frequency value < 0.01. Every 100th generation was 134 sampled. The Bayesian inference tree was visualized in FigTree 1.4.2. Branches that received 135 bootstrap from ML≥ 60 % and Bayesian posterior probabilities (BPP) ≥ 0.95 were considered 136 significantly supported. 137

For the phylogenetic network analysis, the same nucleotide dataset was realigned in MAFFT 138 v. 7.304b (Katoh & Standley, 2013) and analyzed with a Median joining approach in Network5 139 (Bandelt et al., 1999). The phylogenetic network constructed in Network5 was modified and 140 the **GNU** General **Public** License Inkscape 0.91 annotated in program 141 (https://inkscape.org/release/inkscape-0.91/). 142

143

144

145

146

147

148

149

150

151

Determining soil physical and chemical properties

The soil samples were taken from the immediate vicinity of the fruiting sporocarps to a depth of 10 cm. Soil pH was measured in 1M KCl (1;5 w/v). Organic C and total N were analyzed using the CHNS-analyzer system (Elementar Analysen systeme GmbH, Hanau, Germany) with the burning method at 450 and 1,250 °C, respectively (*Liu et al., 2012*). We determined total organic matter, available phosphorus content, and available potassium as well as the total content of water soluble salts following the standardized operation procedures (*Pansu & Gautheyrou*, 1965).

152

153

154

155

156

157

158

RESULTS

Taxonomy

Over two years of hunting for hypogeous fungi in *Mattirolomyces*-like habitats, we collected two independent collections made up of a total of 32 sporocarps, all from *Populus alba* var. pyramidalis plantations.

A morphological description of the collections from Inner Mongolia resemble

Mattirolomyces terfezioides (Mattir.) E. Fisch., as described by Fischer (1938). Ascomata (fresh specimens, Figure 1A) were hypogeous or subepigeous, 4-5 cm in diam., subglobose to irregular massy, white, surface smooth to scabrous, lobed and furrowed; gleba solid, spongy with minute pockets, white with narrow white veins (Figure 1C). Taste and odor were strongly sweet when fresh. Sclerotia as hyphal aggregates, attached with the base of the sporocarps, dark brown, 0.5-1.0 cm in diam. (Figure 1B). Paraphyses were absent.

Microscopic features: *peridium* thin with 120-280 mm thickness, no clear differentiation from the gleba, composed of inflated hyphae and irregular, hyaline cells; *gleba* composed of interwoven septate hyphae 7.5-11(20) μm broad, with some free hyphal ends; *asci* randomly arranged in gleba, 8- or 10-spored, hyaline, globose to ellipsoid, pockety, saccate, cylindrical or clavate, (55) 65-95(117) × (26) 35-45 (60) μm, sessile or occasionally sub-stipitate with a short stalk, disintegrating with age, thin walled, readily separable from gleba hyphae, nonamyloid (Figure 1D and Figure 1E); *ascospores* hyaline to pale yellow, globose, (12) 14-19 (22) μm in diam. excluding the ornamentation (Figure 1D and Figure 1E); ornamentation of blunt spines connected in an irregular alveolate reticulum, 1-4 μm high, mostly have a de Bary bubble and are uniguttulate, walls 1.5-2 μm thick (Figure 1F). *Sclerotia*: attached to the ascoma and the surface of the roots. *Aroma* of mature sporocarps was pleasantly sweet.

In terms of ecology, all collections were found in the vicinity of Populus alba L. var.

pyramidalis. Soils were sandy to finely sandy with a history of extensive management practices.

Soils have relatively high water soluble salt content (1.29 g kg⁻¹), slightly basic pH (7.34), 1.49 g

kg⁻¹ of total nitrogen, 46.4 mg kg⁻¹ of available phosphorus, and 29.82 g kg⁻¹ of organic matter.

The average annual precipitation for collections from Table 1 indicate that the collections from the desert regions of Inner Mongolia were more similar to European collections, Mediterranean collections from several countries, and Continental collections from Hungary, than to other Asian collections. The Inner Mongolian collections were from sites with larger winter/summer temperature differences and lower winter averages when compared to the other collections included in this study (Figure 2).

Phylogenetic analysis

Bayesian and ML phylogenetic analyses resulted in strongly-supported, topologically identical phylogenetic trees with clusters containing collections from Inner Mongolia together with other *M. terfezioides* from China, Hungary, Italy, and South Africa (Figure 3).

A phylogenetic network analysis (Figure 4) separated all five recognized taxa in the genus *Mattirolomyces* with an expected higher diversity in *M. terfezioides*. The high distance from the outgroup (*Elderia arenivaga*) to the genus *Mattirolomyces* indicated a poor selection, yet the most optimal one regarding the available recent taxa and their sequences. At the base of the *Mattirolomyces* cluster, three lineages were disclosed. The first lineage led to three clusters: one directed to South Africa with *M. austroafricanus*, the second with a more basal position of *M. spinosus* from south Asia (the collection was from Pakistan), and a phylogenetically close collection from the United States, with a distinct sub-cluster of closely-related *M. mexicanus* from Mexico and distantly-related (based on the comparison of the number of mutated sites) *M. mulpu* from Australia. For all four mentioned recent taxa, the number of available nucleotide

202

203

204

sequences was low. The third lineage formed a cluster of *M. terfezioides* that showed higher intraspecific diversity and a recognizable geographic pattern with more basal haplotypes from China, followed by collections from S. Korea. At this point of evolution, there was a jump of haplotypes from Asia (China) to Europe (Hungary, Italy, France), and no supported intra-Europe geographic pattern was recognized.

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

205

DISCUSSION

Mattirolomyces terfezioides is a commonly-collected edible hypogeous fungus best known for its traditional use in the desert regions of the southern hemisphere (Trappe et al., 2010). Although it has been used for culinary purposes as far back as in ancient Persia (*ibid.*), its recent distribution outside its optimal ecology has not been explored. There are two well-recognized areas of distribution: the Mediterranean and Pannonian basin in Europe (Kagan-Zur et al., 2014; Kovács et al., 2001) and Beijing, along with neighboring regions in China. The taxonomic characteristics of the Inner Mongolian collections fit well in the concept of the Mattirolomyces terfezioides morphological species (Fischer, 1938; Mattirolo, 1887) and also the phylogenetic species (Díez et al., 2002). We present the first example of a global phylogenetic network study of the genus Mattirolomyces and the significant distribution pattern in M. terfezioloides. Phylogenetic networks are known to give a better insight into species ecology and distribution (Figure 4), an approach frequently used for its ability to visualize evolutionary relationships between nucleotide sequences and depict microevolution events such as the geographical distribution of

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

populations (Huson & Bryant, 2006). The geographic distribution of Mattirolomyces indicate that the origin of the genus was the current Asia-Pacific areas prior to frequent long-distance migration events, one of which brought M. terfezioloides to eastern and northeastern China. Based on the ecology of recently studied areas, the collections from Inner Mongolia and the Shanxi province were both similar to all European collections and also shared the same node in the phylogenetic networks. This supported the idea that climatic conditions were an important evolutionary drive in this species, and that M. terfezioides in Europe originated from this area in China, Asia. M. terfezioloides haplotypes from Europe appeared to from more terminal leaves on the network, indicating their more recent arrival to this area, which is additionally supported by the unresolved haplotype distribution between two main suitable habitats: Mediterranean areas and the Pannonian basin (Kovács et al., 2001). The observed diversification and lack of any further geographic or ecological microevolutionary structure in the European haplotypes in the more terminal leaves of the network additionally support the theory of M. terfezioloides' recent arrival to this area and/or lack of evolutionary pressure. Our collections originated from the continental steppe areas of Inner Mongolia, China, an area classified as BSk according to the Köppen-Geiger climate classification, and where climaterelated indicators point towards a severe spatial desertification risk (Spinoni et al., 2014) Presently, the area still experiences little rainfall with a low average yearly precipitation and lower average yearly temperatures and winter extremes (>5 degrees lower) compared to any other known Mattirolomyces terfezioides area. Our findings indicated that this species survives in dryer and colder conditions, at least outside its fruiting period, than previously reported

(Gógán Csorbainé et al., 2009), and are becoming further endangered due to projected future 243 climate changes (He et al., 2019). The same collections also showed ecological discrepancies 244 from other currently known species' ecologies. *Mattirolomyces* terfezioloides is usually found 245 under Robinia pseudoacacia L., but rarely under artificially planted Diospyros kaki Thunb. or 246 Prunus avium (L.) L. in diverse families of Leguminosae, Ebenaceae, and Rosaceae in southern 247 and central Europe and northern China (Fischer, 1938; Bratek et al., 1996; Wang et al., 2017). R. 248 pseudoacacia is native to the Southern Appalachian and Ozark Mountains of the United States 249 (Huntley, 1990), and was introduced to Europe, Asia, Australia, South America, and Africa 250 mainly as an ornamental plant, or was cultivated to revegetate disturbed sites or for agricultural 251 and commercial uses in recent centuries (Kereszet, 1988). Its mycorrhiza with Mattirolomyces 252 terfezioloides is most likely secondary since phylogeographically basal haplotypes of M. 253 terfezioloides originated from Asia, not North America. As far as we know, this is the first study 254 that shows that M. terfezioloides associates with Populus alba, a tree species in the family of 255 Salicaceae with a wide distribution in Europe and central Asia (Palancean et al., 2018). This is 256 another example of a host plant of M. terfezioides forming a dual mycorrhiza with the ratio 257 between ectomycorrhiza and arbuscular mycorrhiza depending on specific soil conditions 258 (Neville et al., 2019). Asian Populus spp. are most likely the primary mycorrhizal host for M. 259 terfezioloides. Since the European poplar species are most closely related to the Asian species 260 (Cervera et al., 2005), they are a potential source of M. terfezioloides inoculum for Europe. 261 In addition to climate change, recent industry, urbanization, and other land use conversion 262 factors are threatening the survival of M. terfezioloides in the wild, and maybe the reason for its 263

long-lost status in China. *Populus* spp. have only recently become the dominant species in northern China and are mainly used for the restoration of degraded arid and semi-arid landscapes, combating desertification, and drought resilience strategies (*FAO*, 2016). All *Populus*-planted areas are sites where *M. terfezioides* has potential to grow. These areas may also serve to protect and preserve this rare desert fungus, as long as suitable agricultural practices for its cultivation are developed and supported, especially in rural, arid, and semiarid areas. However, *M. terfezioides* in China, especially among the Mongol people, remains underexploited and would require further ethnomycological investigation of its history in order to fully develop agricultural practices and consumption habits. *M. terfezioloides* could become an excellent model not only to develop local economy in rural areas, but also to highlight the importance of non-timber forest-related products in otherwise industrial forest tree plantations.

CONCLUSION

The first record of *M. terfezioides* showed its distribution in Inner Mongolia outside its current distribution area in China with the lowest known temperature and precipitation averages for this species. Our first attempt at phylogenetic network analysis in the genus *Mattirolomyces* revealed its geographic origin was in Asia-Pacific areas prior to frequent long-distance migration events. *M. terfezioides* originated from Inner Mongolia and the Shanxi province of China, Asia and was subsequently transported to Europe. Exploring *M. terfezioides* 'ecology and potential to grow with poplars also increases its potential for cultivation and consumption in central and eastern China. This is a completely underexploited possibility among Mongols in China, and it

deserves further ethnomycological investigation. Ecological investigations of *M. terfezioides* in arid areas of China should be carried out in the near future.

287

288

290

299

ACKNOWLEDGEMENTS

We thank Dr. Xiaojuan Huang for their help with meteorological data collection.

FUNDING

The study was financially supported by the Natural Science Foundation of Inner Mongolia 291 (No. 2020MS03001), the Educational Commission of Inner Mongolia (No. NJYT-18-A21), 292 Science and technology project of Inner Mongolia (No. 2019GG002), the Research fund for 293 young teachers of College of Forestry, Inner Mongolia Agricultural University. Slovenian 294 Partner was co-financed by the research project J4-1766 "Methodology approaches in genome-295 based diversity and ecological plasticity study of truffles from their natural distribution areas" 296 and the Research Program in Forest Biology, Ecology and Technology (P4-0107) of the 297 298 Slovenian Research Agency.

REFERENCES

- 300 Assyov, B., Slavova, M. 2016. First Bulgarian collections of Mattirolomyces terfezioides
- (Pezizaceae), a potentially valuable hypogeous fungus. *Phytol. Balcan*, 22(3), 303-307.
- 302 Bandelt, H.J., Forster, P., Röhl, A. 1999. Median-joining networks for inferring intraspecific
- phylogenies. *Mol. Biol. Evol.*, 16, 37-48. DOI: 10.1093/oxfordjournals.molbev.a026036.
- Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., et al.
- 305 2013. GenBank. *Nucleic Acids Res.*, 41(D1), D36-D42. DOI: 10.1093/nar/gks1195.
- Boa, E. 2004. Wild edible fungi: a global overview of their use and importance to people. Non-

- wood Forest Product series No. 17. FAO Publication, Rome, pp. 147. ISBN 92-5-105157-7.
- Bratek, Z., Jakucs, E., Boka, K., Szedlay, G. 1996. Mycorrhizae between black locust (Robinia
- 309 pseudoacacia) and Terfezia terfezioides. Mycorrhiza, 6, 271-274.
- 310 DOI:10.1007/s005720050136.
- Castellano, M.A., Trappe, J.M., Luoma, D.L. Sequestrate fungi. In: Foster, M.S., Mueller, G.M.,
- Bills, G.F. (Eds), 2004. Biodiversity of Fungi: Inventory and Monitoring Methods.
- Academic Press, Burlington, pp. 197-213. https://www.fs.fed.us/pnw/pubs/pnw gtr772.pdf.
- 314 Cervera, M.T., Storme, V., Soto, A., Ivens, B., Van Montagu, M., Rajora, O.P., Boerjan, W.2005.
- Intraspecific and interspecific genetic and phylogenetic relationships in the genus *Populus*
- based on AFLP markers. *Theor. Appl.. Genet.*, 111(7), 1440-1456.DOI: 10.1007/s00122-
- 317 005-0076-2.
- Díez, J., Manjon, J.L., Martin, F. 2002. Molecular phylogeny of the mycorrhizal desert truffles
- 319 (*Terfezia* and *Tirmania*), host specificity and edaphic tolerance. *Mycologia*, 94, 247-259.
- DOI: 10.1080/15572536.2003.11833230.
- 321 FAO. 2016. Poplars and other fast-growing trees renewable resources for future green
- economies. Synthesis of Country Progress Reports. 25th Session of the International Poplar
- 323 Commission, Berlin, Germanypp., 92-93.
- Fischer, E. Klasse Ascomycetes, ReiheEuascales. 1938. Unterreiche VIII. Tuberineae. In: Engler,
- A., Harms, H. (Eds.), Die natürlichen Pflanzenfamilien V. Wilhelm Engelmann
- Verlag, Leipzigpp., 39.
- 327 Glejdura, S., Kunca, V. 2012. First record of *Mattirolomyces terfezioides* from Slovakia-the
- northernmost locality in Europe. *Catathelasma*, 14, 5-9.
- 329 https://www.academia.edu/17455198/.

- 330 GógánCsorbainé, Illyés, Z., Dimény, J., Merényi, Z., Bratek, Z. 2008. Choiromyces
- meandriformis and Mattirolomyces terfezioides: peculiar truffles with new perspectives.
- *Micologia Italiana*, 38(1), 21-28. https://www.researchgate.net/publication/234108264.
- He, W.P., Zhao, S.S., Wu, Q., Wan, S. 2019. Simulating evaluation and projection of the climate
- zones over China by CMIP5 models. Climate Dyn., 52(5-6), 2597-
- 335 2612.DOI:10.1007/s00382-018-4410-1.
- Huntley, J.C. 1990. Robinia pseudoacacia L. black locust. In: Burns, R.M., Honkala, B.H. (tech
- coords), Silvies of North America. Volume 2. Hardwoods. Agriculture Handbook no. 654.
- Forest Service, U.S. Department of Agriculture, Washington, pp. 755-761.
- 339 DOI:10.1007/978-3-319-02541-4 10.
- Huson, D.H., Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies.
- 341 *Mol. Biol. Evol.*, 23(2), 254-267. DOI: 10.1093/molbev/msj030.
- Kagan-Zur, V., Akyuz, M. Asian Mediterranean desert truffles. In Kagan-Zur, V., Roth-Bejerano,
- N., Sitrit, Y., Morte, A. (Eds.), 2014. Desert Truffles. Springer, Berlin, pp. 159-171.
- DOI:10.1007/978-3-642-40096-4 11.
- 345 Kagan-Zur, V.; Roth-Bejerano, N.; Sitrit, Y.; Morte, A. 2014. Desert Truffles. Springer,
- 346 *Berlinpp.*, 397. DOI: 10.1007/978-3-642-40096-4.
- 347 Katoh, K., Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7:
- improvements in performance and usability. *Mol. Biol. Evol.*, 30(4), 772–78. DOI:
- 349 10.1093/molbev/mst010.
- Keresztesi, B. 1988. Black locust: the tree of agriculture. *Outlook on Agriculture*, 17(2), 77-85.
- 351 DOI:10.1177/003072708801700207.
- Kovács, G.M., Jakucs, E., Bagi, I. 2007. Identification of host plants and description of sclerotia

- of the truffle *Mattirolomyces terfezioides*. *Mycol. Progress*, 6, 19-26.DOI:10.1007/s11557-
- 354 006-0520-y.
- Kovács, G.M., Trappe, J.M., Alsheikh, A.M., Hansen, K., Healy, R.A., Vági, P. 2011. Terfezia
- disappears from the American truffle mycota as two new genera and *Mattirolomyces*
- species emerge. *Mycologia*, 103(4), 831-840. DOI: 10.3852/10-273.
- 358 Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M. 2013.
- Towards a unified paradigm for sequence-based identification of Fungi. *Mol. Eco.*, 22(21),
- 360 5271-5277. DOI: 10.1111/mec.12481.
- Kovács, G.M., Rudnóy, S., Vágvölgyi, C., Lásztity, D., Rácz, I., Bratek, Z. 2001. Intraspecific
- invariability of the internal transcribed spacer region of rDNA of the truffle Terfezia
- *terfezioides* in Europe. *Folia. Microbiol.*, 46(5), 423-426.DOI: 10.1007/BF02814433.
- 364 Kumar, S., Stecher, G., Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis
- version 7.0 for bigger datasets. *Mol. Biol. Evol.*, 33(7), 1870-1874.DOI:
- 366 10.1093/molbev/msw054.
- 367 Liu, Y., Shi, G., Mao, L., Cheng, G., Jiang, S., Ma, X., An, L., Du, G., Johnson, N., Feng, H. 2012.
- Direct and indirect influences of 8yr of nitrogen and phosphorus fertilization on
- Glomeromycota in an alpine meadow ecosystem. *New Phytologist*, 194(2), 523-535.DOI:
- 370 10.1111/j.1469-8137.2012.04050.x.
- Mattirolo, O. 1887. Illustrazione di trenuove specie di Tuberaceeltaliane. Mem dellaReale Accad
- 372 Sc Torino (Secondaserie), 38, 377-393.
- Neville, J., Tessier, J.L., Morrison, I., Scarratt, J., Canning, B., Klironomos, J.N. 2002. Soil
- depth distribution of ecto-and arbuscular mycorrhizal fungi associated with *Populus*
- tremuloides within a 3-year-old boreal forest clear-cut. App. So. Eco., 19(3), 209-216.

- 376 PII:S0929-1393(01)00193-7.
- Palancean, I., Alba, N., Sabatti, M., de Vries, S.M.G. 2018. EUFORGEN Technical Guidelines
- for genetic conservation and use for common walnut (Populus alba). European Forest
- 379 Genetic Resources Programme (EUFORGEN). European Forest Institute, Bonn6 pages.
- 380 ISBN 978-952-5980-44-8.
- Pansu, M., Gautheyrou, J. 2006. Handbook of Soil Analysis-Mineralogical, Organic and
- Inorganic Methods. Springer-Verlag, Berlin Heidelberg New York, pp. 339.ISBN: 978-3-
- 383 540-31210-9.
- Peel, M.C., Finlayson, B.L., Mcmahon, T. 2007. Updated world map of the Köppen-Geiger
- 385 climate classification. *Hydrol. Earth Syst. Sci.*, 4(2), 439-473.DOI: 10.5194/hess-11-1633-
- 386 2007.
- Ronquist, F., Huelsenbeck, J.P. MrBayes 3: 2003. Bayesian phylogenetic inference under mixed
- models. *Bioinformatics*, 19, 1572-1574.DOI: 10.1093/bioinformatics/ btg180.
- Spinoni, J., Vogt, J., Naumann, G., Carrao, H., Barbosa, P. 2015. Towards identifying areas at
- 390 climatological risk of desertification using the Köppen-Geiger classification and FAO
- aridity index. *Int. J. Climatol.*, 35(9), 2210- 2222.DOI:10.1002/joc.4124.
- Trappe, J.M. 1971. A synopsis of the Carbomycetaceae and Terfeziaceae (Tuberales). Trans. Br.
- *mycol. Soc.*, 57(1), 85-92.DOI: 10.1016/S0007-1536(71)80083-9.
- Trappe, J.M., Kovács, G.M., Claridge, A.W. 2010. Comparative taxonomy of desert truffles of
- the Australian outback and the African Kalahari. *Mycol. Progress*, 9(1), 131-143.DOI:
- 396 10.1007/s11557-009-0612-6.
- 397 Wang, X.J., Liu, P.G., Sun, L.H. 2017. Molecular and morphological data confirmed the
- presence of the rare species *Mattirolomyces terfezioides* in China. Plant Diversity, 39, 89-

399	93.DOI: 10.1016/j.pld.2016.10.002.
100	
101	Figure legend
102	
103	Fig. 1. A) Sporocarps of <i>M. terfezioloides</i> ; B) Sclerotium attached with sporocarps of <i>M.</i>
104	terfezioloides; C) Gleba of sporocarps; D, E) Asci and spores; F) Spores with blunt spines.
105	
106	Fig. 2. Average monthly precipitation (left) and average monthly temperature (right) for the
107	Chinese (Baotou) (black solid line), other Asian (dark grey), and European (light gray)
108	collections of Mattirolomyces terfezioloides, as listed in Table 1.
109	
110	Fig. 3.Phylogram of <i>Mattirolomyces</i> based on the sequence dataset of the complete ITS region.
111	Bootstrap values (ML) / posterior probabilities (from Bayesian inference) are shown above or
112	beneath individual branches. Only bootstrap values larger than 60 and posterior possibilities over
113	0.95 are shown.
114	
115	Fig. 4. A rooted phylogenetic network of Mattirolomyces based on the sequence dataset of the
116	complete ITS region. Black dots represent recent taxa, gray dots represent ancestral stages /
117	nodes. Values on mutation vectors represent the number of mutations between two nodes. Names
118	of existing taxa and their geographic origin (country of collections) are given. Phylogenetic
119	network was constructed and tested with a Median joining approach.
120	
121	Fig. 5. A rooted phylogenetic network of <i>Mattirolomyces</i> based on the sequence dataset of the
122	complete ITS region. A rooted phylogenetic network of <i>Mattirolomyces</i> based on the sequence
123	dataset of the complete ITS region. Black dots represent recent taxa, gray dots represent ancestral
124	stages / nodes. Values on mutation vectors represent the number of mutations between two nodes.
125	Names of existing taxa and their geographic origin (country of collections) are given.

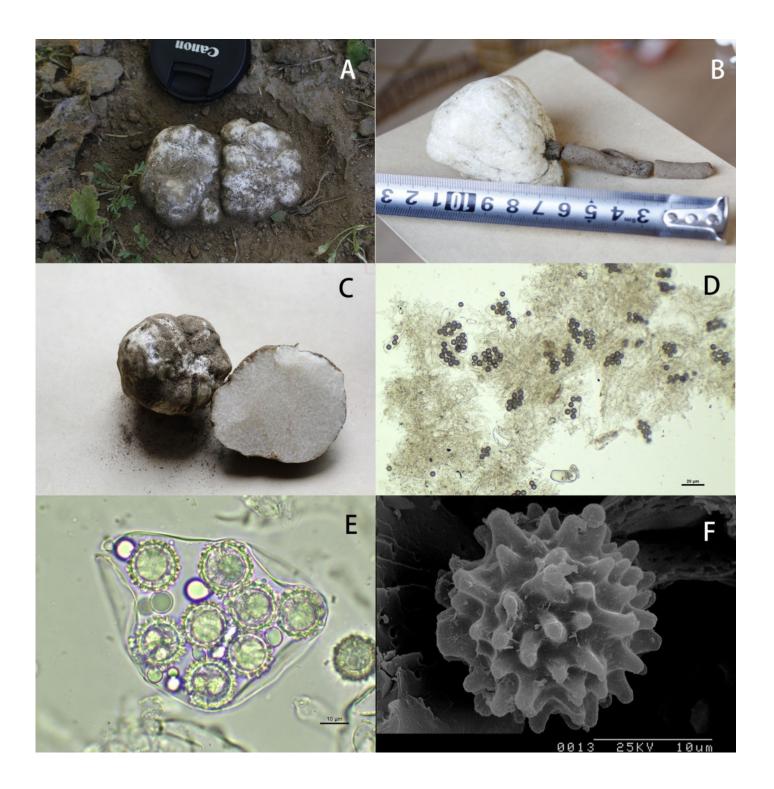
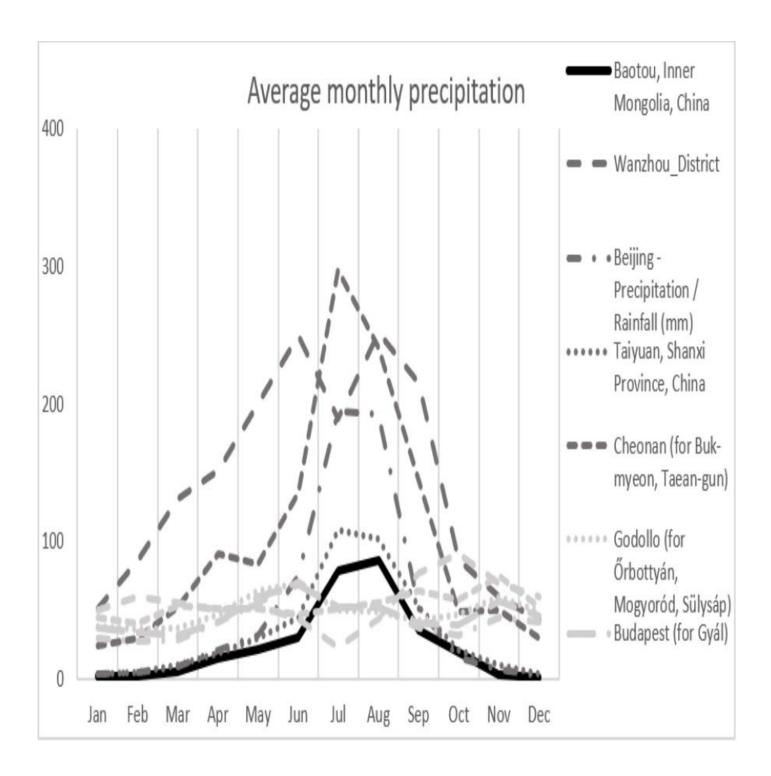

426 Phylogenetic network was constructed and tested with a Median joining approach.

Table 1.The list of obtained nuclear rDNA ITS sequences from the genus *Mattirolomyces* and location of the collection, climate, vegetation, and other site data. The list of obtained nuclear rDNA ITS sequences from the genus *Mattirolomyces*, retrieved from GenBank or UNITE database, are included in the study. Species name and GenBank accession numbers were supplemented with location of the collection, climate, vegetation, and other site data, if available.

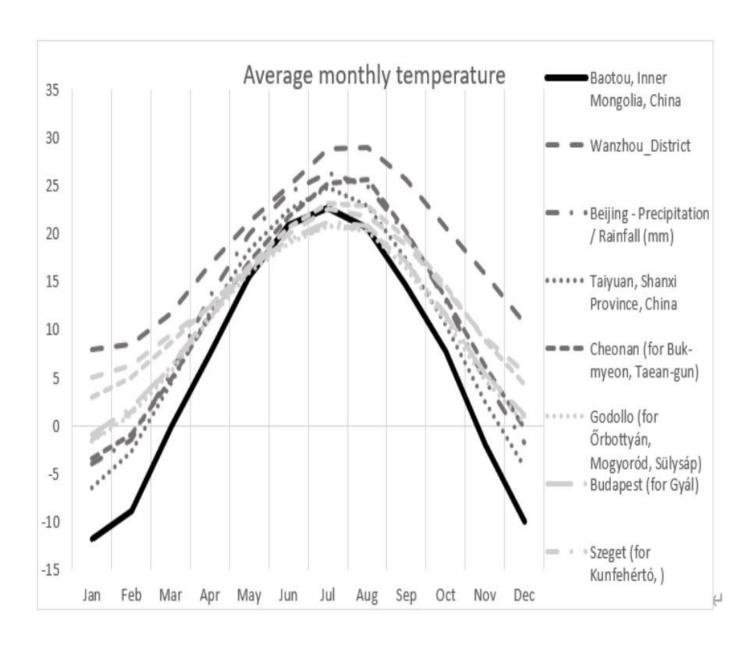
The sporocarps morphology, spore structure and scanning electron microscope picture of spore

A Sporocarps of *M. terfezioloides*; B Sclerotium attached with sporocarps of *M. terfezioloides*; C Gleba of sporocarps; D, E Asci and spores; F Spores with blunt spines.



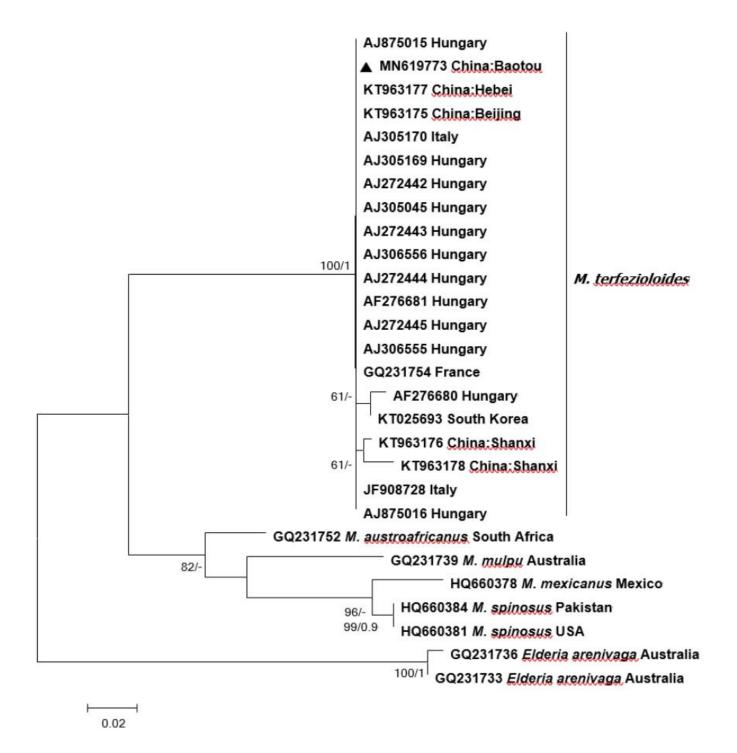
Average monthly precipitation for different area

Average monthly precipitation for the recent Chinese (Baotou) (black solid line), for other Asian (dark grey) and European (light gray) collections of *Mattirolomyces terfezioloides*



Average monthly temperature for different area

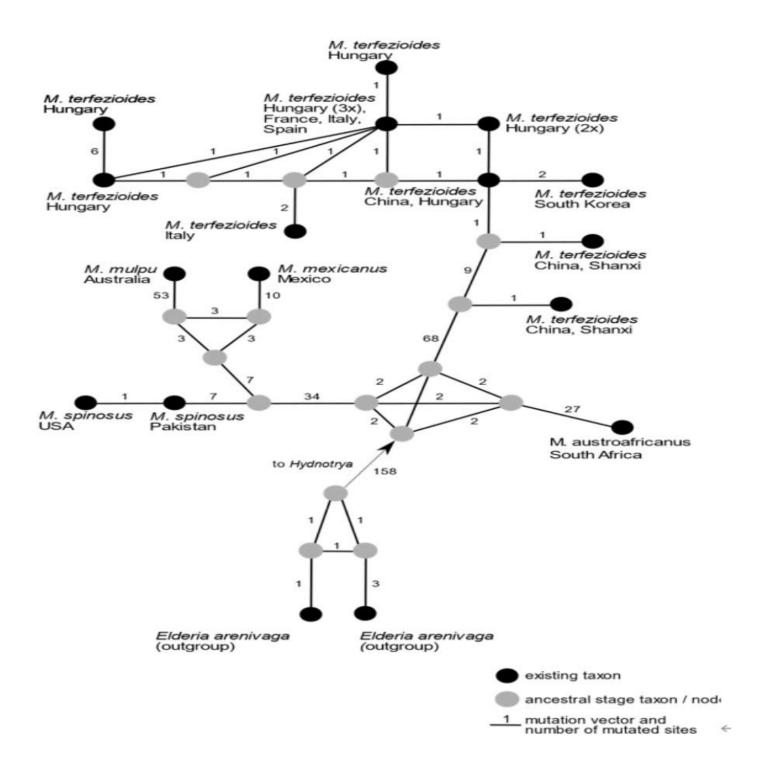
Average monthly temperature for the recent Chinese (Baotou) (black solid line), for other Asian (dark grey) and European (light gray) collections of *Mattirolomyces terfezioloides*



Phylogram of *Mattirolomyces* based on the sequences dataset of the complete ITS region

Phylogram of *Mattirolomyces* based on the sequences dataset of the complete ITS region.

Bootstrap values (ML) / posterior probabilities (from Bayesian Inference) are shown above or beneath individual branches. Only bootstrap values larger than 60 and posterior possibilities over 0.95 are shown.



A rooted phylogenetic network of *Mattirolomyces* based on the sequences dataset of the complete ITS region

A rooted phylogenetic network of *Mattirolomyces* based on the sequences dataset of the complete ITS region. Black dots represent recent taxa, gray dots represent ancestral stages / nodes. Values on mutation vectors represent the number of mutations between two nodes. Names of existing taxa and their geographic origin (country of collections) are given. Phylogenetic network was constructed and tested with a Median joining approach.

Table 1(on next page)

The list of obtained nuclear rDNA ITS sequences from the genus *Mattirolomyces* and location of the collection, climate, vegetation and other site data

The list of obtained nuclear rDNA ITS sequences from the genus *Mattirolomyces*, retrieved from the GenBank or UNITE database and included in the study. Species name and the GenBank accession numbers were supplemented with location of the collection, climate, vegetation and other site data, if available.

- Table 1: The list of obtained nuclear rDNA ITS sequences from the genus *Mattirolomyces*, retrieved from the GenBank or UNITE
- 2 database and included in the study. Species name and the GenBank accession numbers were supplemented with location of the
- 3 collection, climate, vegetation and other site data, if available.

Species	GenBank	Country and area or origin	Climate	Potential(*) symbiotic	Sequence reference
	reference		(Köppen-Geiger	partners	
	code		climate		
			classification)		
Mattirolomyces terfezioides	KT963177	China, Hebei Province, Wanxian	Dwa	Robinia pseudoacacia	Wang et al. 2017
Mattirolomyces terfezioides	KT963175	China, Beijing province	Dwa	Robinia pseudoacacia	Wang et al. 2017
Mattirolomyces terfezioides	AJ305170	Italy, Ravenna	Cfa	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AJ305169	Hungary, Great Hungarian Plain, Kunfehértó	Cfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AJ272442	Hungary, Great Hungarian Plain, Őrbottyán	Dfa/Dfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AJ305045	Hungary, Great Hungarian Plain, Mogyoród	Dfa/Dfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AJ272443	Hungary, Great Hungarian Plain, Gyál	Dfa/Dfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AJ306556	Hungary, Great Hungarian Plain, Kunfehértó	Cfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AJ272444	Hungary, Great Hungarian Plain, Őrbottyán	Dfa/Dfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AF276681	Hungary, Surány	Dfa	n/a	Díez et al. 2002
Mattirolomyces terfezioides	AJ272445	Hungary, Sülysáp	Dfa/Dfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	GQ231754	France, Provence-Alpes-Côte d'Azur, Le Thor	Csa	n/a	Trappe et al. 2010
Mattirolomyces terfezioides	AJ306555	Hungary, Great Hungarian Plain, Kunfehértó	Cfb	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	AF276680	Hungary, Csomád	Dfa	n/a	Kovács et al. 2001
Mattirolomyces terfezioides	KT025693	South Korea, Buk-myeon, Taean-gun	Dwa	Robinia pseudoacacia	Ka et al. 2015
Mattirolomyces terfezioides	KT963176	China, Shanxi Province, Taiyuan	BSk	Robinia pseudoacacia	Wang et al. 2017
Mattirolomyces terfezioides	JF908728	Italy	n/a	n/a	Osmundson et al.
					2013
Mattirolomyces terfezioides	AJ875015	Hungary	Dfa/Dfb	Robinia pseudoacacia	Bratek et al. 1996

Mattirolomyces terfezioides	KT963178	China, Shanxi Province, Taiyuan	BSk	Robinia pseudoacacia	Wang et al. 2017
Mattirolomyces terfezioides	AJ875016	Hungary	Dfa/Dfb	Robinia pseudoacacia	Bratek et al. 1996
Mattirolomyces terfezioides	MN619773	China, Inner Mongolia, Baotou	BSk	Populus alba var.	this study
				pyramidalis	
Mattirolomyces spinosus	HQ660384	Pakistan, Punjab, Sheikhupura	BSh	n/a	Kovács et al. 2011
Mattirolomyces mexicanus	HQ660378	Mexico, Nuevo Leon, Guadalupe	BSh	n/a	Kovács et al. 2011
Mattirolomyces spinosus	HQ660381	USA, Louisiana, Natchitoches	Cfa	n/a	Kovács et al. 2011
Mattirolomyces	GQ231752	South Africa, Northern Cape province, Barkly West	BSh	n/a	Trappe et al. 2010
austroafricanus					
Mattirolomyces mulpu	GQ231739	Australia, Northern Territory	Bwh	n/a	Trappe et al. 2010
Elderia arenivaga (outgroup)	GQ231736	Australia, Northern Territory, Alice Springs Desert	Bwh	n/a	Trappe et al. 2010
		Park			
Elderia arenivaga (outgroup)	GQ231733	Australia, South Australia, Great Victoria Desert	Bwh/Bwk	n/a	Trappe et al. 2010

⁴ n/a not available.